1,721 research outputs found

    State Space Reduction For Parity Automata

    Get PDF
    Exact minimization of ?-automata is a difficult problem and heuristic algorithms are a subject of current research. We propose several new approaches to reduce the state space of deterministic parity automata. These are based on extracting information from structures within the automaton, such as strongly connected components, coloring of the states, and equivalence classes of given relations, to determine states that can safely be merged. We also establish a framework to generalize the notion of quotient automata and uniformly describe such algorithms. The description of these procedures consists of a theoretical analysis as well as data collected from experiments

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Model Checking Parse Trees

    Full text link
    Parse trees are fundamental syntactic structures in both computational linguistics and compilers construction. We argue in this paper that, in both fields, there are good incentives for model-checking sets of parse trees for some word according to a context-free grammar. We put forward the adequacy of propositional dynamic logic (PDL) on trees in these applications, and study as a sanity check the complexity of the corresponding model-checking problem: although complete for exponential time in the general case, we find natural restrictions on grammars for our applications and establish complexities ranging from nondeterministic polynomial time to polynomial space in the relevant cases.Comment: 21 + x page

    Complex dynamics emerging in Rule 30 with majority memory

    Get PDF
    In cellular automata with memory, the unchanged maps of the conventional cellular automata are applied to cells endowed with memory of their past states in some specified interval. We implement Rule 30 automata with a majority memory and show that using the memory function we can transform quasi-chaotic dynamics of classical Rule 30 into domains of travelling structures with predictable behaviour. We analyse morphological complexity of the automata and classify dynamics of gliders (particles, self-localizations) in memory-enriched Rule 30. We provide formal ways of encoding and classifying glider dynamics using de Bruijn diagrams, soliton reactions and quasi-chemical representations

    An expressive completeness theorem for coalgebraic modal mu-calculi

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given functor. Using automatatheoretic techniques and building on recent results by the third author, we show that in order to provide such a characterization result it suffices to find what we call an adequate uniform construction for the coalgebraic type functor. As direct applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem for the modal mu-calculus, avoiding the use of syntactic normal forms, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors (including the "game functor"). As a more involved application, involving additional non-trivial ideas, we also derive a characterization theorem for the monotone modal mu-calculus, with respect to a natural monadic second-order language for monotone neighborhood models.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0721
    • …
    corecore