
State Space Reduction For Parity Automata
Christof Löding
RWTH Aachen University, Germany
loeding@informatik.rwth-aachen.de

Andreas Tollkötter
RWTH Aachen University, Germany
andreas.tollkoetter@rwth-aachen.de

Abstract

Exact minimization of ω-automata is a difficult problem and heuristic algorithms are a subject of
current research. We propose several new approaches to reduce the state space of deterministic
parity automata. These are based on extracting information from structures within the automaton,
such as strongly connected components, coloring of the states, and equivalence classes of given
relations, to determine states that can safely be merged. We also establish a framework to generalize
the notion of quotient automata and uniformly describe such algorithms. The description of these
procedures consists of a theoretical analysis as well as data collected from experiments.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory; Theory of computation → Automata over infinite objects; Theory of computation → Regular
languages

Keywords and phrases automata, ω-automata, parity, minimization, state space reduction, determ-
inistic, simulation relations

Digital Object Identifier 10.4230/LIPIcs.CSL.2020.27

Related Version https://github.com/atollk/master-thesis/blob/master/tex/thesis.tex

Supplement Material https://github.com/atollk/master-thesis

1 Introduction

Finite automata on ω-words (one sided infinite words) have been introduced in [2] as a
formalism for a deciding a logical theory. Since then, such automata have turned out to be
a useful tool in verification of finite state-based systems. In particular, nondeterministic
Büchi automata (NBA) are a standard tool in model checking for expressing properties of
non-terminating systems, see [1]. In some applications, there are algorithms that require the
property to be represented by a deterministic automaton, like model checking of probabilistic
systems (see, e.g., [1, Section 10.3]), or synthesis of finite state systems from ω-regular
specifications (see [20] for an overview of the theory, and [12] for recent developments in
practice). Deterministic ω-automata require a more expressive acceptance condition than
nondeterministic Büchi automata in order to capture the same language class. One such
condition that is widely used because of its compact representation and its good algorithmic
properties is the parity condition that dates back to [13] (see the surveys [19, 21] on the
theory of ω-automata). In a parity automaton, each state is assigned a priority, which is a
natural number. We use here the convention that a run is accepting if the smallest priority
that is seen infinitely often is even.

© Christof Löding and Andreas Tollkötter;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:loeding@informatik.rwth-aachen.de
https://orcid.org/0000-0003-2685-2132
mailto:andreas.tollkoetter@rwth-aachen.de
https://doi.org/10.4230/LIPIcs.CSL.2020.27
https://github.com/atollk/master-thesis/blob/master/tex/thesis.tex
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 State Space Reduction For Parity Automata

We consider here the problem of finding algorithms for reducing the state space of
deterministic parity automata (DPA). Such reduction algorithms can be used as a post
processing step that are applied after a determinization construction, and before the DPAs
are used in further algorithms.

While deterministic finite automata on finite words can be minimized very efficiently [9]
by merging language equivalent states, the problem becomes NP-hard even for deterministic
Büchi automata [17], which are the special case of DPAs using only priorities 0 and 1. While
language equivalence of states in DPAs can be computed in polynomial time by a simple
adaption of emptiness for Streett automata (see the “fair state problem” in [5]), merging
language equivalent states of DPAs does, in general, not preserve the language. Heuristic
approaches for reducing the state space of ω-automata, usually based on simulation relations,
have up to now mainly focused on NBAs, e.g., [18, 6, 11], or even on alternating Büchi or
parity automata [7, 8].

Because of the applications of DPAs in synthesis and probabilistic model checking, we
think that it is worth studying the problem of state space reduction also for DPAs. Typically,
state space reduction is done by identifying classes of equivalent states that can be merged,
and then constructing the quotient automaton in case of a congruence relation, or redirecting
all incoming transitions of a class to a representative of that class, and deleting all other
states. The most basic merge for DPAs is obtained by interpreting a DPA as a Moore
automaton with the priorities as output, which can then be minimized efficiently by merging
states that produce the same output for every input sequence [9]. In this context, we call the
equivalence relation which considers two states to be equivalent if they are merged by this
algorithm the Moore equivalence.

While we also take the basic approach of computing states that can be merged, we
sometimes need to be careful in the selection of representatives. For that reason, we introduce
the notion of “merger templates”, which map sets of states in the original DPA, called the
merge set, to other sets of states, called the candidate set. The easiest interpretation, which
we refer to as representative merge, allows us to merge all states from the merge set into any
single representative that is chosen from the candidate set.

We formulate some basic known reduction techniques for DPAs in this framework.
Furthermore, we analyze the known notion of delayed simulation for DPAs. Delayed simulation
has been introduced in [6] for nondeterministic Büchi automata. In [8] the notion has been
extended to alternating parity automata, but it is shown there that quotienting alternating
(and also nondeterministic) parity automata w.r.t. delayed simulation does not preserve the
language. For this reason, [8] introduces variants of delayed simulation that can be used
for merging. We revisit the definition of delayed simulation and show that for DPAs the
corresponding quotient preserves the language.

As our main contribution, we propose three new equivalence relations that can be used
for merging states in DPAs, which we call path refinement, threshold Moore, and labeled SCC
filter (LSF). All these techniques require a given equivalence relation ∼ over the state space
that implies language equivalence of states. This equivalence relation has to be computed
separately (it can be the full language equivalence relation, or just a subset of it). In our
experiments, we use a relation that is produced as a by-product of the determinization
construction.

If ∼ is a congruence (like full language equivalence), then path refinement refines one of
the congruence classes up to a point such that the remaining blocks can be merged. In the
threshold Moore technique, one computes the Moore equivalence of states, considering only
the priorities less than or equal to some k, and intersects this with ∼. All states of priority k

C. Löding and A. Tollkötter 27:3

that are equivalent in this intersection can be merged. Finally, the LSF merger template
removes states also based on the Moore equivalence up to k, but it merges states that are in
different SCCs of the DPA after removing all states up to priority k.

We illustrate all these new techniques on small examples, exhibit efficient algorithms
for computing the corresponding relations, and provide some experimental data showing
that they can achieve significant reductions on DPAs obtained from specifications from the
competition SYNTCOMP [10].

The remainder of this paper is structured as follows. In Section 2 we give basic definitions
and introduce the notion of merger template. In Section 3, we revisit the notion of delayed
simulation. In Sections 4–6 we present our three new approaches. The experimental evaluation
is given in Section 7, and in Section 8 we conclude.

2 Automata and Merger Templates

We consider deterministic parity automata (DPA), which are, syntactically, a specific type of
Moore automaton. A Moore automaton is of the form A = (Q,Σ, δ, f) with a finite set Q of
states, the input alphabet Σ, a transition function δ : Q× Σ→ Q, and an output function
f : Q→ Γ for some output alphabet Γ. Note that we define the automaton without initial
state because we are interested in reducing the number of states of automata by computing
equivalence relations on states. In this context, the initial state does not play any role.

We use the standard notations Σ∗ for all finite words w = a0a1 · · · an with all ai ∈ Σ,
and Σω for the set of infinite words α = a0a1a2 · · · with all ai ∈ Σ. We write α(i) for the
ith letter ai of α. When estimating the complexity of algorithms, we assume that |Σ| is a
constant.

A run of A from state q0 ∈ Q on an infinite input word α ∈ Σω is an infinite state
sequence ρ = q0q1q2 · · · ∈ Qω such that δ(qi, α(i)) = qi+1 for all i. The generated output of
A on α starting from q0 is the sequence f(ρ) = f(q0)f(q1) · · · of outputs at the states in
the run. Similarly, one defines runs and outputs for finite input words. As usual, we write
δ∗(q, w) for the state that is reached by the run on w that starts in q.

A DPA is a special Moore automaton A = (Q,Σ, δ, c), where the output function is of the
form c : Q→ N, and is called the priority function. For q ∈ Q, we refer to c(q) as the priority
of q, and for P ⊆ Q, we let c(P) = {c(q) | q ∈ P}. A run ρ of a DPA is called accepting if in
c(ρ) the smallest priority that occurs infinitely often is even. The word α ∈ Σω is accepted
from q ∈ Q if the run of A on α from q is accepting. We write L(A, q) for the set of all words
accepted by A from q.

In the remainder of the paper, A with the above components is always a DPA if not
noted otherwise.

We consider several types of different relations, mostly over the state domain Q. A
relation R is a preorder if it is reflexive and transitive. R is an equivalence relation if it
is a symmetric preorder. R is a congruence relation if it is an equivalence relation that is
compatible with δ, i.e., if (p, q) ∈ R, then also (δ(p, a), δ(q, a)) ∈ R for all a ∈ Σ.

If ∼ is an equivalence relation and A is a DPA, we write C(∼) ⊆ 2Q for the set of
equivalence classes in A. We define two basic equivalence relations that are used throughout
the paper.

I Definition 1. The language equivalence relation is defined by p ≡L q iff L(A, p) = L(A, q).
The Moore equivalence relation is defined by p ≡M q iff c(δ∗(p, w)) = c(δ∗(q, w)) for all

finite words w ∈ Σ∗ (that is, for every input word, the sequence of priorities when starting in
p is the same as the one when starting in q).

CSL 2020

27:4 State Space Reduction For Parity Automata

Both of these relations are actually congruence relations. It is well known that merging
language equivalent states does not preserve the accepted language in general. Consider,
for example, the DPA from Figure 4 on page 10. All three states are language equivalent,
accepting the words with finitely many c and infinitely many a. But it is not possible to
merge any of the states as that would change the languages of the remaining states.

In contrast, Moore equivalent states can be merged without changing the language. The
main aim of this paper is to identify other conditions under which language equivalent states
can be merged. We say that a relation ∼ implies language equivalence if p ∼ q implies that
p ≡L q.

2.1 Merger Templates

The merge operations that we use are more general than quotient automata. Consider, for
example, the DPA in Figure 5 on page 12. As we explain in Section 6, it is possible to
remove the states q1, q2, and to redirect the incoming transitions of these states to q3 or q4
instead. We say that M = {q1, q2} is a merge set, and that C = {q3, q4} is the corresponding
candidate set.

We define the notion of a merger template, which maps a collection of such merge sets to
their corresponding candidate sets, and the notion of representative merge, which merges the
states in the merge sets into a single candidate, respectively.

I Definition 2. Let µ : D → (2Q \ {∅}) be a function for some D ⊆ 2Q. We call µ a merger
template if all sets in D are pairwise disjoint and for all sets M ∈ D, µ(M)∩ (

⋃
D \M) = ∅.

The latter condition means that the candidates µ(M) for M cannot be inside any other merge
set (but they can be inside M).

A representative merge A′ of A w.r.t. µ is constructed by choosing a representative
rM ∈ µ(M) for all M ∈ D and then removing all states in M \ {rM}. Transitions that
originally lead to one of the removed states are redirected to the representative rM instead.

The notion of quotient automaton w.r.t. a congruence relation is captured by a represent-
ative merge for the merger template that maps each congruence class to itself. We illustrate
this on the example of Moore equivalence.

I Definition 3. The Moore merger template is defined as µM : C(≡M) → 2Q with
µM (κ) = κ for each κ ∈ C(≡M).

Then, the following is an easy consequence of the definitions.

I Proposition 4. A representative merge of a DPA w.r.t. µM is language equivalent to the
original and isomorphic to the quotient automaton w.r.t. ≡M .

When we apply merge operations, we talk about language equivalence of the resulting
automaton to the original one (as in the above proposition). We have defined our automata
without initial states, so we need to fix our notion of language equivalence of two automata.

I Definition 5. Two DPAs A1 and A2 are called language equivalent if for each state p
in one of the DPAs, there is a state q in the other DPA such that from p and q the same
language is accepted (in the respective DPA).

C. Löding and A. Tollkötter 27:5

2.2 Schewe Merge
The main focus of this paper lies on techniques to generate merger templates such that a
representative merge produces a language equivalent DPA. However, in the remainder of this
section, we want to discuss a more involved merge operation than the representative merge.
This operation is based on [17], and we therefore call it Schewe merge. We do not use this
merge operation in the other sections. The aim is rather to illustrate that representative
merges are not the only option.

The Schewe merge works rather similar to the representative merge. In addition to
merging states from the merge sets into the chosen representative, it also redirects some
transitions to the candidate set. While this does not remove additional states on its own,
it simplifies the structure of the automaton to potentially improve the reduction of further
reduction algorithms that are applied after the Schewe merge.

I Definition 6. Let µ be a merger template. A Schewe merge of a DPA A w.r.t. µ is
constructed by first building a representative merge. Then, for all merge sets M in µ and all
transitions δ(p, a) = q in the original automaton, if q ∈ µ(M) and p is not reachable from q,
then the transition is redirected to rM instead.

A Schewe merge differs from the representative merge if there is more than one state from
the candidate set remaining, and the states are distributed over multiple SCCs. Whenever a
transition would move the automaton to a candidate while changing SCC at the same time,
that transition is instead redirected to the chosen representative state. One can imagine
that, for example, this potentially enhances the reduction of a consecutive Moore merger, as
more states now uniformly target the same representative.

It is not obvious if one can simply replace the representative merge with the Schewe
merge and still keep the same properties such as preservation of language. We can identify a
set of requirements that merger templates have to satisfy to be compatible with the Schewe
merge.

I Definition 7. For a representative merge A′ of A w.r.t. µ, we define the candidate relation
∼µC over the states of A′ by p ∼µC q if and only if p = q or there is a C ∈ µ(D) with p, q ∈ C.

We call µ Schewe suitable if for all representative merges A′, ∼µC is a congruence relation,
it implies language equivalence, and the reachability order restricted to any equivalence class
of ∼µC is symmetric (that is, if one state is reachable from another, they are in the same
SCC).

An example for a Schewe suitable merger template is µ−1,≡L

LSF from Section 6. This merger
template intuitively expresses that for each class of language equivalent states, one only needs
to keep those in a “latest” SCC. The Schewe merge then corresponds to Construction 12 of
[17] (where in [17] a notion of “almost equivalence” is used instead of language equivalence
because the operation is used in the context of automata on finite words).

I Theorem 8. Let µ be a Schewe suitable merger template and let A be a DPA. If a
representative merge and a Schewe merge of A are built with the same choices for the
representative states, then these two merge DPAs are language equivalent.

Proof. Let A′ be the representative merge and A′′ be the Schewe merge. Let q0 be some
starting state for the three runs ρ, ρ′, ρ′′ of the three automata on some word α. We claim
that ρ′ and ρ′′ have the same acceptance status.

CSL 2020

27:6 State Space Reduction For Parity Automata

Let K be the set of positions where ρ′′ uses a transition that does not exist in ρ′. We
can observe that for every equivalence class κ of ∼µC , there is at most one kκ in K. If there
would be two such positions kκ and lκ, then ρ′′(lκ− 1) would be reachable from ρ′′(kκ) which
contradicts the requirement for the redirection of that edge in the Schewe merge.

As K = {k1, . . . , kn} is finite, ρ′′ eventually only uses transitions that are also present in
ρ′. By induction on i, we can show that ρ′(ki + 1) ∼µC ρ′′(ki + 1), in particular for i = n. As
∼µC implies language equivalence by assumption, that means ρ′ and ρ′′ must have the same
acceptance status. J

3 Delayed Simulation

We adapt the notion of delayed simulation, which has been introduced for alternating parity
automata in [8], to DPAs. In the special case of DPAs, the computation of delayed simulation
becomes simpler, and it can directly be used for state space reduction, while alternating and
nondeterministic automata require more restricted variants for this purpose [8].

I Definition 9 (adapted from [8]). The delayed simulation equivalence relation is defined
as p ≡de q if and only if the following property holds for all w ∈ Σ∗: Let p′ = δ∗(p, w) and
q′ = δ∗(q, w). Every run in the automaton that starts in p′ or q′ eventually sees a priority
less than or equal to min{c(p′), c(q′)}.

It is easy to see that ≡de is a congruence relation that implies language equivalence.
However, states that are ≡de-equivalent do in general not have the same priority. In order to
correctly merge ≡de-equivalent states, one has to pick a representative of minimal priority
from each class.

I Definition 10. The delayed simulation merge template is µde : C(≡de) → 2Q with
µde(κ) = {q ∈ κ | c(q) = min c(κ)}.

I Theorem 11. A representative merge of a DPA A w.r.t. µde is language equivalent to the
original.

Proof. Consider an input word α, a run ρ = q0q1 · · · of A on α from some state q0, and the
corresponding run ρ′ starting in the ≡de-class of q0 of the DPA A′ obtained by a representative
merge. Since the merge picks from each class a representative with smallest priority, it is
clear that the priorities of states in ρ′ are at each position smaller than or equal to the
priorities in ρ. If ρ′ visits a state of priority k, then ρ visits a state of priority k now or later,
by definition of delayed simulation. Hence, the smallest priority that occurs infinitely often
is the same in both runs. J

In [8] it is shown that delayed simulation can be computed by solving a Büchi game. Since
we consider the special case of deterministic automata, we instead obtain just a deterministic
Büchi automaton for which one has to solve language universality in order to compute the
delayed simulation equivalence. The automaton is obtained by a product construction for
tracking two runs, and a third component that keeps track of the smallest priority that the
second state still has to match (see Lemma 13 below).

I Definition 12. Define the deterministic Büchi automaton Gde = (Qde,Σ, δde, Fde) as
Qde = Q×Q× (c(Q) ∪ {X})
δde((p, q, k), a) = (p′, q′, γ(c(p′), c(q′), k)), where p′ = δ(p, a) and q′ = δ(q, a)

C. Löding and A. Tollkötter 27:7

with obligation function

γ(i, j, k) =
{
X if j ≤ i and j ≤X k

min≤X{i, k} otherwise

where 0 ≤X 1 ≤X 2 ≤X · · · ≤X X.
Fde = Q×Q× {X}.

Now using this automaton, we can relate delayed simulation to the question of universal
language. A state is language universal if starting from it, every input word is accepted.

I Lemma 13. For two states p and q, let q0
de(p, q) = (p, q, γ(c(p), c(q),X)). Then p ≡de q if

and only if q0
de(p, q) and q0

de(q, p) are language universal states (all infinite words are accepted
from these states in Gde).

Proof. The run from q0
de(p, q) in Gde consists of the two runs from p and q in the original

DPA A, and the “obligations” in the third component. This obligation is the smallest number
k such that the run from p has seen priority k, and the run from q has since then not seen a
priority ≤ k. The obligation is X if no such number k exists. If the obligation becomes X
infinitely often, then for all priorities k seen in the run from p at some position i, the run
from q visits a priority ≤ k at position i or later. With this observation, it follows that the
condition from the lemma captures the definition of delayed simulation. J

I Theorem 14. µde can be computed in O(|Q|2 · |c(Q)|).

Proof. Assuming that we can compute ≡de in a suitable data structure in the described
time, building µde from that is rather trivial. To see how we compute ≡de, observe that
the size of Gde is O(|Q|2 · |c(Q)|). The set of language universal states in a DBA can be
computed in linear time: we are looking for loops in the subgraph that only consists of the
non-accepting states. Then, every state from which such a loop is reachable is not language
universal. These operations can all be done in linear time with classic graph algorithms such
as depth first search. J

4 Path Refinement

In this section, we present our first new technique, which we call path refinement. It starts
from a given congruence relation ∼ on the state space that implies language equivalence.
For path refinement, we pick one congruence class λ of ∼. We then define an equivalence
relation only on the states of λ, and merge the states in the corresponding equivalence
classes. For defining the equivalence relation of path refinement, we consider the set Lλ←↩
of non-empty finite words that, starting in a state in λ lead the DPA back to λ without an
intermediate visit to λ (note that the precise starting state inside λ does not matter because
∼ is a congruence):

Lλ←↩ := {w = a1 · · · an ∈ Σ+ | for all (or equivalently some) q ∈ λ: δ∗(q, w) ∈ λ, and
δ∗(q, a1 · · · ai) /∈ λ for all 1 ≤ i < n}.

Based on this language, we define the equivalence relation as follows.

I Definition 15. Let ∼ be a congruence relation that implies language equivalence, and let
λ ∈ C(∼) be an equivalence class. We define a relation Rλ on λ as (p, q) ∈ Rλ if and only if
for all w ∈ Lλ←↩, the smallest priority seen on the path induced by w is the same starting
from p and from q.

CSL 2020

27:8 State Space Reduction For Parity Automata

q0, 0

q1, 0

q2, 0

q3, 1

a

b

c

a
b

c

a

bc

a

b

c

Figure 1 Example automaton.

q0, 0 q2, 0

q3, 1

b

a, c

a

bc

a

b
c

Figure 2 Example automaton after merging
with µ{q0,q1}

PR .

We define path refinement equivalence ≡λPR on λ as the largest subset of Rλ such that
p ≡λPR q if and only if for all w ∈ Lλ←↩, δ∗(p, w) ≡λPR δ∗(q, w).

As an example, consider the DPA shown in Figure 1. For the relation ∼, we use exact
language equivalence between states. In this case, the language equivalent states are {q0, q1}
and {q2, q3}. They are separated, e.g., by the word aω. We choose λ = {q0, q1}.

The set Lλ←↩ is described by the regular expression a + c + b(a + b)∗c; reading any of
these words from either q0 or q1 will take the DPA back to λ again.

Since q0, q1 both have the lowest priority 0, on every path for a word in Lλ←↩, the lowest
priority that is seen is 0. Hence, q0 ≡λPR q1.

As for delayed simulation, the corresponding merger template defines for each class the
states with smallest priority as candidates:

IDefinition 16. The path refinement merger template is µλPR : C(≡λPR)→ 2Q with µλPR(κ) =
{q ∈ κ | c(q) = min c(κ)}.

Going back to the example, the merger template would assign µλPR({q0, q1}) = {q0, q1}.
The representative merge for the candidate q0 is shown in Figure 2.

Path refinement thus is able to remove one state from the automaton. In contrast, no
two different states are in the delayed simulation equivalence relation.

One can check that this automaton is equivalent to the original DPA. The fact that this
is true in general, is captured by the following theorem.

I Theorem 17. A representative merge of a DPA A w.r.t. µλPR is language equivalent to
the original.

Proof. Let A′ be the representative merge. Assume there is a starting state q0 ∈ Q′ and a
word α such that the acceptance of the runs ρ (of A starting in q0) and ρ′ (of A′ starting in
q0) differs. We will bring this assumption to a contradiction.

First, note that at every position i, ρ(i) and ρ′(i) must be ∼-equivalent, as ∼ is a
congruence relation. If in these runs, λ is visited only finitely often, there is a position j at
which it is visited for the last time. Then from j on, ρ′ only uses transitions that also exist
in the original DPA A. As ρ(j) ∼ ρ′(j), they must be language equivalent and therefore have
the same acceptance status. This contradicts the assumption.

Otherwise, λ is visited infinitely often. However, for two consecutive positions k and
k′ at which λ is seen, we can show that the smallest priorities in c(ρ(k)), . . . , c(ρ(k′)) and
c′(ρ′(k)), . . . , c′(ρ′(k′)) are the same. Then, it easily follows that the entire runs share the
same smallest priority that is seen infinitely often.

To observe that the two run segments see the same minimal priority, first observe that
ρ(k) ≡λPR ρ′(k) by induction on k. If k is the first position at which λ is visited, then ρ′(k)

C. Löding and A. Tollkötter 27:9

is the representative of the equivalence class of ρ(k) and therefore ≡λPR-equivalent to ρ(k).
Then, by definition of the path refinement equivalence, the same holds for k′ and therefore
all following positions.

Now that we have established ρ(k) ≡λPR ρ′(k), it follows directly from the definition of Rλ
that the smallest priorities in c(ρ(k)), . . . , c(ρ(k′)) and c′(ρ′(k)), . . . , c′(ρ′(k′)) are equal. J

We now turn to the question how to compute ≡λPR efficiently. In the naive approach, one
can build a product automaton similar to the one for delayed simulation, in which the third
component tracks the smallest priority so far and the component it was seen in. Then, at
every visit to λ, the tracked values need to coincide. An algorithm based on such a product
would have a complexity that is at least quadratic in the state space.

Instead, we build a Moore automaton of size |Q| · |c(Q)| that tracks only for single states
the smallest priority seen on paths from λ back to λ. Moore equivalence in this automaton
then corresponds to ≡λPR.

I Definition 18. Define the Moore automaton Avisit = (Qλvisit,Σ, δλvisit, f
λ
visit) by

Qλvisit = Q× (c(Q) ∪ {⊥})

δλvisit((q, k), a) =
{

(q′,min{c(q), c(q′)}) if q ∈ λ
(q′,min{k, c(q′)}) if q /∈ λ

, where q′ = δ(q, a)

fvisit((q, k)) =
{
k if q ∈ λ
⊥ if q /∈ λ

I Lemma 19. For a state q ∈ Q, let ιq = (q,max c(Q)) ∈ Qλvisit. Then, for all states p and
q, it holds that p ≡λPR q if and only if ιp ≡M ιq.

Proof. Our first observation is that for any state p ∈ λ, reading some w ∈ Lλ←↩ from (p, k)
ends in (q, k′), where k′ is the smallest priority that occurs on the run segment.

If p 6≡λPR q, then there is a w ∈ Lλ←↩ such that either the smallest priority when reading
w from p and q differs, or reading w moves to non-PR-equivalent states. If the former is true,
then reading w from ιp and ιq brings the visit graph to states with different priorities and
therefore ιp 6≡M ιq. If the former is false and the latter is true, then one has to repeatedly
apply this argument until at some point a state pair is reached at which the first case is
violated. This must happen eventually, as ≡λPR is defined as the largest subset satisfying its
conditions.

For the other direction, if ιp 6≡M ιq, there must be a w ∈ Σ∗ such that the priority differs
when reading w from ιp and ιq. As all states not in λ have the same output ⊥, we can
split w = v1 . . . vn such that all vi are words in Lλ←↩. Then, on the last segment, reading
vn sees different minimal priorities from the initial states, and therefore p and q cannot be
PR-equivalent. J

I Theorem 20. ≡λPR can be computed in O(|Q| · |c(Q)| · log |Q|).

Proof. Moore equivalence for automata with n states can be computed in time O(n logn)
[9]. The number of states of Avisit is in O(|Q| · |c(Q)|). As |c(Q)| is always at most |Q|, this
gives us the desired complexity. J

5 Threshold Moore

Similar to Section 4, we again start from an equivalence relation ∼ on the state set Q of the
DPA that implies language equivalence. In this section, ∼ does not have to be a congruence
relation. We then intersect ∼ with a weakened version of Moore equivalence, and show that
states that are equivalent in this intersection can be merged.

CSL 2020

27:10 State Space Reduction For Parity Automata

q0, 1

q1, 1

q2, 2

q3, 3

a

b

c

a
b

c

a

b

c

a

bc

Figure 3 Example automaton.

q0, 1 q2, 2

q3, 3

a

b, c a

b

c

a

b

c

Figure 4 Example automaton after merging
with µ∼TM.

I Definition 21. For a priority k, we define the threshold Moore equivalence relation as
p ≡≤kM q if and only if for all finite words w, δ∗(p, w) and δ∗(q, w) have the same priority or
both priorities are greater than k.

Let ∼ be an equivalence relation that implies language equivalence. We define the TM
equivalence relation as p ≡∼TM q if and only if p ∼ q, c(p) = c(q), and p ≡≤c(p)

M q.

Note that for each k, the relation ≡≤kM is a congruence but, in general, ≡∼TM is not a
congruence, even if ∼ is (as can be seen in the example below).

Figure 3 shows a DPA on which we want to illustrate the reduction process. For ∼, we
use exact language equivalence again. In this example, all four states are equivalent, as all
accept the language (a+ b+ c)∗(b∗a)ω.

The threshold Moore relation depends on the choice for parameter k. For k = 0, all four
states are equivalent because all states have priority greater than 0. For k = 1, there are
three equivalence classes, {q0, q1}, {q2}, and {q3}. For k > 1, the relation becomes the same
as ≡M and all states are separated. These observations together imply that q0 ≡∼TM q1, and
these are the only states that are equivalent w.r.t. ≡∼TM. Therefore, ≡∼TM is not a congruence
because, for example, δ(q0, a) = q2 and δ(q1, a) = q3.

The merger template for TM relation simply merges classes of ≡∼TM. Note that this is
not, however, a quotient automaton, as ≡∼TM is in general not a congruence relation.

I Definition 22. We define the TM merger template µ∼TM : C(≡∼TM)→ 2Q as µ∼TM(κ) = κ.

Continuing the example, the representative merge with the candidate q0 for the class
{q0, q1}, results in the automaton shown in Figure 4.

No distinct states are delayed simulation equivalent in this example. Furthermore, for the
only ∼-class λ = {q0, q1, q2, q3}, one can check that no two distinct states are ≡λPR-equivalent.

I Lemma 23. Let A be a DPA and let A′ be a representative merge w.r.t. a single equivalence
class κ ∈ C(µ∼TM). Then L(A, q) = L(A′, q) for all states q of A′. Furthermore, if k is the
priority of the states in κ, then for all states p, q of A′ with k ≥ c(p), c(q), we have p ≡≤kM q

in A if, and only if, p ≡≤kM q in A′.

Proof. We focus on the language equivalence first. Let ρ and ρ′ be the runs of the two
automata on some word α starting in q. We show that these two runs have the same
acceptance status.

Note that all states in ρ′ are also states of A. Since ≡L is a congruence relation and only
language equivalent states are merged, we have that ρ(i) ≡L ρ′(i) in A for all positions i.
The same is true for ≡≤kM .

C. Löding and A. Tollkötter 27:11

If ρ visits infinitely many states of priority at most k, then the two runs see the same
smallest priority l < k infinitely often, as c(ρ(i)) = l if and only if c′(ρ′(i)) = l. Thus, they
must have the same acceptance status.

If c(ρ) only visits finitely many states of priority at most k, then from some point j on in
ρ′, only transitions that also exist in A are taken. As ρ(j) ≡L ρ′(j) in A, we obtain that the
two runs have the same acceptance status.

Regarding the second claim of the lemma, let p, q be states with k ≥ c(p), c(q) such that
p, q are ≡≤kM -equivalent in A. Let α ∈ Σω, and consider the runs ρ, π of A on α from p, q, as
well as the run π′, ρ′ of A′ on α starting in p, q.

As ≡≤kM is a congruence relation, ρ(i) ≡≤kM ρ′(i) and π(i) ≡≤kM π′(i) in A for all positions
i. Furthermore, since p and q are ≡≤kM -equivalent in A, also ρ(i) ≡≤kM π(i) in A for all i. This
implies that ρ′(i) ≡≤kM π′(i) in A for all i.

Therefore, at the positions at which one of ρ′ and π′ visits a priority ≤ k, the other run
visits the same priority. Hence, p, q are ≡≤kM -equivalent in A′. J

I Theorem 24. A representative merge of a DPA w.r.t. µ∼TM is language equivalent to the
original.

Proof. Let κ1, . . . , κm be an enumeration of the equivalence classes in µ∼TM sorted by des-
cending priority. By Lemma 23, merging the states in κi will not change the equivalence
classes κi+1, . . . , κn. It is therefore a language preserving operation to merge all equivalence
classes in the given order. The resulting automaton is the same as a representative merge
w.r.t. µ∼TM. J

The computation of µ∼TM is rather straightforward.

I Theorem 25. For a given ∼ in a suitable data structure, µ∼TM can be computed in time
O(|Q| · |c(Q)| · log |Q|).

Proof. Assuming that ≡∼TM is known, computing µ∼TM is easy. For obtaining ≡∼TM, one needs
the relations ≡≤kM . For each k, this can be computed with just a slight adaption of usual
algorithms for Moore equivalence in time O(|Q| · log |Q|). This needs to be done for every k,
so |c(Q)| times. J

6 Labeled SCC Filter

The labeled SCC filter technique (LSF) is also based on the threshold Moore equivalence
from Definition 21. While in Section 5 only states of priority k could be merged based on
≡≤kM , we now consider states that are ≡≤kM -equivalent, have priority greater than k, and
are in different SCCs after removing all states with priority ≤ k. We then keep from each
equivalence class only those states that are in a “deepest” SCC in this restricted automaton,
in the sense that no other SCCs are reachable from it.

For that purpose, let A �c>k be the restriction of A to states with priority greater than k.
Furthermore, we let �k be a total preorder on the states in A �c>k that extends the reachability
preorder. More formally, if q is reachable from p in A �c>k, then p �k q; on the other hand, if
q is not reachable from p, then either p ≺k q or q ≺k p.

In other words, �k is a preorder whose equivalence classes are exactly the SCCs in A �c>k
and which is compatible with a topological sorting of the states.

I Definition 26. Let k ≥ −1 and let ∼ be an equivalence relation that implies language
equivalence. We define the LSF equivalence relation ≡k,∼LSF such that two states p and q are
equivalent if and only if

CSL 2020

27:12 State Space Reduction For Parity Automata

q0, 0q1, 1

q2, 2

q3, 1

q4, 2

a

b

c

c

a, b a

b

c

a

b

c

b

a
c

Figure 5 Example automaton.

q0, 0 q3, 1

q4, 2

a, b

c

a

b

c

b

a
c

Figure 6 Example automaton after merging
with µ0,∼

LSF.

p = q; or
c(p) > k, c(q) > k, p ≡≤kM q, and p ∼ q.

Consider the DPA shown in Figure 5. As ∼, we use language equivalence as in the
previous examples. All five states are language equivalent. We choose k = 0. Since ∼ has
only one class, ≡0,∼

LSF is the same as the threshold Moore relation for k = 0, which consists of
the two equivalence classes {q0} and {q1, q2, q3, q4}, separated by the empty word.

The LSF merger template selects for each equivalence class the maximal elements w.r.t.
�k as candidates. Formally, we also need to treat the states with priority ≤ k, each of which
forms its own singleton equivalence class.

I Definition 27. For each equivalence class κ of ≡k,∼LSF: if κ = {q} for c(q) ≤ k, then
Mk
κ = Ckκ = {q}, and otherwise let

Ckκ = {r ∈ κ | p �k r for all p ∈ κ} and Mk
κ = κ \ Ckκ .

Define the LSF merger template by µk,∼LSF(Mk
κ) = Ckκ for each equivalence class κ of ≡k,∼LSF.

We continue our example from before with the class κ = {q1, q2, q3, q4}. Keeping only
the states with priority greater than 0, i.e. removing q0 from the automaton, breaks it into
the two SCCs {q1, q2} and {q3, q4}. There is a transition from q2 to q4, so the relation �0 is
given by {q1, q2} ≺0 {q3, q4}.

The merger template therefore assigns µ0,∼
LSF({q1, q2}) = {q3, q4}. Deciding on q3 as the

representative, the resulting automaton after the merge is displayed in Figure 6.
None of the previous reduction algorithms, that is, delayed simulation, path refinement

based on ∼, or threshold Moore are able to remove a state from the original automaton.

I Lemma 28. Let A be a DPA and let A′ be a representative merge w.r.t. a single equivalence
class κ ∈ C(µk,∼LSF). Then, L(A, q) = L(A′, q) for all states q of A′. Furthermore, for all
states p, q of A′, we have p ≡k,∼LSF q in A if, and only if, p ≡k,∼LSF q in A′.

Proof. Let ρ and ρ′ be the runs of the two automata on some word α starting in q. We show
that these two runs have the same acceptance status. Since, by definition, ≡k,∼LSF⊆≡L, and
≡k,∼LSF⊆≡

≤k
M , we have that ρ(i) ≡L ρ′(i) and ρ(i) ≡≤kM ρ′(i) in A for all positions i (because

≡L and ≡≤kM are congruences). The definition of ≡≤kM implies that both runs visit priorities
≤ k at the same positions. If infinitely many such priorities ≤ k are visited, this implies
that both runs have the same acceptance status. If finitely many priorities ≤ k are visited,

C. Löding and A. Tollkötter 27:13

note that between two transitions in A′ that are not in A, there has to be a priority ≤ k by
definition of the merger template. Hence, in this case, ρ′ uses only finitely many transitions
that are not in A. Let j be some position such that ρ′ after j only uses transitions that
also exist in A. Since ρ(j) ≡L ρ′(j), as noted earlier, we obtain that ρ and ρ′ have the same
acceptance status.

Concerning the second statement, let p, q be states of A′ with p ≡k,∼LSF q in A. We show
that p ≡k,∼LSF q in A′ by proving p ≡≤kM q and p ≡L q in A′. Note that ∼ in A′ is just the
restriction of ∼ to the state set of A′, so showing p ≡L q in A′ also implies that p ∼ q.

Let α be an infinite word, and let π, π′ be the runs of A,A′ on α starting in p, and ρ, ρ′
be the runs of A,A′ on α starting in q. As explained above, we have π(i) ≡≤kM π′(i) and
ρ(i) ≡≤kM ρ′(i) in A for all i. Furthermore, p ≡k,∼LSF q in A implies that also π(i) ≡≤kM ρ(i) in
A for all i. By transitivity, we obtain that π′(i) ≡≤kM ρ′(i) in A. In particular, π′ and ρ′ are
at the same time in states of priority ≤ k. Since α was picked arbitrarily, we conclude that
p ≡≤kM q in A′.

For showing p ≡L q in A′, note that we have shown above (for the first claim of the
lemma) that from p the same words are accepted in A and A′, and from q the same words
are accepted in A and A′. Since p ≡L q in A, we can conclude that also p ≡L q in A′. J

I Theorem 29. A representative merge of a DPA w.r.t. µk,∼LSF is language equivalent to the
original.

Proof. Let κ1, . . . , κm be an enumeration of the equivalence classes of ≡k,∼LSF. When merging
Mk
κi

into Ckκi
, the language is preserved and the equivalence classes κi+1, . . . , κm do not

change by Lemma 28. Also the candidate sets Ckκj
themselves do not change, so we can safely

merge all Mk
κi

into Ckκi
. This is the same operation as performed by the merger template. J

Computation of the LSF merger consists of computing the threshold Moore equivalence
and a reachability analysis in the restricted graph.

I Theorem 30. For a given ∼ in a suitable data structure, µk,∼LSF can be computed in time
O(|Q| · log |Q|).

Proof. ∼ is already given and ≡≤kM can be computed in O(|Q| · log |Q|). Building ≡k,∼LSF is
an easy linear time intersection operation.

The second step to building µk,∼LSF is to compute Ckκ for each κ. For that, it suffices to
find the order �k and then select all the maximal elements from each equivalence class.
This order can be computed by a topological sorting on the SCCs of A �c>k which one can
construct in linear time. J

7 Experimental Data

All algorithms that have been presented in Sections 3–6 were also implemented by us in
C++ in order to evaluate them on larger examples. The test data set consisted of roughly
100 automata that were constructed from LTL specifications of the Reactive Synthesis
Competition (SYNTCOMP) [10].

The automata were constructed by translating the given LTL formulas into nondetermin-
istic Büchi automata using the Spot tool ([4]), followed by a conversion to a DPA using
nbautils ([14]). During the generation of these DPAs, several techniques for state reduction
are already applied, such as minimizing the number of priorities according to [3], and then
minimizing the DPA as Moore automata.

CSL 2020

27:14 State Space Reduction For Parity Automata

0.00 0.07 0.14 0.20 0.27 0.34 0.41 0.47 0.54 0.61 0.68
Relative number of removed states

0

5

10

15

20

25

30

Nu
m

be
r o

f a
ut

om
at

a

Reduction of Syntcomp automata

Figure 7 Reduction of SYNTCOMP automata. (all techniques)

0.00 0.04 0.07 0.11 0.15 0.19 0.22 0.26 0.30 0.34 0.38
Relative number of removed states

0

2

4

6

8

10

12

Nu
m

be
r o

f a
ut

om
at

a

Reduction of Syntcomp automata (with PR)

Figure 8 Reduction of SYNTCOMP automata.
(only PR)

0.00 0.03 0.05 0.08 0.10 0.12 0.15 0.18 0.20 0.23 0.25
Relative number of removed states

0

2

4

6

8

10

12

14

Nu
m

be
r o

f a
ut

om
at

a

Reduction of Syntcomp automata (with LSF)

Figure 9 Reduction of SYNTCOMP automata.
(only LSF)

The sizes of the testing automata range from 9 to 3575 states with a median of 48 and
an average of 202; the size of the alphabet Σ ranges from 4 to 2048 symbols with a median
of 16. There are three or four different priorities in most of the automata.

The techniques presented in Sections 4–6 require a given equivalence relation∼ that implies
language equivalence. Although language equivalence of states in DPAs can be computed in
polynomial time, the space and time complexity of the algorithm is in O(|Q|2|c(Q)|2), which
turns out to be too high for the larger examples. Instead, we use a relation ∼ that can be
produced as a side-effect of the determinization construction, as explained in the following.

Determinization constructions for Büchi automata, like the Safra construction [16, 15],
are refinements of the standard subset construction for NFAs. The set of states that could
have been reached in the NBA is tracked in combination with additional information on
visits to accepting states. So there are, in general, many states of the constructed DPA that
correspond to the same set S of Büchi states. All these states in the DPA that correspond to
the same set S are language equivalent, because from all of them precisely those words are
accepted that are accepted by the Büchi automaton from one of the states in S. Therefore,
the relation ∼ defined for states p, q of the DPA by p ∼ q iff p and q correspond to the same
set S of Büchi states, is a congruence relation that implies language equivalence. It can
therefore be used in the algorithms from Sections 4–6, and is obtained “for free” from the
determinization construction.

C. Löding and A. Tollkötter 27:15

Figure 7 shows a histogram of overall reduction that was achieved in our experiments.
As the generated DPAs can reach sizes of more than 1000, the low complexity of the new
techniques was very important. To obtain the histogram, all reduction techniques were
applied in succession, with the exception of delayed simulation which proved to be too
difficult for the largest automata with its quadratic complexity in both space and time.

The histogram shows a reduction between 14 and 34% of the states in most cases.
Individually, the two approaches showing most reduction were path refinement (Section 4)
and LSF (Section 6), both of which are analyzed in Figures 8 and 9.

Apart from these tests, we had our reduction also run on DPAs that were determinized
from randomly constructed NBAs. The results are rather similar to those shown here and
confirm our analysis. In addition to path refinement and LSF, also delayed simulation showed
great potential on automata small enough. We consider automata from actual specifications
to be of more relevance though, which is why we focus on the SYNTCOMP set here.

8 Conclusion

We have proposed three new ways of reducing the state space of DPAs, and analyzed the
known technique of delayed simulation from [6, 8] in the context of DPAs. For obtaining a
uniform way of describing the methods, we have introduced the notion of merger template,
in order to capture different types of merge operations.

The equivalence relations on which our reduction techniques are based can all be computed
very efficiently. Our experiments show that the new methods can further reduce the state
space of DPAs that have been obtained by determinizing Büchi automata, and that have
already been reduced with known techniques.

We therefore believe that the proposed methods provide interesting tools to be used
as post-processing after determinization constructions that produce DPAs. Since other
acceptance conditions, like Rabin or Streett automata, are also commonly used in algorithms,
a possible topic for future research would be to see if and how our methods can be adapted
to these conditions.

References
1 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
2 J. Richard Büchi. On a decision method in restricted second order arithmetic. In International

Congress on Logic, Methodology and Philosophy of Science, pages 1–11. Stanford University
Press, 1962.

3 Olivier Carton and Ramón Maceiras. Computing the Rabin index of a parity automaton.
RAIRO-Theoretical Informatics and Applications, 33(6):495–505, 1999.

4 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 — a framework for LTL and ω-automata manipulation.
In Proceedings of the 14th International Symposium on Automated Technology for Verification
and Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer Science, pages 122–129.
Springer, October 2016. doi:10.1007/978-3-319-46520-3_8.

5 E. Allen Emerson and Chin-Laung Lei. Modalities for Model Checking: Branching Time
Logic Strikes Back. Sci. Comput. Program., 8(3):275–306, 1987. doi:10.1016/0167-6423(87)
90036-0.

6 Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair Simulation Relations, Parity
Games, and State Space Reduction for Büchi Automata. In Automata, Languages and
Programming, pages 694–707, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

CSL 2020

https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/0167-6423(87)90036-0

27:16 State Space Reduction For Parity Automata

7 Carsten Fritz and Thomas Wilke. Simulation Relations for Alternating Büchi Automata.
Theor. Comput. Sci., 338(1-3):275–314, June 2005. doi:10.1016/j.tcs.2005.01.016.

8 Carsten Fritz and Thomas Wilke. Simulation Relations for Alternating Parity Automata
and Parity Games. In Developments in Language Theory, 10th International Conference,
DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceedings, pages 59–70, 2006.
doi:10.1007/11779148_7.

9 John E. Hopcroft. An N Log N Algorithm for Minimizing States in a Finite Automaton.
Technical report, Stanford University, Stanford, CA, USA, 1971.

10 Swen Jacobs, Guillermo A. Pérez, and Roderick Bloem. The Reactive Synthesis Competition.
URL: http://www.syntcomp.org.

11 Richard Mayr and Lorenzo Clemente. Advanced Automata Minimization. In POPL 2013,
October 2012. URL: http://arxiv.org/abs/1210.6624.

12 Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit Reactive
Synthesis Strikes Back! In Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I, pages 578–586, 2018. doi:10.1007/978-3-319-96145-3_31.

13 A.W. Mostowski. Hierarchies of weak automata and weak monadic formulas. Theoretical
Computer Science, 83(2):323–335, 1991. doi:10.1016/0304-3975(91)90283-8.

14 Anton Pirogov. nbautils. https://github.com/apirogov/nbautils, 2018.
15 Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity

automata. In Logic in Computer Science, 2006 21st Annual IEEE Symposium on, pages
255–264. IEEE, 2006.

16 Shmuel Safra. On the complexity of omega-automata. In Foundations of Computer Science,
1988., 29th Annual Symposium on, pages 319–327, 1988.

17 Sven Schewe. Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete. In
Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2010), volume 8 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 400–411, Dagstuhl, Germany, 2010.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSTTCS.2010.400.

18 Fabio Somenzi and Roderick Bloem. Efficient Büchi Automata from LTL Formulae. In
Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL, USA,
July 15-19, 2000, Proceedings, pages 248–263, 2000. doi:10.1007/10722167_21.

19 Wolfgang Thomas. Handbook of Formal Languages, Vol. 3. In Grzegorz Rozenberg and Arto
Salomaa, editors, Handbook of Formal Languages, Vol. 3, chapter Languages, Automata, and
Logic, pages 389–455. Springer-Verlag New York, Inc., New York, NY, USA, 1997. URL:
http://dl.acm.org/citation.cfm?id=267871.267878.

20 Wolfgang Thomas. Church’s Problem and a Tour through Automata Theory. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th
Birthday, pages 635–655. Springer, 2008. doi:10.1007/978-3-540-78127-1.

21 Moshe Y. Vardi and Thomas Wilke. Automata: from logics to algorithms. In Logic and
automata - history and perspectives, volume 2 of Texts in Logic and Games, pages 629–724.
Amsterdam University Press, 2007.

https://doi.org/10.1016/j.tcs.2005.01.016
https://doi.org/10.1007/11779148_7
http://www.syntcomp.org
http://arxiv.org/abs/1210.6624
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1016/0304-3975(91)90283-8
https://github.com/apirogov/nbautils
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.1007/10722167_21
http://dl.acm.org/citation.cfm?id=267871.267878
https://doi.org/10.1007/978-3-540-78127-1

	Introduction
	Automata and Merger Templates
	Merger Templates
	Schewe Merge

	Delayed Simulation
	Path Refinement
	Threshold Moore
	Labeled SCC Filter
	Experimental Data
	Conclusion

