5,629 research outputs found

    A review of differentiable digital signal processing for music and speech synthesis

    Get PDF
    The term “differentiable digital signal processing” describes a family of techniques in which loss function gradients are backpropagated through digital signal processors, facilitating their integration into neural networks. This article surveys the literature on differentiable audio signal processing, focusing on its use in music and speech synthesis. We catalogue applications to tasks including music performance rendering, sound matching, and voice transformation, discussing the motivations for and implications of the use of this methodology. This is accompanied by an overview of digital signal processing operations that have been implemented differentiably, which is further supported by a web book containing practical advice on differentiable synthesiser programming (https://intro2ddsp.github.io/). Finally, we highlight open challenges, including optimisation pathologies, robustness to real-world conditions, and design trade-offs, and discuss directions for future research

    Instantaneous frequency estimation of multicomponent non- stationary signals using Fourier Bessel series and Time-Varying Auto Regressive Model

    Get PDF
    In this paper, we propose a novel technique for Instantaneous frequency (IF) estimation of multi component non stationary signals using Fourier Bessel Series and Time–Varying Auto Regressive (FB-TVAR) model. In the proposed technique, the Fourier-Bessel (FB) expansion decomposes the multicomponent non stationary signal into a number of monocomponent signals and TVAR model is used to model each monocomponent signal. In TVAR modeling approach the time varying parameters are expanded as a linear combination of basis functions. In this paper, the TVAR parameters are expanded by a discrete cosine basis functions. The maximum likelihood estimation algorithm for model order selection in TVAR models is also discussed. The Instantaneous frequency (IF) is extracted from the time-varying parameters by calculating the angles of the estimation error filter polynomial roots. The estimation of the TVAR parameters of a multicomponent signal requires the inversion of a large covariance matrix, while the projected technique (FB-TVAR) requires the inversion of a number of comparatively small covariance matrices with better numerical stability properties. Simulation results are presented for three component discrete Amplitude and Frequency modulated(AM-FM)signa

    Physiological Gaussian Process Priors for the Hemodynamics in fMRI Analysis

    Full text link
    Background: Inference from fMRI data faces the challenge that the hemodynamic system that relates neural activity to the observed BOLD fMRI signal is unknown. New Method: We propose a new Bayesian model for task fMRI data with the following features: (i) joint estimation of brain activity and the underlying hemodynamics, (ii) the hemodynamics is modeled nonparametrically with a Gaussian process (GP) prior guided by physiological information and (iii) the predicted BOLD is not necessarily generated by a linear time-invariant (LTI) system. We place a GP prior directly on the predicted BOLD response, rather than on the hemodynamic response function as in previous literature. This allows us to incorporate physiological information via the GP prior mean in a flexible way, and simultaneously gives us the nonparametric flexibility of the GP. Results: Results on simulated data show that the proposed model is able to discriminate between active and non-active voxels also when the GP prior deviates from the true hemodynamics. Our model finds time varying dynamics when applied to real fMRI data. Comparison with Existing Method(s): The proposed model is better at detecting activity in simulated data than standard models, without inflating the false positive rate. When applied to real fMRI data, our GP model in several cases finds brain activity where previously proposed LTI models does not. Conclusions: We have proposed a new non-linear model for the hemodynamics in task fMRI, that is able to detect active voxels, and gives the opportunity to ask new kinds of questions related to hemodynamics.Comment: 18 pages, 14 figure

    An automatic design procedure for low-order IIR parametric equalizers

    Get PDF
    Parametric equalization of an acoustic system aims to compensate for the deviations of its response from a desired target response using parametric digital filters. An optimization procedure is presented for the automatic design of a low-order equalizer using parametric infinite impulse response (IIR) filters, specifically second-order peaking filters and first-order shelving filters. The proposed procedure minimizes the sum of square errors (SSE) between the system and the target complex frequency responses, instead of the commonly used difference in magnitudes, and exploits a previously unexplored orthogonality property of one particular type of parametric filter. This brings a series of advantages over the state-of-the-art procedures, such as an improved mathematical tractability of the equalization problem, with the possibility of computing analytical expressions for the gradients, an improved initialization of the parameters, including the global gain of the equalizer, the incorporation of shelving filters in the optimization procedure, and a more accentuated focus on the equalization of the more perceptually relevant frequency peaks. Examples of loudspeaker and room equalization are provided, as well as a note about extending the procedure to multi-point equalization and transfer function modeling
    • …
    corecore