11,030 research outputs found

    Coarse Bifurcation Studies of Bubble Flow Microscopic Simulations

    Full text link
    The parametric behavior of regular periodic arrays of rising bubbles is investigated with the aid of 2-dimensional BGK Lattice-Boltzmann (LB) simulators. The Recursive Projection Method is implemented and coupled to the LB simulators, accelerating their convergence towards what we term coarse steady states. Efficient stability/bifurcation analysis is performed by computing the leading eigenvalues/eigenvectors of the coarse time stepper. Our approach constitutes the basis for system-level analysis of processes modeled through microscopic simulations.Comment: 4 pages, 3 figure

    The theory of parametrically amplified electron-phonon superconductivity

    Get PDF
    The ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [Mitrano et al., Nature 530, 2016], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systems with lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time- and angle-resolved photo-emission spectroscopy experiments as a consequence of the proposed mechanism.Comment: 42 pages, 17 figure

    Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

    Get PDF
    The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density

    Drops bouncing off macro-textured superhydrophobic surfaces

    Full text link
    Recent experiments with droplets impacting a macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. We present here a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantify the role played by various external and internal forces that effect the dynamics of a drop impacting a complex surface. For the first time, three-dimensional simulations involving macro-textured surfaces are performed. Aside from demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analyzing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyze the role played by the texture density. Moreover, we report a non-linear behavior of the contact time with the increase of the Weber number for application relevant imperfectly coated textures, and also study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers
    • …
    corecore