19,764 research outputs found

    Fuzzy weights in data envelopment analysis.

    Get PDF
    In many real problems of evaluating efficiency score for decision making units (DMUs) using data envelopment analysis (DEA) factor weights related to the data may have fuzzy essence and it is required to create methods for solving these problems. In this paper we have provided a method to solve a CCR model with fuzzy weights in the objective function. This method is based on parametric linear programming which is transformed using t-cut concept for fuzzy numbers. Besides our method is based on two steps to find the triangular fuzzy number as weights of the objective function

    A solving tool for fuzzy quadratic optimal control problems

    Get PDF
    In this paper we propose an iterative method to solve an optimal control problem, with fuzzy target and constraints. The algorithm is developed in such a way as to satisfy the target function and the constraints. The algorithm can be applied only if a method exists to solve a crisp parametric sub-problem obtained by the original one. This is the case for a quadratic-linear target function with linear constraints, for which some well established solvable methods exist for the crisp associated sub-problem. A numerical test confirmed the good convergence properties.fuzzy, mathematical programming

    Absorptive capacity and the growth and investment effects of regional transfers : a regression discontinuity design with heterogeneous treatment effects

    Get PDF
    Researchers often estimate average treatment effects of programs without investigating heterogeneity across units. Yet, individuals, firms, regions, or countries vary in their ability, e.g., to utilize transfers. We analyze Objective 1 Structural Funds transfers of the European Commission to regions of EU member states below a certain income level by way of a regression discontinuity design with systematically heterogeneous treatment effects. Only about 30% and 21% of the regions - those with sufficient human capital and good-enough institutions - are able to turn transfers into faster per-capita income growth and per-capita investment. In general, the variance of the treatment effect is much bigger than its mean

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM
    corecore