7 research outputs found

    Trajectory-based human action segmentation

    Get PDF
    This paper proposes a sliding window approach, whose length and time shift are dynamically adaptable in order to improve model confidence, speed and segmentation accuracy in human action sequences. Activity recognition is the process of inferring an action class from a set of observations acquired by sensors. We address the temporal segmentation problem of body part trajectories in Cartesian Space in which features are generated using Discrete Fast Fourier Transform (DFFT) and Power Spectrum (PS). We pose this as an entropy minimization problem. Using entropy from the classifier output as a feedback parameter, we continuously adjust the two key parameters in a sliding window approach, to maximize the model confidence at every step. The proposed classifier is a Dynamic Bayesian Network (DBN) model where classes are estimated using Bayesian inference. We compare our approach with our previously developed fixed window method. Experiments show that our method accurately recognizes and segments activities, with improved model confidence and faster convergence times, exhibiting anticipatory capabilities. Our work demonstrates that entropy feedback mitigates variability problems, and our method is applicable in research areas where action segmentation and classification is used. A working demo source code is provided online for academical dissemination purposes, by requesting the authors

    The Case for Public Interventions during a Pandemic

    Get PDF
    Funding Information: This work has been supported by Marie Skłodowska Curie Actions ITN AffecTech (ERC H2020 Project 1059 ID: 722022). Publisher Copyright: © 2022 by the authors.Within the field of movement sensing and sound interaction research, multi-user systems have gradually gained interest as a means to facilitate an expressive non-verbal dialogue. When tied with studies grounded in psychology and choreographic theory, we consider the qualities of interaction that foster an elevated sense of social connectedness, non-contingent to occupying one’s personal space. Upon reflection of the newly adopted social distancing concept, we orchestrate a technological intervention, starting with interpersonal distance and sound at the core of interaction. Materialised as a set of sensory face-masks, a novel wearable system was developed and tested in the context of a live public performance from which we obtain the user’s individual perspectives and correlate this with patterns identified in the recorded data. We identify and discuss traits of the user’s behaviour that were accredited to the system’s influence and construct four fundamental design considerations for physically distanced sound interaction. The study concludes with essential technical reflections, accompanied by an adaptation for a pervasive sensory intervention that is finally deployed in an open public space.publishersversionpublishe

    NON-VERBAL COMMUNICATION WITH PHYSIOLOGICAL SENSORS. THE AESTHETIC DOMAIN OF WEARABLES AND NEURAL NETWORKS

    Get PDF
    Historically, communication implies the transfer of information between bodies, yet this phenomenon is constantly adapting to new technological and cultural standards. In a digital context, it’s commonplace to envision systems that revolve around verbal modalities. However, behavioural analysis grounded in psychology research calls attention to the emotional information disclosed by non-verbal social cues, in particular, actions that are involuntary. This notion has circulated heavily into various interdisciplinary computing research fields, from which multiple studies have arisen, correlating non-verbal activity to socio-affective inferences. These are often derived from some form of motion capture and other wearable sensors, measuring the ‘invisible’ bioelectrical changes that occur from inside the body. This thesis proposes a motivation and methodology for using physiological sensory data as an expressive resource for technology-mediated interactions. Initialised from a thorough discussion on state-of-the-art technologies and established design principles regarding this topic, then applied to a novel approach alongside a selection of practice works to compliment this. We advocate for aesthetic experience, experimenting with abstract representations. Atypically from prevailing Affective Computing systems, the intention is not to infer or classify emotion but rather to create new opportunities for rich gestural exchange, unconfined to the verbal domain. Given the preliminary proposition of non-representation, we justify a correspondence with modern Machine Learning and multimedia interaction strategies, applying an iterative, human-centred approach to improve personalisation without the compromising emotional potential of bodily gesture. Where related studies in the past have successfully provoked strong design concepts through innovative fabrications, these are typically limited to simple linear, one-to-one mappings and often neglect multi-user environments; we foresee a vast potential. In our use cases, we adopt neural network architectures to generate highly granular biofeedback from low-dimensional input data. We present the following proof-of-concepts: Breathing Correspondence, a wearable biofeedback system inspired by Somaesthetic design principles; Latent Steps, a real-time auto-encoder to represent bodily experiences from sensor data, designed for dance performance; and Anti-Social Distancing Ensemble, an installation for public space interventions, analysing physical distance to generate a collective soundscape. Key findings are extracted from the individual reports to formulate an extensive technical and theoretical framework around this topic. The projects first aim to embrace some alternative perspectives already established within Affective Computing research. From here, these concepts evolve deeper, bridging theories from contemporary creative and technical practices with the advancement of biomedical technologies.Historicamente, os processos de comunicação implicam a transferência de informação entre organismos, mas este fenómeno está constantemente a adaptar-se a novos padrões tecnológicos e culturais. Num contexto digital, é comum encontrar sistemas que giram em torno de modalidades verbais. Contudo, a análise comportamental fundamentada na investigação psicológica chama a atenção para a informação emocional revelada por sinais sociais não verbais, em particular, acções que são involuntárias. Esta noção circulou fortemente em vários campos interdisciplinares de investigação na área das ciências da computação, dos quais surgiram múltiplos estudos, correlacionando a actividade nãoverbal com inferências sócio-afectivas. Estes são frequentemente derivados de alguma forma de captura de movimento e sensores “wearable”, medindo as alterações bioeléctricas “invisíveis” que ocorrem no interior do corpo. Nesta tese, propomos uma motivação e metodologia para a utilização de dados sensoriais fisiológicos como um recurso expressivo para interacções mediadas pela tecnologia. Iniciada a partir de uma discussão aprofundada sobre tecnologias de ponta e princípios de concepção estabelecidos relativamente a este tópico, depois aplicada a uma nova abordagem, juntamente com uma selecção de trabalhos práticos, para complementar esta. Defendemos a experiência estética, experimentando com representações abstractas. Contrariamente aos sistemas de Computação Afectiva predominantes, a intenção não é inferir ou classificar a emoção, mas sim criar novas oportunidades para uma rica troca gestual, não confinada ao domínio verbal. Dada a proposta preliminar de não representação, justificamos uma correspondência com estratégias modernas de Machine Learning e interacção multimédia, aplicando uma abordagem iterativa e centrada no ser humano para melhorar a personalização sem o potencial emocional comprometedor do gesto corporal. Nos casos em que estudos anteriores demonstraram com sucesso conceitos de design fortes através de fabricações inovadoras, estes limitam-se tipicamente a simples mapeamentos lineares, um-para-um, e muitas vezes negligenciam ambientes multi-utilizadores; com este trabalho, prevemos um potencial alargado. Nos nossos casos de utilização, adoptamos arquitecturas de redes neurais para gerar biofeedback altamente granular a partir de dados de entrada de baixa dimensão. Apresentamos as seguintes provas de conceitos: Breathing Correspondence, um sistema de biofeedback wearable inspirado nos princípios de design somaestético; Latent Steps, um modelo autoencoder em tempo real para representar experiências corporais a partir de dados de sensores, concebido para desempenho de dança; e Anti-Social Distancing Ensemble, uma instalação para intervenções no espaço público, analisando a distância física para gerar uma paisagem sonora colectiva. Os principais resultados são extraídos dos relatórios individuais, para formular um quadro técnico e teórico alargado para expandir sobre este tópico. Os projectos têm como primeiro objectivo abraçar algumas perspectivas alternativas às que já estão estabelecidas no âmbito da investigação da Computação Afectiva. A partir daqui, estes conceitos evoluem mais profundamente, fazendo a ponte entre as teorias das práticas criativas e técnicas contemporâneas com o avanço das tecnologias biomédicas

    Participant responses to virtual agents in immersive virtual environments.

    Get PDF
    This thesis is concerned with interaction between people and virtual humans in the context of highly immersive virtual environments (VEs). Empirical studies have shown that virtual humans (agents) with even minimal behavioural capabilities can have a significant emotional impact on participants of immersive virtual environments (IVEs) to the extent that these have been used in studies of mental health issues such as social phobia and paranoia. This thesis focuses on understanding the impact on the responses of people to the behaviour of virtual humans rather than their visual appearance. There are three main research questions addressed. First, the thesis considers what are the key nonverbal behavioural cues used to portray a specific psychological state. Second, research determines the extent to which the underlying state of a virtual human is recognisable through the display of a key set of cues inferred from the behaviour of real humans. Finally, the degree to which a perceived psychological state in a virtual human invokes responses from participants in immersive virtual environments that are similar to those observed in the physical world is considered. These research questions were investigated through four experiments. The first experiment focused on the impact of visual fidelity and behavioural complexity on participant responses by implementing a model of gaze behaviour in virtual humans. The results of the study concluded that participants expected more life-like behaviours from more visually realistic virtual humans. The second experiment investigated the detrimental effects on participant responses when interacting with virtual humans with low behavioural complexity. The third experiment investigated the differences in responses of participants to virtual humans perceived to be in varying emotional states. The emotional states of the virtual humans were portrayed using postural and facial cues. Results indicated that posture does play an important role in the portrayal of affect however the behavioural model used in the study did not fully cover the qualities of body movement associated with the emotions studied. The final experiment focused on the portrayal of affect through the quality of body movement such as the speed of gestures. The effectiveness of the virtual humans was gauged through exploring a variety of participant responses including subjective responses, objective physiological and behavioural measures. The results show that participants are affected and respond to virtual humans in a significant manner provided that an appropriate behavioural model is used
    corecore