5,771 research outputs found

    Frequency-Dependent Template Profiles for High Precision Pulsar Timing

    Get PDF
    Pulsar timing experiments require high fidelity template profiles in order to minimize the biases in pulse time-of-arrival (TOA) measurements and their uncertainties. Efforts to acquire more precise TOAs given fixed effective area of telescopes, finite receiver noise, and limited integration time have led pulsar astronomers to the solution of implementing ultra-wideband receivers. This solution, however, has run up against the problem that pulse profile shapes evolve with frequency, which raises the question of how to properly measure and analyze TOAs obtained using template-matching methods. This paper proposes a new method for one facet of this problem, that of template profile generation, and demonstrates it on the well-timed millisecond pulsar J1713+0747. Specifically, we decompose pulse profile evolution into a linear combination of basis eigenvectors, the coefficients of which change slowly with frequency such that their evolution is modeled simply by a sum of low degree piecewise polynomial spline functions. These noise-free, high fidelity, frequency-dependent templates can be used to make measurements of so-called "wideband TOAs" simultaneously with an estimate of the instantaneous dispersion measure. The use of wideband TOAs is becoming important for pulsar timing array experiments, as the volume of datasets comprised of conventional, subbanded TOAs are quickly becoming unwieldly for the Bayesian analyses needed to uncover latent gravitational wave signals. Although motivated by high precision timing experiments, our technique is applicable in more general pulsar observations.Comment: 16 pages, 6 figures, accepted to Ap

    PEXO : a global modeling framework for nanosecond timing, microsecond astrometry, and μm/s radial velocities

    Get PDF
    54 pages, 2 tables, 19 figures, accepted for publication in ApJS, PEXO is available at https://github.com/phillippro/pexoThe ability to make independent detections of the signatures of exoplanets with complementary telescopes and instruments brings a new potential for robust identification of exoplanets and precision characterization. We introduce PEXO, a package for Precise EXOplanetology to facilitate the efficient modeling of timing, astrometry, and radial velocity data, which will benefit not only exoplanet science but also various astrophysical studies in general. PEXO is general enough to account for binary motion and stellar reflex motions induced by planetary companions and is precise enough to treat various relativistic effects both in the solar system and in the target system. We also model the post-Newtonian barycentric motion for future tests of general relativity in extrasolar systems. We benchmark PEXO with the pulsar timing package TEMPO2 and find that PEXO produces numerically similar results with timing precision of about 1 ns, space-based astrometry to a precision of 1{\mu}as, and radial velocity of 1 {\mu}m/s and improves on TEMPO2 for decade-long timing data of nearby targets, due to its consideration of third-order terms of Roemer delay. PEXO is able to avoid the bias introduced by decoupling the target system and the solar system and to account for the atmospheric effects which set a practical limit for ground-based radial velocities close to 1 cm/s. Considering the various caveats in barycentric correction and ancillary data required to realize cm/s modeling, we recommend the preservation of original observational data. The PEXO modeling package is available at GitHub (https://github.com/phillippro/pexo).Peer reviewe

    Parameterized estimation of long-range correlation and variance components in human serial interval production

    Get PDF
    Parameterized estimation of long-range correlation and variance components in human serial interval production Repetitive movements lead to isochronous serial interval production which exhibit inherent variability. The Wing-Kristofferson model offers a decomposition of the interresponse intervals in tapping tasks based on a cognitive component and on a motor component. We suggest a new theoretical and fully parametric approach to this model in which the cognitive component is modeled as a long-memory process and the motor component is treated as a white noise process, mutually independent. Under these assumptions, we obtained the autocorrelation function and the spectral density function. Furthermore, we propose an estimator based on the maximization of the frequency-domain representation of the likelihood function. Finally, we conducted a simulation study to assess the properties of this estimator and performed an experimental study involving tapping tasks with two target frequencies (1.250 Hz and 0.625 Hz) .info:eu-repo/semantics/publishedVersio

    The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars

    Get PDF
    We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background

    Computationally efficient characterization of standard cells for statistical static timing analysis

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 44-45).We propose a computationally efficient statistical static timing analysis (SSTA) technique that addresses intra-die variations at near-threshold to sub-threshold supply voltage, simulated on a scaled 32nm CMOS standard cell library. This technique would characterize the propagation delay and output slew of an individual cell for subsequent timing path analyses. Its efficiency stems from the fact that it only needs to find the delay or output slew in the vicinity of the ?- sigma operating point (where ? = 0 to 3) rather than the entire probability density function of the delay or output slew, as in conventional Monte-Carlo simulations. The algorithm is simulated on combinational logic gates that include inverters, NANDs, and NORs of different sizes. The delay and output slew estimates in most cases differ from the Monte-Carlo results by less than 5%. Higher supply voltage, larger transistor widths, and slower input slews tend to improve delay and output slew estimates. Transistor stacking is found to be the only major source of under-prediction by the SSTA technique. Overall, the cell characterization approach has a substantial computational advantage compared to SPICE-based Monte-Carlo analysis.by Sharon H. Chou.M.Eng
    • …
    corecore