
26

Motor Control, 2010, 14, 26-43

© 2010 Human Kinetics, Inc.

Parameterized Estimation of Long-Range 
Correlation and Variance Components in 

Human Serial Interval Production
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Repetitive movements lead to isochronous serial interval production which exhibit 

inherent variability. The Wing-Kristofferson model offers a decomposition of the 

interresponse intervals in tapping tasks based on a cognitive component and on 

a motor component. We suggest a new theoretical and fully parametric approach 

to this model in which the cognitive component is modeled as a long-memory 

process and the motor component is treated as a white noise process, mutually 

independent. Under these assumptions, we obtained the autocorrelation function 

and the spectral density function. Furthermore, we propose an estimator based 

on the maximization of the frequency-domain representation of the likelihood 

function. Finally, we conducted a simulation study to assess the properties of this 

estimator and performed an experimental study involving tapping tasks with two 

target frequencies (1.250 Hz and 0.625 Hz).

Keywords: tapping task, long memory, autocorrelation function, spectral density 

function

Many human activities share the purpose of coordinating movement with time. 
A speciic problem within this general scenario is the coordination and timing 
of repetitive movements and, particularly, the conservation of a given interval 
in repetitive tapping. Finger tapping is a widely investigated motor task. Some 
arguments may justify its choice as an experimental solution to understand the 
temporal structure of behavior. A irst argument is the task’s simplicity: it can be 
performed by children, elderly, and subjects with clinical impairments of different 
origins. A second argument is the possibility of obtaining precise measurements 
with limited resources.

Repetitive movements exhibit inherent variability relecting limits on voluntary 
timing. In his early experimental research on this topic, Stevens (1886) suggested 
that variability increases with interval duration. He also proposed two factors to 
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explain this variation—long-term luctuations as a possible consequence of cognitive 
processes and short-term luctuations related to motor limitations. Later, the basic 
structure of two components for repetitive movements was formally described by Wing 
and Kristofferson (1973a, b), who offered a model frequently investigated from that 
time on. This model was based on experiments with short unpaced phases (tapping 
without a pacing sequence), namely no more than 50 continuous taps. In sequences 
with this extent, the time series often look stationary with means close to the target 
values. Moreover, the observed variances seem to increase linearly with the observed 
means (Wing & Beek, 2002). The two components—the timekeeper delay or central 
clock and the motor delay—were considered as independent white noise sources.

The Wing-Kristofferson model has a number of consequences. For the purpose 
of the current study, we consider two of them: (1) the model suggests a negative 
autocorrelation between contiguous intervals; (2) the model predicts an absence 
of autocorrelation for lags higher than one (Vorberg & Wing, 1996). The negative 
autocorrelation between contiguous intervals follows simply from the hierarchical 
structure of the model. Another observation about this model is that the timekeeper 
delay and the motor delay are independent. In fact, whereas the variance of the time-
keeper component increases as a function of the interval duration, the variance of the 
motor component remains nearly constant (Wing, 1980). Subjects with neurological 
motor disorders offer additional arguments to sustain the independence of the two 
clocks. In fact, some studies reported the case of patients with Parkinson’s disease 
restricted to one hemisphere who exhibited impairments in the central component, 
but no signiicant effects in the motor component (Wing, Keele, & Margolin, 1984). 
Other studies conirmed the relevance of cerebellar lesions to the structure of the 
variance of the two components (Ivry, Keele, & Diener, 1988; Ivry & Keele, 1989).

The experimental designs of tapping experiments have two interesting charac-
teristics—they are usually restricted to time series of short extension and the intertap 
intervals are most frequently less than one second. The limited extension of the time 
series may be explained by the following: (1) it is possible to characterize the subjects’ 
variability with a limited number of trials, and variability has been extensively explored 
as a neurological indicator (Wing, 2002); (2) the assumption of random variability and 
the drifting risk in long series recommends the use of short series (Madison, 2001).

The Wing-Kristofferson model has been widely discussed and some advances 
in the modeling of variations of the tapping task have been presented. Madison 
(2000) analyzed short time series of isochronous serial interval production and 
suggested that variability can be partitioned into a low-frequency component 
and a high-frequency component. Recent experiments with long unpaced phases, 
namely around 1000 continuous taps, have revealed that luctuations typical of 1/f 
noise and other long-memory processes may be embedded in repetitive tapping 
series (Delignières, Lemoine, & Torre, 2004; Madison, 2004; Wagenmakers, Far-
rell, & Ratcliff, 2004). Gilden, Thornton, and Mallon (1995) analyzed long time 
series of intertap intervals with target intervals between 0.30 and 10 s. They used 
spectral methods to study the time series and obtained results typical of 1/f noise 
in the low-frequency region. There is evidence that long-memory processes occur 
in other biological series (Chen, Ding, & Kelso, 1997) and in domains as diverse 
as economics (Granger, 1980), hydrology (Hurst, 1951), or genetics (Voss, 1992). 
Experiments with long time series may introduce fatigue and drift effects. In fact, 
the drifting effect toward certain preferred frequencies (attractor tempos) is expected 
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to be more visible in longer time series and with longer tapping intervals (Ogden & 
Collier, 1999; Collier & Ogden, 2004). However, long time series allow for smaller 
biases in autocorrelation estimation (Wing, 2002) and are absolutely needed for 
long-memory analysis (Wagenmakers, Farrell, & Ratcliff, 2004). When dealing 
with long time series and long-memory processes, apparent drifts can be simply 
incorporated with the model and provide additional information.

As previously referred, luctuations typical of 1/f noise and other long-memory 
processes have been observed in several biological time series. Nevertheless, the 
source of 1/f noise is controversial and there are mainly two different perspectives. 
Some classical studies suggested that the source of 1/f noise is localized in a central 
area within the system (Ivry, Keele, & Diener, 1988; Ivry & Keele, 1989). These 
works were based on the comparison of the performance of neuropathy patients 
and healthy subjects on timing functions. The results pointed to the primacy of the 
cerebellum and other neuro-anatomical structures in timing functions. More recent 
studies proposed that 1/f noise arises from inherent properties of complex systems 
(Beltz & Kello, 2006; Kello, Beltz, Van Orden, & Turvey, 2007). These works were 
inspired by the idea that 1/f noise is present in all the physical systems and thus it 
is a general manifestation of complex systems. In this line of research, it has been 
suggested that cognition has an organization similar to the one of complex systems 
(Gilden, Thornton, & Mallon, 1995). On the other hand, it has been argued that it is 
not necessary to have a complex system to generate 1/f noise (Clayton & Frey, 1997).

This study is based on long time series and is set in a framework somehow 
inspired by the Wing-Kristofferson model, basically in the conceptualization of two 
different sources of variance. In this case, the sources are a long-memory cogni-
tive process and a white noise motor process, mutually independent. On the one 
hand, the proposed cognitive process (fractionally integrated noise) is capable of 
reproducing characteristics that are halfway between those of nonstationary models, 
such as drift or level-changing models, and those of stationary models, such as 
autoregressive and moving-average models. On the other hand, the proposed model 
is able to generate both negative and positive autocorrelations at lag one, depending 
on the parameters values. In this context, to allow for a clear identiication of long 
memory, it is important to have relatively long target intervals (Madison, 2006).

The paper is organized into four distinct sections. Section 2 describes the Wing-
Kristofferson model and introduces two different approaches to this model. Section 3 
proposes an estimator based on the maximization of a spectral approximation to the 
likelihood function and presents a simulation study as well as an experimental study. 
Section 4 shows some comments on the results and some ideas for future research.

Wing-Kristofferson Model

A basic experimental design for studying the timing of repetitive movements is the 
synchronization-continuation paradigm in which the participant has to tap continu-
ously in time at a given frequency. In the irst phase (synchronization), the subject 
has to synchronize his or her taps with the periodic auditory signals emitted by a 
metronome. In the second phase (continuation), the metronome is turned off and the 
subject tries to continue to tap regularly at the same rate. The series of interest is the 
series of the interresponse intervals produced during the continuation phase. Figure 1 
illustrates the synchronization-continuation paradigm and the interresponse intervals.
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The Wing-Kristofferson model is a hierarchical two-level model that explains 
the variability of the interresponse intervals. This model is based on a cognitive 
clock component generating time intervals C

t
 and a motor component, responsible 

for the execution of the task at the end of C
t
, providing delay intervals M

t
. In terms 

of these components, the interresponse intervals It are written as

I C (M M ), for all t.t t t t 1= + − −

In this two-level formulation, the ratio of the motor standard deviation to the 
cognitive standard deviation is very important. From a theoretical point of view, 
this ratio represents a noise-to-signal ratio, which is very important in the analysis 
of stochastic processes with added noise (e.g., Wei, 2006). From an empirical 
point of view, this ratio expresses the relation between the standard deviations of 
the two components and usually takes values between 0 and 1 (e.g., Delignières, 
Lemoine, & Torre, 2004).

Original Approach

In the original approach, based on experiments with short continuation phases, 
the cognitive and the motor components are regarded as independent white noise 
sources (Wing & Kristofferson, 1973a, b; Vorberg & Wing, 1996).

Note that a process {X
t
} is said to be white noise with mean 0 and variance 

σ2
X
, written

{X } WN(0, ),t ~ σX
2

if {X
t
} has mean μ = 0 and autocovariance function γ

X
(k) = Cov(X

t
,X

t
+k) given by

γ
σ

X (k) .=
=

≥

X k

k

2
0

0 1

,

, | |

If the process {I
t
} is corrected for the mean and the processes {C

t
} and {M

t
} 

are independent white noise processes, viz.

{C } WN(0, ),t ~ σC
2

{M } WN(0, ),t ~ σM
2

Figure 1 — Synchronization-continuation paradigm.  An initial paced phase is followed 
by an unpaced phase in which the subject tries to continue to respond at the same rate.
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then the autocovariance function and the spectral density function can be obtained.
It is known that, if Z

t
 = X

t
 + Y

t
, for all t, where {X

t
} and {Y

t
} are independent 

stationary processes with autocovariance functions γ
X
(.) and γ

Y
(.) and spectral density 

functions f
X
(.) and f

Υ
(.), respectively (where the dot stands for an arbitrary argument), 

then {Z
t
} has an autocovariance function γ

Z
(.) deined by

γ γ γZ X Y(k) (k) (k), for all k= +

and a spectral density function f
Z
(.) given by

f f fZ X Y( ) ( ) ( ), for allλ λ λ λ= +

(e.g., Wei, 2006). It is also known that, if {X
t
} is a white noise process, then its 

autocovariance function γ
X
(.) is equal to

γ
σ

X

X
(k)

k

k
=

=

≥

2
0

0 1

,

, | |

and its spectral density function f
X
(.) is equal to

f X
X ( )

2
, |λ

σ

π
λ π= ≤

2

|

(e.g., Brockwell & Davis, 1991). From Eqs. 1, 2, and 3 and the preceding 
properties, it follows that the process {I

t
} has an autocovariance function γ

X
(.) 

of the form

γ

σ σ

σI (k) =

+ =

− =

≥

C M

M

k

k

k

2 2

2

2 0

1

0 2

,

, | |

, | |

and a spectral density function f
I
(.) of the form

f C M
I

i 2
( )

2
|1 e |

2
, |λ

σ

π

σ

π
λ π

λ
= + − ≤

−
2 2

|

(e.g., Wing & Kristofferson, 1973a, b; Vorberg & Wing, 1996).
Figure 2 displays the autocorrelation functions ρ

Ι
(.) (i.e., ρ

Ι
(.) = γ

Ι
(.)/γ

Ι
(0)) and 

the spectral density functions f
Ι
(.) (in log-log scale) for different values of σ

C
 and 

σ
M

. The speciied values lead to ratios σ
M

/σ
C
 = 1/1, 1/2, 1/3. It can be seen that the 

autocorrelation functions exhibit a negative peak at lag one and vanish after lag 
one. Furthermore, the density functions are small for low frequencies and large for 
high frequencies. This relects a tendency for the series to luctuate rapidly about 
its mean value. Note that the autocorrelation values at lag one decrease and the 
density values increase as the ratios decrease.

In conclusion, the Wing-Kristofferson model states that the autocovariance 
function at lag one is negative and depends exclusively on the motor process. 
However, recent studies on interval production strongly oppose this key result.
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A New Approach

We now suggest a new theoretical and fully parametric approach, based on experi-
ments with long continuation phases, in which the cognitive component is modeled 
as a long-memory process and the motor component is treated as a white noise 
source, mutually independent. Gilden, Thornton, and Mallon (1995) and Gilden 
(2001) proposed a similar approach, but their model is a nonparametric one. Del-
ignières, Torre, and Lemoine (2008) also used an equivalent approach, but their 
methodology is nontheoretical in a mathematical sense. We provide a lexible 
approach, allowing for the estimation of the long-memory parameter, the noise 
standard deviations, and possible short-memory autoregressive and moving-average 

Figure 2 — Autocorrelation functions, at left, and spectral density functions (in log-log 
scale), at right, of the process {I

t
} given by Eqs. 1, 2, 3. The standard deviations are (a) σ

C
  

=   1.0 and σ
M

  = 1.0, (b) σ
C
  = 2.0 and σ

M
 = 1.0, (c) σ

C
  = 3.0 and σ

M
 = 1.0.
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parameters. A main contribution of this paper is the theoretical study of the model, 
including the derivation of the autocorrelation function and of the spectral density 
function. This important feature has several implications. From a theoretical point 
of view, it allows for the exploitation of a procedure for parameter estimation, 
which quantiies the memory and the scale parameters of a time series. From an 
empirical point of view, it allows for the complete characterization of experimental 
time series and the possible identiication of dissimilarities or similarities between 
subjects (with possible applications to the diagnosis of diseases, etc.). This kind of 
theoretical approach has been used in several ields, such as economics, inance, 
physics, engineering, etc., but it is rather unusual in motor control studies. The 
contribution of the literature on long-range dependence in human cognition has 
been mainly of an empirical nature.

A basic long-memory process {X
t
} is the ARFIMA(p,d,q) process with d 

∈ (-0.5,0.5) which is deined as the unique stationary solution of the difference 
equations

where

�1 )
(j d)

(j 1) ( d)
,d

j 0

− =
−

+ −
=

∞

∑B B jΓ

Γ Γ

B is the backshift operator given by BjX
t
 = X

t-j
, j = 0,1,. . ., and Γ(.) represents 

the gamma function. The process {X
t
} is said to be persistent when d ∈ (0,0.5) 

in which case the autocorrelation function is not summable (e.g., Brockwell & 
Davis, 1991). In this study, an ARFIMA(0,d,0) process (fractionally integrated 
noise process) proved to be advisable and desirable because of its simplicity and 
parsimony.

If the process {I
t
} is corrected for the mean, the process {C

t
} is a fractionally 

integrated noise process, and the process {M
t
} is a white noise process, mutually 

independent, viz.

{ C B) Z }, {Z } WN(0, ),t
d

t t C≡ − −
( ~1

2σ
 

{M } WN(0, ),t ~ σM
2

then the autocovariance function and the spectral density function can be obtained.
Note that, if {X

t
} is a fractionally integrated noise process, then its autocovari-

ance function γ
X
(.) satisies

γ X (k)
(1 2d)

(1 d) (1
=

− −

+ − −

( )

| | |

| |
1

k

k k

Γ

Γ Γ ||
| |

d)
, , 1,

−
=σ Z k

2
0 …

and its spectral density function f
X
(.) satisies

f Z
X

i 2d
( ) |1 e |

2
, |λ

σ

π
λ π

λ
= − ≤

− −
2

|
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(e.g., Brockwell & Davis, 1991). From Eqs. 1, 4, and 5 and the previous proper-
ties, we prove that the process {I

t
} has an autocovariance function γ

I
(.) of the form

γ

σ σ

I (k)

(1 2d)

(1 d)

=

−

−
+ =

−

Γ

Γ2

2 2
2 0

1

C M k,

( )ΓΓ

Γ Γ

(1 2d)

( d) ( d)

−

− −
− =

−

2
1

1

2 2σ σC M

k

k, | |

( )
| ||

| | | |
, | |

Γ

Γ Γ

(1 2d)

(1 d) (1 d)

−

+ − − −k k
kCσ

2 ≥≥ 2

and a spectral density function f
I
(.) of the form

f C M
I

i 2d i 2
( ) |1 e |

2
|1 e |

2
,λ

σ

π

σ

π

λ λ
= − + −

− − −
2 2

|λ π| .≤

Figure 3 reveals the autocorrelation functions ρ
I
(.) (i.e., ρ

I
(.) = γ

I
(.)/γ

I
(0)) and 

the spectral density functions f
I
(.) (in log-log scale) for d = 0.4 and several values of 

σ
C
 and σ

M
. The stated values lead to ratios σ

M
/σ

C
 = 1/1, 1/2, 1/3. It can be observed 

that the autocorrelation functions are positive and decrease very slowly following 
a hyperbolic decay. Moreover, the density functions are large for low frequencies 
and small for high frequencies. This relects a tendency for the series to have long 
nonperiodic oscillations. Note that the autocorrelation values increase and the 
density values increase as the ratios decrease.

Finally, note that, according to the proposed model, the autocovariance function 
at lag one can be negative or positive and depends simultaneously on the cogni-
tive and the motor processes. Thus, this model is a very lexible and general one.

Estimation of the Wing-Kristofferson Model

The estimation of the parameters of the Wing-Kristofferson model can be quite 
dificult because the model is deined as the sum of two processes (mutually 
independent). A widely used method for estimating the parameters of time series 
models is to maximize the likelihood or quasi-likelihood function of the parameter 
vector. In the context of ARFIMA processes, the exact evaluation of the quasi-
likelihood function is possible, but it presents convergence problems especially 
for long time series.

Spectral-Likelihood Estimator

We propose a spectral-likelihood estimator based on the maximization of the 
frequency-domain representation of the likelihood function of the parameter 
vector.

Assume that {X
t
} is a Gaussian process with mean μ = 0 and autocovariance 

function γ(.). Let X
n
 = (X

1
, . . ., X

n
)’ be a realization of the process with covari-

ance matrix

Γn i, j 1

n
[ (i )] .= − =γ j
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If X
n
 = (X

1
, . . ., X

n
)’ is the observation vector and β is the parameter vector, then 

the likelihood function is equal to

Ln

n

2
n

1

2
n
'

n
1

n( ) ) (det ) exp
1

2
β π= −

− −
−(2 Γ ΓX X .

Direct computation of the covariance matrix Γn, its determinant, and its inverse poses 
computational problems particularly for long time series. An alternative to maximiz-
ing the log-likelihood function is to maximize an approximation to that function.

Let f(.;β} be the spectral density function of the process and let I
n
(.) be the 

normalized periodogram, viz.

Figure 3 — Autocorrelation functions, at left, and spectral density functions (in log-log 
scale), at right, of the process {I

t
} given by Eqs. 1, 4, 5 with d = 0.4. The deviations are (a) 

σ
C
  = 1.0 and σ

M
  = 1.0, (b) σ

C
  = 2.0 and σ

M
  = 1.0, (c) σ

C
  = 3.0 and σ

M
  = 1.0.
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In j

i

t 1

( )
2

e ,λ
π

λ
πλ

= =
−

=

∑
1 2

2

n
X

j

n
t

t
n

j
j ,

where j = 1, . . ., [n/2] and [.] represents the integer part. Using two approximations 
due to Whittle (1953) and some simple Riemann sums, it follows that the negative 
of the log-likelihood function can be approximated by

An estimator for β, usually denoted by, is obtained by minimizing with respect to 
β the function (.) (e.g., Beran, 1994).

The proposed model, related to experiments with long continuation phases, is 
deined as the sum of a fractionally integrated noise and a differenced white noise, 
mutually independent. Under these assumptions, the spectral density function is 
established in the preceding section and the parameter vector is β = (d, σ

C
, σ

M
). The 

estimation method works by taking into account the distinct characteristics of both 
processes. This way, it is possible to obtain separate estimates of the parameters 
without mutual contamination.

Simulation Study

This subsection presents a simulation study to evaluate the sample properties of 
the proposed estimator.

The sample size considered was n = 1024. This size was chosen because it 
is a power of two and it resembles the maximum size of experimental series. The 
method reported by Davies and Harte (1987) was used for simulating fractionally 
integrated noise processes with memory parameter d and associated variance σ

C
2. 

The selected values were d = 0.2, 0.3, 0.4 and σ
C
 = 1.0, 2.0, 3.0. To each process, 

a differenced white noise process with associated variance σ
M

2 was added. The 
selected value was σ

M
 = 1.0. These values lead to ratios σ

M
/σ

C
 = 1/1, 1/2, 1/3. 

Figure 4 presents an example of a simulated process with d = 0.4, σ
C
 = 3.0, and 

σ
M

 = 1.0. It also shows the sample autocorrelation function and the normalized 
periodogram (in log-log scale) of the process. It is clear that the time series has 
long nonperiodic waves as was postulated in the proposed theoretical model. The 
autocorrelation function and the periodogram exhibit a behavior similar to those 
of the proposed theoretical functions.

The estimation results for each model were obtained from 1000 replications. 
Table 1 provides simulation means and standard deviations for the estimated param-
eters. The overall performance of the spectral-likelihood estimator in terms of bias 
and variability seems to be very good. Some general observations are:

 1. the memory parameter (d), the standard deviations (σ
C
 and σ

M
), and the cor-

responding ratios (σ
M

/σ
C
) are estimated with high accuracy;

 2. the observed standard deviations of the estimator (within parentheses) are 
relatively small compared with the corresponding parameter values;
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Figure 4 — (a) Simulated process of fractionally integrated noise + differenced white 
noise with d = 0.4, σ

C
  = 3.0 and σ

M
  = 1.0. (b) Sample autocorrelation function, at left, 

and normalized periodogram (in log-log scale), at right, of the process shown in part (a).

 3. when the memory parameter increases and approaches the nonstationarity bar-
rier (d = 0.5), the bias of the estimator increases slightly (overestimation of d) 
as it was expected and has been observed in other works (Crato & Ray, 2002).

These results are very reassuring for the possibility of reliably estimating the 
parameters of the model and testing for the parameters.

Experimental Study

Participants. Six students (one male and ive females, aged 19–20 years) from 
the Faculty of Human Kinetics participated in two tapping experiments. None 
of the subjects had extensive practice in rhythmical activities. They all signed an 
informed consent form.

Procedure. The experiments took place individually in a quiet room. Each 
participant sat on a chair in front of a table with a computer and an A/D con-
verter. Each subject was instructed to press a inger switch with his or her index 
inger in synchrony with periodic auditory signals emitted by a metronome and 
delivered through a headphone. After 10 signals, the metronome was turned off 
and the subject tried to continue to tap regularly at the same rate. The data were 
collected to an accuracy of 1000 Hz and the task was pursued up to the recording 
of about 1000 continuous taps. Two target frequencies, F

1
 = 1.250 Hz (i.e., T

1
 = 
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800 ms) and F
2
 = 0.625 Hz (i.e., T

2
 = 1600 ms), were studied. The frequency F

1
 = 

1.250 Hz was chosen because it has been noted that the error of performance is an 
inverse bell-shaped function of the frequency with the minimum about 1.250 Hz 
(Woodrow, 1932). The frequency F

2
 = 0.625 Hz was chosen because it has been 

stated that the cognitive component is more visible and has stronger 1/f behavior 
at low frequencies (Gilden, Thornton, & Mallon, 1995). Each student performed 
the task successfully under the two conditions, in a random order, and in separate 
days. There was a four-week interval between the sessions to induce forgetting about 
the irst practice condition. In studies that have investigated more than one target 
interval, the elapsed time between sessions has varied from minutes up to a week 
(Semjen, Schulze, & Vorberg, 2000), but most of the times it isn’t even mentioned.

The computer program AcqKnowledge© 3.8.1 for Microsoft Windows by 
BIOPAC Systems was used to identify the speciic time R

t
 of each tap and to 

determine the time intervals It between successive taps

I t t 1 tR , for all t.= −+R

Statistical Analysis. To avoid the initial transient, the irst 30 points of each time 
series were eliminated (Chen, Repp, & Patel, 2002; Delignières, Lemoine, & 
Torre, 2004). Figures 5 and 6 present examples of two time series of interresponse 

Table 1 Results for the Spectral-Likelihood Estimator in Simulated 

Series with 1000 Replications. The Values in the First Column 

Represent the Model Parameters. The Values in the Other Columns 

Represent the Simulation Means and Standard Deviations (in 

Parentheses) for the Estimated Parameters.

 (d, 
C
, 

M
)

^
d ^


C

^


M
^


M ∕ ^


C

(0.2, 1.0, 1.0) 0.201 1.003 1.000 1.007
(0.052) (0.079) (0.052) (0.123)

(0.2, 2.0, 1.0) 0.207 1.984 1.006 0.511

(0.039) (0.116) (0.104) (0.076)

(0.2, 3.0, 1.0) 0.198 2.996 0.948 0.321

(0.043) (0.168) (0.270) (0.104)

(0.3, 1.0, 1.0) 0.320 0.974 1.008 1.048

(0.051) (0.092) (0.053) (0.150)

(0.3, 2.0, 1.0) 0.307 1.976 1.000 0.510

(0.043) (0.116) (0.090) (0.071)

(0.3, 3.0, 1.0) 0.311 2.979 0.996 0.338

(0.042) (0.161) (0.174) (0.074)

(0.4, 1.0, 1.0) 0.448 0.974 1.013 1.050

(0.062) (0.081) (0.045) (0.126)

(0.4, 2.0, 1.0) 0.441 1.952 0.975 0.499

(0.058) (0.137) (0.181) (0.162)

(0.4, 3.0, 1.0) 0.436 2.956 0.980 0.366

(0.045) (0.171) (0.040) (0.158)
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Figure 6 — (a) Time series of interresponse intervals for subject A and target frequency F
2
 

= 0.625 Hz (i.e., T2 = 1600 ms). (b) Sample autocorrelation function, at left, and normalized 
periodogram (in log-log scale), at right, of the time series shown in part (a).

Figure 5 — (a) Time series of interresponse intervals for subject A and target frequency F
1
 

= 1.250 Hz (i.e., T
1
 = 800 ms). (b) Sample autocorrelation function at left, and normalized 

periodogram (in log-log scale), at right, of the time series shown in part (a).
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intervals with target frequencies of 1.250 Hz (i.e., 800 ms) and 0.625 Hz (i.e., 
1600 ms). They also show the sample autocorrelation functions and the normal-
ized periodograms (in log-log scale) of the series. It is evident that the time series 
have nonperiodic waves which are more visible in the series with the larger 
target interval. The autocorrelation functions and the periodograms bear a close 
resemblance to those of the simulated processes. The observed means and the 
observed standard deviations of the time series shown in Figure 5 (a) are 810.242 
and 54.163, respectively; the corresponding statistics of the time series shown 
in Figure 6 (a) are 1514.645 and 125.357, respectively. It seems obvious that the 
variability increases as the mean increases as it has been reported in other works 
(Stevens, 1886; Wing & Kristofferson, 1973a, b).

To estimate the parameters of the proposed model (a fractionally integrated 
noise plus a differenced white noise), each time series was subjected to some opera-
tions. First, the series was submitted to a method for detecting and removing the 
outliers (mainly observational errors). This is a common issue in long time series 
(Wagenmakers, Farrell, & Ratcliff, 2004). Second, the series was corrected for the 
mean. This procedure is advisable for spectral-likelihood estimation. The proposed 
model was then itted to the process. Table 2 provides the sample standard devia-
tions and the results for the estimated parameters. Some interesting remarks are:

 1. the sample standard deviations are reasonably similar to the sums of the esti-
mated standard deviations for the cognitive and the motor processes;

 2. the estimates of the memory parameter (d) are in the range speciied for per-
sistent processes (d ∈ (0,0.5)), except for subject F and target interval of 1600 
ms; the estimate of this parameter increases as the target interval increases, for 
most of the subjects;

Table 2 Results for the Spectral-Likelihood Estimator in 

Experimental Series. The Letters in the First Column Represent 

the Subjects. The Values in the Second and the Third Columns 

Represent the Target Intervals and the Standard Deviations. The 

Values in the Other Columns Represent the Estimated Parameters.

Subject Target Std. Dev.
^
d ^


C

^


M
^


M ∕ ^


C

A 800 54.163 0.286 42.847 18.863 0.440

1600 125.357 0.477 74.851 28.082 0.375

B 800 118.443 0.477 81.092 25.560 0.315

1600 187.694 0.462 110.787 55.061 0.497

C 800 90.259 0.394 65.474 23.785 0.363

1600 163.388 0.302 135.337 50.309 0.372

D 800 47.150 0.258 46.006 13.471 0.293

1600 171.386 0.422 116.684 59.506 0.510

E 800 211.172 0.230 158.148 63.108 0.399

1600 205.095 0.432 110.616 61.446 0.555

F 800 78.611 0.414 30.335 23.404 0.772

1600 246.246 0.513 192.862 61.148 0.317
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 3. the estimates of the cognitive standard deviation (σ
C
) are larger than the cor-

responding estimates of the motor standard deviation (σ
M

); both the estimates 
increase as the target interval increases, except for subject E;

 4. the estimates of the 300ratio of the components standard deviations (σ
M

/σ
C
) 

are all smaller than one with observed values between 0.293 and 0.772.

This study suggests that the proposed model is an adequate model to explain 
the variability of the interresponse intervals in tapping tasks. It also raises the pos-
sibility that different subjects have different strategies to produce time intervals in 
these tasks because of the estimated parameters. Individual differences are plausible 
and averaged results may not properly represent particular participants as reported 
in other studies (Wagenmakers, Farrell, & Ratcliff, 2004). In spite of the individual 
differences, the estimated model shows a remarkable stability. The estimates of the 
memory parameter are all signiicant and, in some cases, close to the nonstationarity 
boundary (0.5), which provides strong evidence for a long-memory cognitive pro-
cess. The estimates of the standard deviations ratio are all smaller than one, which 
stresses the predominance of the cognitive part of the system. The estimates of the 
standard deviations are larger than those found in some papers (Madison, 2000), 
but comparable to the ones mentioned in other works (Delignières, Lemoine, & 
Torre, 2004). Moreover, the proposed methodology is based on long time series and 
fractionally integrated processes and the present estimates are related to unobserved 
and model dependent variables. It is known that long realizations of long-memory 
processes may yield large variance estimates due to the long nonperiodic waves 
characteristic of these processes.

Conclusions

The Wing-Kristofferson model provides an understanding of the interresponse inter-
vals in tapping tasks based on a cognitive component and on a motor component. 
These components are considered as independent white noise sources. However, 
there is empirical evidence that the irst can be regarded as a long-memory process 
and the second as a white noise process. In fact, the cognitive component can be 
regarded as a source of 1/f noise and seems to exhibit self-organization properties. 
We suggest a new theoretical and fully parametric model in which the cognitive 
component is built from the ARFIMA class of long-memory processes and the 
motor component is a white noise process. The autocorrelation function of this 
model follows a hyperbolic decay and the spectral density function has a pole at 
the zero frequency. This supports the hypothesis of long-term oscillations in the 
series of the interresponse intervals. The spectral-likelihood estimator proposed 
for this model is a consistent estimator. The simulation results show small biases 
and a good precision for the parameters of this type of models.

The presented results may be very useful for studying the timing of movement 
in this sort of task. The proposed model, based on fractional integration, generates 
fractal dynamics and allows for the direct estimation of the parameters and for the 
mixture of long and short memory. This is a very lexible and general approach. 
The fractional integration has been showed to have various alternative explanations 
(e.g., Granger, 1980; Taqqu & Levy, 1986; Parke, 1999; Liu, 2000), which means 
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it represents a way of searching for alternative and intuitive biological interpreta-
tions. The possibility of mixing parametric long- and short-memory components 
through fractional integration and autoregressive and moving-average processes 
is also promising. With different subjects and time series we may ind signiicant 
short-memory components, which will make available another way of interpreting 
the biological phenomena.

Further research is required to understand the underlying mechanisms of the 
decomposition of the variance and its dependence on interval duration. It is also 
important to check the robustness of the proposed model to structural change (i.e., 
shifting levels and/or trends) through the realization of tests of true versus spurious 
long memory. These tests can be performed by using sample splitting or sample 
aggregation. It is interesting as well to ind alternative representations of the pro-
posed model that generate 1/f luctuations in a way that may plausibly be part of a 
biological process. Some nice explanations for long-range dependence in human 
cognition were already proposed (e.g., Wagenmakers, Farrell, & Ratcliff, 2004; 
Delignières, Torre, & Lemoine, 2008), but there are many others to be explored. 
The parametric model that we introduce allows for building alternative representa-
tions and is compatible with the central or the complex-system explanations for 
fractal dynamics. The model and its representations may provide insights on the 
origin of the observed dynamics.
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