1,207 research outputs found

    Parameterized Exact and Approximation Algorithms for Maximum kk-Set Cover and Related Satisfiability Problems

    Full text link
    Given a family of subsets S\mathcal S over a set of elements~XX and two integers~pp and~kk, Max k-Set Cover consists of finding a subfamily~TS\mathcal T \subseteq \mathcal S of cardinality at most~kk, covering at least~pp elements of~XX. This problem is W[2]-hard when parameterized by~kk, and FPT when parameterized by pp. We investigate the parameterized approximability of the problem with respect to parameters~kk and~pp. Then, we show that Max Sat-k, a satisfiability problem generalizing Max k-Set Cover, is also FPT with respect to parameter~pp.Comment: Accepted in RAIRO - Theoretical Informatics and Application

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Parameterized Complexity of Secluded Connectivity Problems

    Get PDF
    The Secluded Path problem models a situation where a sensitive information has to be transmitted between a pair of nodes along a path in a network. The measure of the quality of a selected path is its exposure, which is the total weight of vertices in its closed neighborhood. In order to minimize the risk of intercepting the information, we are interested in selecting a secluded path, i.e. a path with a small exposure. Similarly, the Secluded Steiner Tree problem is to find a tree in a graph connecting a given set of terminals such that the exposure of the tree is minimized. The problems were introduced by Chechik et al. in [ESA 2013]. Among other results, Chechik et al. have shown that Secluded Path is fixed-parameter tractable (FPT) on unweighted graphs being parameterized by the maximum vertex degree of the graph and that Secluded Steiner Tree is FPT parameterized by the treewidth of the graph. In this work, we obtain the following results about parameterized complexity of secluded connectivity problems. We give FPT-algorithms deciding if a graph G with a given cost function contains a secluded path and a secluded Steiner tree of exposure at most k with the cost at most C. We initiate the study of "above guarantee" parameterizations for secluded problems, where the lower bound is given by the size of a Steiner tree. We investigate Secluded Steiner Tree from kernelization perspective and provide several lower and upper bounds when parameters are the treewidth, the size of a vertex cover, maximum vertex degree and the solution size. Finally, we refine the algorithmic result of Chechik et al. by improving the exponential dependence from the treewidth of the input graph.Comment: Minor corrections are don

    Guarantees and Limits of Preprocessing in Constraint Satisfaction and Reasoning

    Full text link
    We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions. All these problems involve two tasks: (i) identifying the structure in the input as required by the restriction, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assumption. As a notable exception we show that the consistency problem for the AtMost-NValue constraint admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time preprocessing algorithms for the considered problems.Comment: arXiv admin note: substantial text overlap with arXiv:1104.2541, arXiv:1104.556
    corecore