6 research outputs found

    Parameterized Algorithms for Min-Max Multiway Cut and List Digraph Homomorphism

    Get PDF
    In this paper we design {\sf FPT}-algorithms for two parameterized problems. The first is \textsc{List Digraph Homomorphism}: given two digraphs GG and HH and a list of allowed vertices of HH for every vertex of GG, the question is whether there exists a homomorphism from GG to HH respecting the list constraints. The second problem is a variant of \textsc{Multiway Cut}, namely \textsc{Min-Max Multiway Cut}: given a graph GG, a non-negative integer ℓ\ell, and a set TT of rr terminals, the question is whether we can partition the vertices of GG into rr parts such that (a) each part contains one terminal and (b) there are at most ℓ\ell edges with only one endpoint in this part. We parameterize \textsc{List Digraph Homomorphism} by the number ww of edges of GG that are mapped to non-loop edges of HH and we give a time 2O(ℓ⋅log⁡h+ℓ2⋅log⁡ℓ)⋅n4⋅log⁡n2^{O(\ell\cdot\log h+\ell^2\cdot \log \ell)}\cdot n^{4}\cdot \log n algorithm, where hh is the order of the host graph HH. We also prove that \textsc{Min-Max Multiway Cut} can be solved in time 2O((ℓr)2log⁡ℓr)⋅n4⋅log⁡n2^{O((\ell r)^2\log \ell r)}\cdot n^{4}\cdot \log n. Our approach introduces a general problem, called {\sc List Allocation}, whose expressive power permits the design of parameterized reductions of both aforementioned problems to it. Then our results are based on an {\sf FPT}-algorithm for the {\sc List Allocation} problem that is designed using a suitable adaptation of the {\em randomized contractions} technique (introduced by [Chitnis, Cygan, Hajiaghayi, Pilipczuk, and Pilipczuk, FOCS 2012]).Comment: An extended abstract of this work will appear in the Proceedings of the 10th International Symposium on Parameterized and Exact Computation (IPEC), Patras, Greece, September 201

    On the complexity of computing the kk-restricted edge-connectivity of a graph

    Full text link
    The \emph{kk-restricted edge-connectivity} of a graph GG, denoted by λk(G)\lambda_k(G), is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least kk vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been extensively studied from a combinatorial point of view. However, very little is known about the complexity of computing λk(G)\lambda_k(G). Very recently, in the parameterized complexity community the notion of \emph{good edge separation} of a graph has been defined, which happens to be essentially the same as the kk-restricted edge-connectivity. Motivated by the relevance of this invariant from both combinatorial and algorithmic points of view, in this article we initiate a systematic study of its computational complexity, with special emphasis on its parameterized complexity for several choices of the parameters. We provide a number of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.Comment: 16 pages, 4 figure

    Parameterized algorithms for min-max multiway cut and list digraph homomorphism

    No full text
    We design FPT-algorithms for the following problems. The first is LIST DIGRAPH HOMOMORPHISM: given two digraphs G and H, with order n and h, respectively, and a list of allowed vertices of H for every vertex of G, does there exist a homomorphism from G to H respecting the list constraints? Let ℓ be the number of edges of G mapped to non-loop edges of H. The second problem is MIN-MAX MULTIWAY CUT: given a graph G, an integer ℓ≄0, and a set T of r terminals, can we partition V(G) into r parts such that each part contains one terminal and there are at most ℓ edges with only one endpoint in this part? We solve both problems in time 2O(ℓ⋅log⁥h+ℓ2⋅log⁡ℓ)⋅n4⋅log⁥n and 2O((ℓr)2log⁡ℓr)⋅n4⋅log⁥n, respectively, via a reduction to a new problem called LIST ALLOCATION, which we solve adapting the randomized contractions technique of Chitnis et al. (2012) [4]. © 2017 Elsevier Inc
    corecore