4,602 research outputs found

    Parameterized complexity of coloring problems: Treewidth versus vertex cover

    Get PDF
    AbstractWe compare the fixed parameter complexity of various variants of coloring problems (including List Coloring, Precoloring Extension, Equitable Coloring, L(p,1)-Labeling and Channel Assignment) when parameterized by treewidth and by vertex cover number. In most (but not all) cases we conclude that parametrization by the vertex cover number provides a significant drop in the complexity of the problems

    Treewidth with a Quantifier Alternation Revisited

    Get PDF
    In this paper we take a closer look at the parameterized complexity of existsforall SAT, the prototypical complete problem of the class Sigma_2^p, the second level of the polynomial hierarchy. We provide a number of tight fine-grained bounds on the complexity of this problem and its variants with respect to the most important structural graph parameters. Specifically, we show the following lower bounds (assuming the ETH): - It is impossible to decide existsforall SAT in time less than double-exponential in the input formula\u27s treewidth. More strongly, we establish the same bound with respect to the formula\u27s primal vertex cover, a much more restrictive measure. This lower bound, which matches the performance of known algorithms, shows that the degeneration of the performance of treewidth-based algorithms to a tower of exponentials already begins in problems with one quantifier alternation. - For the more general existsforall CSP problem over a non-boolean domain of size B, there is no algorithm running in time 2^{B^{o(vc)}}, where vc is the input\u27s primal vertex cover. - existsforall SAT is already NP-hard even when the input formula has constant modular treewidth (or clique-width), indicating that dense graph parameters are less useful for problems in Sigma_2^p. - For the two weighted versions of existsforall SAT recently introduced by de Haan and Szeider, called exists_kforall SAT and existsforall_k SAT, we give tight upper and lower bounds parameterized by treewidth (or primal vertex cover) and the weight k. Interestingly, the complexity of these two problems turns out to be quite different: one is double-exponential in treewidth, while the other is double-exponential in k. We complement the above negative results by showing a double-exponential FPT algorithm for QBF parameterized by vertex cover, showing that for this parameter the complexity never goes beyond double-exponential, for any number of quantifier alternations

    Polynomial Kernels for Generalized Domination Problems

    Full text link
    In this paper, we study the parameterized complexity of a generalized domination problem called the [σ,ρ{\sigma}, {\rho}] Dominating Set problem. This problem generalizes a large number of problems including the Minimum Dominating Set problem and its many variants. The parameterized complexity of the [σ,ρ{\sigma}, {\rho}] Dominating Set problem parameterized by treewidth is well studied. Here the properties of the sets σ{\sigma} and ρ{\rho} that make the problem tractable are identified [1]. We consider a larger parameter and investigate the existence of polynomial sized kernels. When σ{\sigma} and ρ{\rho} are finite, we identify the exact condition when the [σ,ρ{\sigma}, {\rho}] Dominating Set problem parameterized by vertex cover admits polynomial kernels. Our lower and upper bound results can also be extended to more general conditions and provably smaller parameters as well.Comment: 19 pages, 6 figure

    Parameterized Distributed Algorithms

    Get PDF
    In this work, we initiate a thorough study of graph optimization problems parameterized by the output size in the distributed setting. In such a problem, an algorithm decides whether a solution of size bounded by k exists and if so, it finds one. We study fundamental problems, including Minimum Vertex Cover (MVC), Maximum Independent Set (MaxIS), Maximum Matching (MaxM), and many others, in both the LOCAL and CONGEST distributed computation models. We present lower bounds for the round complexity of solving parameterized problems in both models, together with optimal and near-optimal upper bounds. Our results extend beyond the scope of parameterized problems. We show that any LOCAL (1+epsilon)-approximation algorithm for the above problems must take Omega(epsilon^{-1}) rounds. Joined with the (epsilon^{-1}log n)^{O(1)} rounds algorithm of [Ghaffari et al., 2017] and the Omega (sqrt{(log n)/(log log n)}) lower bound of [Fabian Kuhn et al., 2016], the lower bounds match the upper bound up to polynomial factors in both parameters. We also show that our parameterized approach reduces the runtime of exact and approximate CONGEST algorithms for MVC and MaxM if the optimal solution is small, without knowing its size beforehand. Finally, we propose the first o(n^2) rounds CONGEST algorithms that approximate MVC within a factor strictly smaller than 2

    On Covering Segments with Unit Intervals

    Get PDF
    We study the problem of covering a set of segments on a line with the minimum number of unit-length intervals, where an interval covers a segment if at least one of the two endpoints of the segment falls in the unit interval. We also study several variants of this problem. We show that the restrictions of the aforementioned problems to the set of instances in which all the segments have the same length are NP-hard. This result implies several NP-hardness results in the literature for variants and generalizations of the problems under consideration. We then study the parameterized complexity of the aforementioned problems. We provide tight results for most of them by showing that they are fixed-parameter tractable for the restrictions in which all the segments have the same length, and are W[1]-complete otherwise
    corecore