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Abstract
In this work, we initiate a thorough study of graph optimization problems parameterized by the
output size in the distributed setting. In such a problem, an algorithm decides whether a solution of
size bounded by k exists and if so, it finds one. We study fundamental problems, including Minimum
Vertex Cover (MVC ), Maximum Independent Set (MaxIS), Maximum Matching (MaxM ), and many
others, in both the LOCAL and CONGEST distributed computation models. We present lower
bounds for the round complexity of solving parameterized problems in both models, together with
optimal and near-optimal upper bounds.

Our results extend beyond the scope of parameterized problems. We show that any LOCAL
(1 + ε)-approximation algorithm for the above problems must take Ω(ε−1) rounds. Joined with
the (ε−1 logn)O(1) rounds algorithm of [18] and the Ω

(√
logn

log logn

)
lower bound of [22], the lower

bounds match the upper bound up to polynomial factors in both parameters. We also show that
our parameterized approach reduces the runtime of exact and approximate CONGEST algorithms
for MVC and MaxM if the optimal solution is small, without knowing its size beforehand. Finally,
we propose the first o(n2) rounds CONGEST algorithms that approximate MVC within a factor
strictly smaller than 2.
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1 Introduction

We initiate the study of distributed algorithms for graph optimization problems parameterized
on output size which are fundamental both in the sequential and distributed settings. When
we refer to parametrized algorithms in this paper, we consider the output size as the parameter,
which is called the standard parametrization [27]. Broadly speaking, in these problems we aim
to find some underlying graph structure (e.g., a set of nodes) that abides a set of constraints
(e.g., cover all edges) while minimizing the cost.
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6:2 Parameterized Distributed Algorithms

While parameterized algorithms have received much attention in the sequential setting, not
even the most fundamental problems (e.g., Vertex Cover) have a distributed counterpart1. We
present parameterized upper and lower bounds for fundamental problems such as Minimum
Vertex Cover, Maximum Matching and many more.

Motivation. In the sequential setting, some combinatorial optimization problems are known
to have polynomial time algorithms (e.g., Maximum Matching), while others are NP-complete
(e.g., Minimum Vertex Cover). To deal with the hardness of finding an optimal solution to
these problems, the field of parameterized complexity asks what is the best running time we
may achieve with respect to some parameter of the problem, instead of the size of the input
instance. This parameter, usually denoted by k, is typically taken to be the size of the solution.
Thus, even a running time that is exponential in k may be acceptable for small values of k.

In the distributed setting, a network of nodes, which is represented by a communication
graph G(V,E), aims to solve some graph problem with respect to G. Computation proceeds
in synchronous rounds, in each of which every vertex can send a message to each of its
neighbors. The running time of the algorithm is measured as the number of communication
rounds it takes to finish. There are two primary communication models: LOCAL, which
allows sending messages of unbounded size, and CONGEST, which limits messages to O(logn)
bits (where n = |V |).

The above definition implies that the notion of “hardness” in the distributed setting is
different. Because we do not take the computation time of the nodes into account, we can
solve any problem in O(D) rounds of the LOCAL model (where D is the diameter of the
graph), and O(n2) rounds of the CONGEST model. This is achieved by having every node
in the graph learn the entire graph topology and then solve the problem. Indeed, there exist
“hard” problems in the distributed setting, where the dependence on D and n is rather large.

There are several lower bounds for distributed combinatorial optimization problems for
both the LOCAL and the CONGEST models. For example, [28] provides lower bounds of
Ω̃(
√
n+D) (Where Ω̃ hides polylogarithmic factors in n), for a range of problems including

MST, min-cut, min s-t cut and many more. There are also Ω̃(n) bounds in the CONGEST
model for problems such as approximating the network’s diameter [1] and finding weighted
all-pairs shortest paths [10]. Recently, the first near-quadratic (in n) lower bounds were
shown by [10] for computing exact Vertex Cover and Maximum Independent Set.

The above shows that, similar to the sequential setting, the distributed setting also has
many “hard” problems that can benefit from the parameterized complexity lens. Recently,
the study of parameterized algorithms for MVC and MaxM was also initiated in the streaming
environment by [11,12]. This provides further motivation for our work, showing that indeed
non-standard models of computation can benefit from parameterized algorithms.

1.1 Our results
Given the above motivation we consider the following fundamental problems (See Section 2
for formal definitions): Minimum Vertex Cover (MVC ), Maximum Independent Set (MaxIS),
Minimum Dominating Set (MDS), Minimum Feedback Vertex Set (MFVS), Maximum
Matching (MaxM ), Minimum Edge Dominating Set (MEDS), Minimum Feedback Edge Set
(MFES). We use P to denote this problem set.

1 Many parameters other than the output size have been considered, such as the maximum degree,
arboricity, etc.
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The problems are considered in both the LOCAL and CONGEST model, where we present
lower bounds for the round complexity of solving parameterized problems in both models,
together with optimal and near-optimal upper bounds. We also extend existing results [10,22]
to the parameterized setting. Some of these extensions are rather direct, but are presented
to provide a complete picture of the parameterized distributed complexity landscape.

Our results also extend beyond the scope of parameterized problems. We show that any
LOCAL (1 + ε)-approximation algorithm for the above problems must take Ω(ε−1) rounds.
Joined with the (ε−1 logn)O(1) rounds algorithm of [18] and the Ω

(√
logn/ log logn

)
lower

bound of [22], the lower bounds match the upper bound up to polynomial factors in both
parameters. We also show that our parameterized approach reduces the runtime of exact and
approximate CONGEST algorithms for MVC and MaxM if the optimal solution is small,
without knowing its size beforehand. Finally, we propose the first o(n2) rounds CONGEST
algorithms that approximate MVC within a factor strictly smaller than 2.

We note that considering parameterized algorithms in the distributed setting presents
interesting challenges and unique opportunities compared to the classical sequential environ-
ment. In essence, we consider the communication cost of solving a parameterized problem
on a network. On one hand, we have much more resources (and unlimited computational
power), but on the other we need to deal with synchronizations and bandwidth restrictions.

We consider combinatorial minimization (maximization) problems where the size of the
solution is upper bounded (lower bounded) by k. A parameterized distributed algorithm is
given a parameter k (which is known to all nodes), and must output a solution of size at most
k (at least k for maximization problems) if such a solution exists. Otherwise, all vertices
must output that no such solution exists. A similar definition is given for parameterized
approximation problems (see Section 2 for more details). For every P ∈ P we denote by k-P
its parameterized variant and by k-P all these problems.

Lower bounds (partially deferred to the full version [7]). We show that the problem of
MVC can be reduced to MFVS and MFES via standard reductions which also hold in the
CONGEST model. There are no known results for MFVS and MFES in the distributed
setting, so the above reductions, albeit simple, immediately imply that all existing lower
bounds for MVC also apply for MFVS and MFES . Using the fact that MFVS and MFES
have a global nature, we can achieve stronger lower bounds for the problems. Specifically,
we show that no reasonable approximation can be achieved for MFVS and MFES in o(D)
rounds in the LOCAL model. This is formalized in the following theorem.

I Theorem 1. For any k ∈ N+, any algorithm that solves MFVS or MFES on a graph with
a solution of size k to within an additive error of O(n/D) must take Ω(D) rounds in the
LOCAL model.

Our main result is a novel lower bound for (1 + ε)-approximation for all problems in
P. Our lower bound states that any (1 + ε)-approximation (deterministic or randomized)
algorithm in the LOCAL model for any problem in P requires Ω(ε−1) rounds. Usually, lower
bounds in the distributed setting are given as a function of the input (size, max degree),
and not as a factor of approximation ratio. Our lower bound also applies to Max-Cut and
Max-DiCut, whose parameterized variants are not considered in this paper, and thus are not
in P. We state the following theorem.

I Theorem 9. For any ε = Ω(1/n) and δ < 1/2−EXP (−Ω(nε)), any Monte-Carlo LOCAL
algorithm that computes a (1+ε)-multiplicative approximation with probability at least 1−δ for
a problem P ∈ {MVC ,MaxM ,MaxIS ,MDS ,MEDS ,Max-DiCut,Max-Cut,MFVS ,MFVS}
requires Ω(ε−1) rounds.

DISC 2019



6:4 Parameterized Distributed Algorithms

In the full version [7], we show a more involved lower bound construction which extends
our lower bound to Max-k-Cut2 where k = O(1). Our lower bound also has implications for
non-parameterized algorithms.

The problem of finding a maximum matching in the distributed setting is a fundamental
problem in the field that received much attention [2,3,15,25,26]. Despite the existence of
a variety of approximation algorithms for the problem, no non-trivial result is known for
computing an exact solution for general graphs.

Our lower bounds also have implications for computing a (1 + ε)-approximation of MVC ,
MaxM and MaxIS in the LOCAL model. Combined with the Ω

(√
logn

log logn

)
lower bound

of [22], we can express a lower bound to the problem as Ω
(
ε−1 +

√
logn

log logn

)
= (ε−1 logn)Ω(1).

Together with the result of [18], which presents an (ε−1 logn)O(1) upper bound, this implies
that the complexity of computing a (1 + ε)-approximation is given by (ε−1 logn)Θ(1).

Finally, we show a simple and generic way of extending lower bounds to the parameterized
setting. The problem with many of the existing lower bounds (e.g., [10, 22]) is that the size
of the solution is Õ(n) (linear up to polylogarithmic factors). Thus, it might be the case
that if the solution is substantially smaller than the input we might achieve a much faster
running time. We show that by simply attaching a large graph to the lower bound graph
we can achieve the same lower bounds as a function of k, rather than n. This allows us to
restate our (1 + ε)-approximation lower bound and the bounds of [22] and [10] as a function
of k � n. We show that these lower bounds hold for parameterized problems as defined in
this paper.

I Theorem 2. There exists a family of graphs Gk,n(V,E), such that for any ε = Ω(1/k)
and δ < 1/2− EXP (−Ω(kε)), any Monte-Carlo LOCAL algorithm that computes a (1 + ε)-
multiplicative approximation with probability 1 − δ for some k-P ∈ k-P requires Ω(ε−1)
rounds. Here, n = |V | can be arbitrarily larger than k.

I Theorem 3. There exists k ∈ N such that for any k ≤ k ≤ 0.99n, there exists a family of
graphs Gk,n(V,E), such that any algorithm that solves k-MVC on Gk,n in the CONGEST
model requires Ω(k2/ log k logn) rounds, where n = |V | can be arbitrarily larger than k.

I Theorem 4. There exists a family of graphs Gk,n(V,E), for sufficiently large k, such that
any algorithm that computes a constant approximation for k-MVC , k-MaxM , or k-MaxIS
for Gk,n in the LOCAL model requires Ω

(√
log k/ log log k

)
rounds, where n = |V | can be

arbitrarily larger than k.

Upper bounds. We first define the family of problems whose optimal solution is lower
bounded by the graph diameter (DLB, see Section 2 for a formal definition). If the optimal
solution size (OPT ) is small, then for minimization DLB problems we can learn the entire
graph in O(OPT ) LOCAL rounds. The problem is actually for the case when the optimal
solution is large, and all vertices in the graph must output that no k-sized solution exists. Here
we introduce an auxiliary result which we use as a building block for all of our algorithms.

I Theorem 12. There exists an O(k) rounds deterministic algorithm in the CONGEST
model that terminates with all vertices outputting SMALL if the diameter is bounded by k,
and LARGE if the diameter is larger than 2k. If the diameter is between k + 1 and 2k, the
vertices answer unanimously, but may return either SMALL or LARGE.

2 In Max-k-Cut, we wish to divide the vertices into k sets {Ai}ki=1 such that the number of edges whose
endpoints are in different sets is maximized. Notice that this is not a parameterized problem.



R. Ben-Basat, K. Kawarabayashi, and G. Schwartzman 6:5

Table 1 A summary of our round complexity results for k-MVC and k-MaxM . All lower bounds
hold for randomized algorithms as well as deterministic.

Variant Upper Bound Lower Bound
LOCAL CONGEST LOCAL CONGEST

Exact O(k) [det.]
O
(
k + k2 log k

logn

)
[rand.]

Ω(k)
Ω
(
k + k2

log k logn

)
O
(
k2) [det.] *k-MVC only

(1 + ε)-approx.
Ω
(
ε−1 +

√
log k

log log k

)
∀ε = Ω(1/k)

(2− ε)-approx. O
(
k + (kε)2 log(kε)

logn

)
[rand.]

∀ε ∈ [1/k, 1] O(k + (kε)2) [det.]

Using the above, we can check the diameter, have all vertices reject if it is too large, and
otherwise have a leader learn the entire graph in O(k) rounds. As for maximization problems
(such as MaxM and MaxIS) the challenge is somewhat different, as the parameter k does
not bound the diameter for legal instances. We first check whether the diameter is at most
2k or at least 4k. If it is bounded by 2k, we can learn the entire graph. Otherwise, we note
that any maximal solution has size at least k and is a legal solution to the parameterized
problem. Thus, we can efficiently compute a maximal solution by having every node/edge
which is a local minimum (according to id) enter the matching/independent set. We repeat
this k times and finish (this also works in the CONGEST model). We formalize this in the
following theorem.

I Theorem 13. There exist O(k) rounds LOCAL algorithms for k-MaxM , k-MaxIS , and
any minimization problem k-P for P ∈ DLB.

Next, we consider the problems of k-MVC and k-MaxM as case studies for the CONGEST
model. We show deterministic upper bound of O(k2) for k-MVC and k-MaxM (For k-MVC
this is near-tight according to Theorem 3). We also note that as the complement of a k-MVC
is a k-MaxIS we have a near-tight upper bound of O(n− k)2 for the problem. This means
that if k is large (e.g., k = n− logn) the problem is easy to solve. In the CONGEST model,
we first verify that the diameter is indeed small. If it is large, we proceed as we did in the
LOCAL model for both problems. For k-MVC , we use a standard kernelization procedure
to reduce the size of the graph. This is done by adding every node of degree larger than k
into the cover. The remaining graph has a bounded diameter and a small number of edges;
thus we use a leader node to collect the entire graph. The problem of k-MaxM is more
challenging, as we do not use existing kernelization techniques. Instead, we introduce a new
augmentation-based approach for the parameterized problem.

We then show how with the help of randomization we can achieve a running time of
O(k + k2 log k/ logn) for both problems. Note that for k � n this can be a substantial, up
to quadratic, improvement. Further, for k-MVC it brings our round complexity to within a
O(log2 k) factor from the lower bound.

Approximations. We consider approximation algorithms, in the CONGEST model, for para-
meterized MVC and MaxM . We make non-trivial use of the Fidelity Preserving Transforma-
tion framework [14] and simultaneously apply multiple reduction rules that reduce the para-
meter from k to O(kε). Using this technique, we derive (2− ε)-approximations that run faster
than our exact algorithms for any ε = o(1). We summarize our other results in Table 1.

DISC 2019



6:6 Parameterized Distributed Algorithms

Table 2 Our CONGEST round complexity for deterministic MVC and MaxM , where ε is a
positive constant (the actual dependency in ε−1 is logarithmic). Here, OPT is the size of the optimal
solution and is not known to the algorithm.

Exact (1 + ε)-approx. 2-approx. (2 + ε)-approx.

MVC
O
(
min

{
OPT2 log OPT , n2}) O

(
OPT2) O

(
min

{
OPT log OPT , logn log ∆

log2 log ∆

})
O
(
min

{
OPT , log ∆

log log ∆

})
MaxM O (min {OPT log OPT ,∆ + log∗ n}) O (min {OPT ,∆ + log∗ n})

Applications to non-parameterized algorithms (deferred to the full version [7]). We
show that our algorithms can also imply faster non-parameterized algorithms if the optimal
solution is small, without needing to know its size. Specifically, we combine our exact and
approximation algorithms for parameterized k-MVC and k-MaxM with doubling and a
partial binary search for the value of k. Additionally, our solutions can determine whether to
run the existing non-parameterized algorithm or follow the parameterized approach. This
results in an algorithm whose runtime is the minimum between current approaches and the
number of rounds required for the binary search. Our results are presented in Table 2.

We also present deterministic algorithms for MVC ,MaxM in the CONGEST model
with an approximation ratio strictly better than 2. Namely, our algorithms terminate in
O(OPT log OPT ) = O(n logn) rounds and provide an approximation ratio of 2− 1/

√
OPT .

Here, OPT is the size of the optimal solution and is not known to the algorithm. This is the
first non-trivial (2− ε)-approximation for MVC .3

1.2 Related work
Distributed Matching and Covering. Both MVC and MaxM have received significant
attention in the distributed setting. We survey on the results relevant to this paper. We
start with existing lower bounds. In [10] a family of graphs of increasing size is presented,
such that computing an MVC for any graph in the family requires Ω(n2/ log2 n) rounds
in the CONGEST model. In [22] a family of graphs is introduced such that any constant
approximation for MVC requires Ω

(
min

{√
logn/ log logn, log ∆/ log log ∆

})
rounds in the

LOCAL model. Both bounds hold for deterministic and randomized algorithms.
For MVC , no non-trivial exact distributed algorithms are known. As for approximations,

an optimal (for constant values of ε) (2 + ε)-approximate deterministic algorithm (for the
weighted variant) in the CONGEST model running in O(ε−1 log ∆/ log log ∆) rounds is given
in [4]. [5] then improved the dependency on ε to O(log ∆/ log log ∆+log ε−1 log ∆/ log2 log ∆),
which also results in a faster 2-approximation algorithm by setting ε = 1/n. Recently, this
was improved further with a O(logn) rounds deterministic 2-approximation algorithm [6].
In LOCAL, a randomized (1 + ε)-approximation in (ε−1 logn)O(1) rounds is due to [18].

For MaxM , there are no non-trivial known lower bounds for the exact problem. At the
time this paper was first made public, the best lower bound for approximations was due
to [22], and no exact non-trivial solution was known for the problem in both the LOCAL
and CONGEST models. Independently and simultaneously to our results, [2] show an exact
algorithm for bipartite graphs running in O(n logn) rounds in the CONGEST model. They
also show an Ω̃(D +

√
n) lower bound for computing an O(1 + Θ(1/

√
n))-approximation for

unweighted fractional matching in the CONGEST model.

3 When this paper was first made public no better than 2 deterministic approximation for MaxM was
known in the CONGEST model. Independently and simultaneously [2] provide a deterministic algorithm
in the CONGEST model achieving a (1.5 + ε)-approximation for the problem.
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As for approximations, much is known. We survey the results for the unweighted
case. An optimal randomized (1 + ε)-approximation in the CONGEST model, running in
O(log ∆/ log log ∆) rounds for constant ε is given in [3]. As for deterministic algorithms,
the best known results in the LOCAL model are due to [15] and [20]. In [15] a maximal
matching algorithm running in O(log2 ∆ logn) rounds and a (2 + ε)-approximate algorithm
running in O(log2 ∆ log 1/ε+ log∗ n) are given. In [20], a (1 + ε)-approximation randomized
algorithm that runs in Õ(ε−3 log ∆) rounds and a deterministic Õ(ε−5 log3 ∆ + ε−1 log∗ n)
round (1 + ε)-approximation algorithm are presented. Recently, [2] showed a deterministic
algorithm running in O(ε−2 log(∆W )+ε−1(log2(∆/ε)+log∗ n)) CONGEST rounds, achieving
a (1 + ε)(g/(g − 1))-approximation for weighted maximum matching, where g is the length
of the shortest odd cycle in the graph.

Distributed parameterized algorithms. Parameterized distributed algorithms were previ-
ously considered for detection problems. Namely, in [21] it was shown the detecting k-paths
and trees on k-nodes can be done deterministically in O(k2k) rounds of the broadcast
CONGEST model. Similar results were obtained independently by [13] in the context of
distributed property testing [9]. Other distributed algorithms have running times which are
parameterized by topological properties of the input graph, see for example [17,19].

2 Preliminaries

In this paper, we consider the classic and parameterized variants of several popular graph
packing and covering problems, in the LOCAL and CONGEST models. A solution to these
problems is either a vertex-set or an edge-set. In vertex-set solutions, we require that each
vertex will know if it is in the solution or not. For edge-set problems, each vertex must know
which of its edges are in the solution, and both end-points of an edge must agree. Computation
takes place in synchronous rounds during which each node first receives messages from its
neighbors, then perform local computation, and finally send messages to its neighbors. Each
of the messages sent to a node neighbor may be different from the others, while the size
of messages is unbounded in the LOCAL model or of size O(logn) in the CONGEST. In
both models, the communication graph is identical to the graph on which the problem is
solved. That is, two nodes may send messages to each other only if they share an edge. In
this paper, we consider the following problems: Minimum Vertex Cover (MVC ), Maximum
Independent Set (MaxIS), Minimum Dominating Set (MDS), Minimum Feedback Vertex Set
(MFVS), Maximum Matching (MaxM ), Minimum Edge Dominating Set (MEDS), Minimum
Feedback Edge Set (MFES). For completeness, we provide formal problem definitions in
the full version [7]. We use P = {MVC , MaxM , MaxIS , MDS , MEDS , MFVS , MFES} to
denote the above set of problems. Given a parameter k, a parameterized algorithm computes
a solution of size bounded by k if such exists; otherwise, the nodes must report that no such
solution exists. For a problem P ∈ P, we denote by k-P (e.g., k-MVC ) the parameterized
variant of the problem. We use k-P to denote all these problems. We note that all nodes
know k when the algorithm starts and that the result may not be the optimal solution to
the problem.

I Definition 5. An algorithm for a minimization (respectively, maximization) problem k-P
must find a solution of size at most (respectively, at least) k if such exists. If no such solution
exists then all nodes must report so when the algorithm terminates.

We now generalize our definition to account for randomized and approximation algorithm.

DISC 2019



6:8 Parameterized Distributed Algorithms

I Definition 6. For α ≥ 1, an α-approximation algorithm for a minimization (respectively,
maximization) problem k-P must find a solution of size at most αk (respectively, at least k/α)
if a solution of size k exists. Otherwise, all nodes must report that no k-sized solution exists.

I Definition 7. Given δ ≥ 0 and α ≥ 1, an α-approximation Monte Carlo algorithm for a
problem k-P terminates with an α-approximate solution to k-P with probability at least 1− δ.

We now define the notion of Diameter-Lower-Bounded (DLB) problems. Intuitively,
this class contains all problems whose optimal solution size is Ω(D), which allows efficient
algorithms for their parameterized variants. For example, DLB includes MVC , MaxIS ,
MaxM , MDS , and MEDS , but not MFVS and MFES . Roughly speaking, these problems
admit efficient LOCAL parameterized algorithms as the parameter limits the radius that
each node needs to see for solving the problem.

I Definition 8. An optimization problem P is in DLB if for any input graph G of diameter
D, the size of an optimal solution to P is of size Ω(D).

3 Lower Bounds

In this section, we present lower bounds for a large family of classical distributed graph prob-
lems. In appendix 3, we generalize the results to randomized algorithms, present additional
lower bounds, and show that how classic bounds translate to the parameterized problems.

Here, we provide a construction that implies lower bounds for approximating all problems
in P. Our lower bounds dictate that any algorithm that computes a (1 + ε)-approximation,
for ε = Ω(1/n), requires at least Ω(ε−1) rounds in the LOCAL model, even for randomized
algorithms. We note that for all of these problems, no known lower bounds [22, 24] imply
superlogarithmic lower bound (which we can get, e.g., for ε = n−2/3) was known for
approximations. Further, for some problems, such as MaxM , no such lower bound is known
even for exact solutions in the CONGEST model.

We then generalize our approach and show that even in the parameterized variants of
the problems (where the optimal solution is bounded by k), Ω(ε−1) rounds are needed for
an arbitrarily large graphs (where n� k). Our approach is based on the observation that
for any x-round algorithm, there exists an input graph of many distinct Θ(x)-long paths,
such that the algorithm has an additive error on each of the paths, which accumulates over
all paths in the construction. Intuitively, we show that for any set of n node identifiers
and any algorithm that takes o(ε−1) rounds, it is possible to assign identifiers to nodes
such that the approximation ratio would be larger than 1 + ε. Our goal in this section is
to prove the following theorem.

I Theorem 9. For any ε = Ω(1/n) and δ < 1/2−EXP (−Ω(nε)), any Monte-Carlo LOCAL
algorithm that computes a (1+ε)-multiplicative approximation with probability at least 1−δ for
a problem P ∈ {MVC ,MaxM ,MaxIS ,MDS ,MEDS ,Max-DiCut,Max-Cut,MFVS ,MFVS}
requires Ω(ε−1) rounds.

3.1 Basic Construction
We start with lower bounds for the non-parameterized variants of the problems, where the
optimal solution may be of size Θ(n). For integer parameters r, ` > 10, the graph

Gr,` = ({v0} ∪ {vi,j | i ∈ [r], j ∈ [`+ 1]} , {{v0, vi,0} | i ∈ [r]} ∪ {{vi,j , vi,j+1} | i ∈ [r], j ∈ [`]})

consists of r disjoint paths of length `, whose initial nodes are connected to a central vertex
v0. We also consider the digraph ~Gr,` in which each edge is oriented away from v0; i.e.,

~Gr,` = ({v0} ∪ {vi,j | i ∈ [r], j ∈ [`+ 1]} , {(v0, vi,0) | i ∈ [r]} ∪ {(vi,j , vi,j+1) | i ∈ [r], j ∈ [`]})
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Figure 1 Our basic construction. The middle vertices’ (vi,b`/2c−2 and vi,b`/2c−1) output remains
the same if we reverse the identifiers along Ai and the algorithm takes less than b`/2c − 3 rounds.
The output of vi,b`/2c also remains the same if Bi is flipped. However, since the distance of these
vertices from v0 change, the output is suboptimal for at least one of the orderings.

We present our construction in Figure 1. Gr,` has n = r(`+ 1) + 1 vertices and a diameter
(as r > 1) of 2`. Observe that the optimal solutions of MVC , MaxM , MaxIS , MDS , and
MEDS on Gr,` (for r, ` ≥ 3) have values of Θ(r`) = Θ(n). For every path i ∈ [r], let
Ai = 〈vi,0, . . . , vi,`−2〉 and Bi = 〈vi,0, . . . , vi,`−1〉 denote the longest odd and even length
subpaths that do not include v0 and vi,`. Given a path P of vertices with assigned identifiers,
we denote by PR a reversal in the order of identifiers. For example, if the identifiers assigned
to A0 were 〈0, . . . , `− 2〉, then those of AR0 would be 〈`− 2, `− 3, . . . , 0〉. This reversal of
identifiers along a path plays a crucial role in our lower bounds. Intuitively, if the number
of rounds is less than `/2 − 3 and we reverse Ai or Bi, the output of the middle vertices
would change to reflect the mirror image they observe. We show that this implies that on
either the original identifier assignment or its reversal, the algorithm must find a sub-optimal
solution to the i’th path (where the choice of whether to flip Ai or Bi depends if the output
is a vertex set or edge set). In turn, this would sum up to a solution that is far from the
optimum by at least an r-additive factor. As the optimal solution is of size Θ(r`), this implies
a multiplicative error of 1 + Θ(r/(r`)) = 1 + 1/`.

We show that for arbitrarily large graphs with an optimal solution of size Θ(n), any
x-round algorithm must have an additive error of Ω(n/x).

I Lemma 10. Let x, r ∈ N+ be integers larger than 10, and let I be a set of n = (2x+4)r+1
node identifiers. For any deterministic LOCAL algorithm for MVC , MaxM , MaxIS , MDS ,
MEDS , Max-DiCut, or Max-Cut that terminates in x rounds on Gr,2x+3, there exists an
assignment of vertex identifiers for which the algorithm has an additive error of Ω(n/x).

Proof. First, let us characterize the optimal solutions for each of the problems on Gr,2x+3
(or ~Gr,2x+3 for Max-DiCut). For simplicity of presentation, we assume that I = [n] and (x
mod 6) = 0 although the result holds for any I and x. We have

OPTMVC = {vi,2j | i ∈ [r], j ∈ [x+ 2]} ,
OPTMM = {{vi,2j , vi,2j+1} | i ∈ [r], j ∈ [x+ 2]} ,
OPTMaxIS = OPTMax-Cut = OPTMax-DiCut = {v0} ∪ {vi,2j+1 | i ∈ [r], j ∈ [x+ 2]} , 4

OPTMDS = {vi,3j | i ∈ [r], j ∈ [2x/3 + 1]} ,
OPTMEDS = {{v0, vi,0} | i ∈ [r]} ∪ {{vi,3j+2, vi,3j+3} | i ∈ [r], j ∈ [2x/3]} .5

4 For Max-Cut, the complement solution V \ {v0} ∪ {vi,2j+1 | i ∈ [r], j ∈ [x+ 2]} is also optimal, but the
correctness would follow from similar arguments.

5 Each edge of the form {v0, vi,0} (for i ∈ [r]) may each be replaced by the {vi,0, vi,1} edge. Unlike the
other problems, the optimal solution here is not unique, but this does not affect the proof.
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Figure 2 Before the reversal (in A0), vertices v0,x and v0,x+1 have identifiers x and x + 1.
When reversing A0, the vertices switch identifiers and must switch their output. That is,
outA(v0,x) = outAR (v0,x+1) and outA(v0,x+1) = outAR (v0,x) in any algorithm that takes fewer
than x communication rounds.

For example, this means that the only optimal solution to MVC picks all vertices whose
distance from v0 is odd. Next, consider a path i ∈ [r] and consider the case where every
vertex vi,j has identifier (2x + 4)i + j. From the point of view of the node with identifier
(2x+ 4)i+ x (which is vi,x in this assignment), in its x-hop neighborhood it has nodes with
identifiers (2x + 4)i, (2x + 4)i + 1, . . . , (2x + 4)i + x − 1 on one port (side) and identifiers
(2x+ 4)i+ x+ 1, (2x+ 4)i+ x+ 2, . . . , (2x+ 4)i+ 2x+ 2 on the other. On the other hand, if
we reverse Ai (i.e., assign vi,j ∈ Ai with identifier (2x+ 4)i+ 2x+ 1− j), the view of vi,x
remains exactly the same. That is, the node observes the exact same topology and vertex
identifiers in both cases. Since the algorithm is deterministic, the output of (2x+ 4)i+ x

must remain the same for both identifier assignments, even though now it is placed in vi,x+1!
Similarly, reversing Ai would mean that the node with identifier (2x+ 4)i+ x+ 1 (which
changes places from vi,x+1 to vi,x after the reversal) also provides the same output in both
cases. Therefore, reversing Ai would switch the outputs of vi,x+1 and vi,x. This implies that
the output of the algorithm is suboptimal for either Ai or ARi for MVC , MaxM , MaxIS ,
Max-Cut, and Max-DiCut. We illustrate this reversal on path 0 in Figure 2. Repeating this
argument for Bi, we get that its reversal would switch the outputs of vi,x and vi,x+2, making
the algorithm err in MDS (as vi,x is in the optimal cover while vi,x+2 is not).

For MEDS, every u, v that share an edge must agree whether it is in the solution or
not. In an optimal solution the edge {vi,x, vi,x+1} must be in the dominating set while
{vi,x+1, vi,x+2} must not. However, by reversing Bi the identifiers of vi,x and vi,x+2 switch,
changing edge added from {vi,x, vi,x+1} to {vi,x+1, vi,x+2} or vice versa, implying an error
for Bi or BRi .

As we showed that there exists an identifier assignment that “fools” the algorithm
on every path i ∈ [r], we conclude that the algorithm has an additive error of at least
r = (n− 1)/(2x+ 4) = Ω(n/x). J

Lower bounds for MFVS and MFES follow from the reduction to MVC which is presented
in the full version [7]. Since the optimal solution to all problems on Gr,2x+4 is of size Θ(n),
we have that the algorithms have an approximation ratio of 1 + Θ((n/x)/n) = 1 + Θ(1/x).
Plugging ε = Θ(1/x) we conclude the following.

I Corollary 11. For any ε = Ω(1/n), any deterministic LOCAL algorithm that computes a
(1 + ε)-multiplicative approximation for any P ∈ P requires Ω(ε−1) rounds.
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4 Upper Bound Warmup – Parameterized Diameter Approximation

In this section, we illustrate the concept of parameterized algorithms with the classic problem
of diameter approximation. This procedure will also play an important role in all our
algorithms. Computing the exact diameter of a graph in the CONGEST model is costly.
Specifically, it is known that computing a (3/2− ε)-approximation of the diameter, or even
distinguishing between diameter 3 or 4, requires Ω̃(n) CONGEST rounds6 [1, 8, 16, 23].
Computing a 2-approximation for the diameter is straightforward in O(D) rounds, by finding
the depth of any shortest paths tree. However, we wish to devise algorithms whose round
complexity is bounded by some function f(k), even if no solution of size k exists. Therefore,
we now show that it is possible to compute a 2-approximation for the parameterized version
of the diameter computation problem.

I Theorem 12. There exists an O(k) rounds deterministic algorithm in the CONGEST
model that terminates with all vertices outputting SMALL if the diameter is bounded by k,
and LARGE if the diameter is larger than 2k. If the diameter is between k + 1 and 2k, the
vertices answer unanimously, but may return either SMALL or LARGE.

Proof. Our algorithm starts with k rounds, such that in every round each vertex broadcasts
the minimal identifier it has learned about (initially its own identifier). After this stage
terminates, each vertex v has learned the minimal identifier xv in its k-hop neighborhood.

Next follows 2k + 1 rounds such that in each round each vertex v broadcasts yv and
zv, which are the minimal and maximal xu identifier it has seen so far. That is, we start
with yv = zv = xv and at each round we set yv ← min {yv,min {yu | u ∈ N(v)}} and
zv ← max {zv,max {zu | u ∈ N(v)}}. When this ends, each vertex returns SMALL if yv = zv
and LARGE otherwise. Clearly, the entire execution takes O(k) rounds.

For correctness, observe that if the diameter is bounded by k then all xv’s are identical
to the globally minimal identifier. Next, assume that the diameter is at least 2k + 1, and fix
some vertex v. This means that there exist a vertex u whose distance is exactly k + 1 with
respect to xv, and thus at most 2k + 1 from v. Since the first stage of the algorithm runs for
k rounds, we have that xu 6= xv. Therefore, after k + 1 rounds of the second stage we have
that yxv 6= zxv , and after additional k rounds yv 6= zv and thus v outputs LARGE. Finally,
if the diameter is between k+ 1 and 2k, then all vertices have the same yv and zv values and
thus answer unanimously. J

5 Parameterized Problems Upper Bounds

5.1 LOCAL Algorithms
Our first result is for diameter lower bounded problem in the LOCAL model. We show that
any minimization problem k-P ∈ DLB can be solved in O(k) LOCAL rounds. To that end,
we first use Theorem 12 to check whether the diameter is at most ck, or at least 2ck, where
c is a constant such that a diameter of at least ck implies that no solution of size k exists.
If the diameter is larger than 2ck, the algorithm terminates and reports that no k-sized
solution exists. Otherwise, we collect the entire graph at a leader vertex v which computes
the optimal solution. If the solution is of size at most k, v sends it to all vertices. If no
solution of size k exists, v notifies the other vertices.

6 Where Ω̃(n) hides factors polylogarithmic in n.
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The above approach does not necessarily work for maximization problems as the existence
of a k-sized solution does not imply a bounded diameter. Nevertheless, we now show that
k-MaxM and k-MaxIS have O(k) rounds algorithms. For this, we first check whether the
diameter is at most 2k or at least 4k. If the diameter is small, we can still collect the graph
and solve the problem locally. Otherwise, we use the fact that any maximal matching or
Independent Set in a graph with a diameter larger than 2k must be of size at least k. Since
the maximal matching or independent set may be too large, we run just k iterations of
extending the solution. For k-MaxM , at each iteration, any edge that neither of its endpoints
is matched and that is a local minimum (with respect to the identifiers of its endpoints) joins
the matching. We are guaranteed that the matching grows by at least a single edge at each
round and thus after k iterations the algorithm terminates. Similarly, for k-MaxIS , at each
iteration, every vertex that neither of its endpoints is in the independent set and is a local
minimum enters the set. We summarize this in the following theorem.

I Theorem 13. There exist O(k) rounds LOCAL algorithms for k-MaxM , k-MaxIS , and
any minimization problem k-P for P ∈ DLB.

5.2 CONGEST algorithms for k-MVC
Here we state our results for k-MVC in the CONGEST model. Our first algorithm is
deterministic and aims to solve the exact variant of k-MVC . Intuitively, it works in two
phases; first, it checks that the diameter is O(k), if not the algorithm rejects. Knowing that
the diameter is bounded by O(k), we proceed by calculating a solution assuming there exists
a solution of size at most k. If this assumption holds, we are guaranteed to find such a
solution. We run the above for just enough rounds to guarantee that if a k-sized solution
exists we will find such a solution. Finally, we check that the size of the solution returned by
the algorithm is indeed bounded by k.

We first show a procedure that solves the problem if a solution of size k exists. If no such
solution exists, this procedure may not terminate in time or compute a cover larger than k.

I Lemma 14. There exists a deterministic algorithm that if a k-sized cover exists: (1)
terminates in O(k2) CONGEST rounds and (2) finds such a cover.

Proof. Given that there exists a k-sized cover, the diameter of the graph is bounded by 2k.
Therefore, we can compute a unique leader and a BFS tree rooted at that leader in O(k)
rounds. Our first observation is that every v with a degree larger than k must be in any
k-sized cover. Thus, every such vertex immediately goes into the cover and gets removed
together with all of its adjacent edges. If a vertex has degree 0, it terminates (without
entering the cover). Denote the remaining graph by G′ = (V ′, E′).

For our analysis, let us fix some vertex cover X ⊆ V ′ of size k and denote the remaining
vertices by A = V ′ \X. We note that the set A is an independent set. Thus, all edges in the
graph are either between vertices in X or between A and X. We note that |X| ≤ k, and now
we aim to bound the number of remaining edges. We now show that |E′| ≤ k2.

As all vertices with degrees greater than k have been added to the cover and removed,
all remaining vertices have a degree of at most k. Because all remaining edges in the graph
are of the form (x, v) ∈ E′, x ∈ X, v ∈ A or (u, v) ∈ E′, u, v ∈ A, we may immediately bound
the number of remaining edges, |E′| ≤ k2. We now can just learn the entire graph in time
O(|E′|+ |D|) = O(|E′|) = O(k2) using pipelining. The leader vertex computes the optimal
cover for G′ and notifies all vertices in G′ whether they should join it. J
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I Theorem 15. There exists a deterministic algorithm for k-MVC that terminates in
O(k2) rounds.

Proof. Our algorithm first uses Theorem 12 to estimate the diameter. Specifically, we first
apply it for k′ = 2k. If the vertices report LARGE, we follow the same approach as in the
algorithm in the LOCAL model and reject. Otherwise, we proceed knowing the diameter is
bounded by 4k. For the case the diameter is bounded we can compute a unique leader and a
BFS tree rooted at that leader in O(k) rounds.

Let c = O(1) such that the algorithm provided in Lemma 14 is guaranteed to terminate
in ck2 rounds for any graph G with a cover of size k. We run the algorithm for ck2 rounds;
if the procedure did not terminate, all vertices report that no k-sized cover exists. Finally,
we count the number of nodes in the cover using the BFS tree and verify that indeed the
size of the solution in G is bounded by k. If any node in the tree sees more than k identifiers
of vertices that joined the cover, it notifies all vertices that the solution is invalid and thus
no k-sized solution exists. J

A Randomized Algorithm. While we show a deterministic LOCAL algorithm for k-MVC
that is optimal even if randomization is allowed, we have a gap of Θ(min {k, log k logn})
in our CONGEST round complexity. We now present a randomized algorithm with a
O
(
k + k2 log k

logn

)
round complexity, thereby reducing the gap to O(log2 k). This is achieved by

the observation that while node identifiers are of length Θ(logn), we can replace each node
identifier with an O(log k)-bit fingerprint. If there exists a cover of size k, there are at most
k+k2 ≤ 2k2 vertices in G′ (after our reduction rule), and we can use (b = (c+4) log k+1)-bit
fingerprints, for some c > 0, and get that the probability of collision (that two vertices have
the same fingerprint) is at most

(2k2

2
)
2−b < k42−b+1 = k−c. Next, we run our deterministic

algorithm, where each vertex considers its fingerprint as an identifier. Observe that since
|E′| ≤ k2 and each edge encoding now requires O(log k) bits (for c = O(1)), the overall
amount of bits sent to the leader is O(|E′| log k) = O(k2 log k). Since the diameter of the
graph is O(k), and O(logn) bits may be transmitted on every round on each edge, we use
pipelining to get the round complexity in Theorem 16. Note that we only use fingerprints for
the part of the algorithm which requires time quadratic in k. That is, checking the size of the
diameter and validating the size of the solution are still done using the original identifiers.

Finally, if no cover of size k exists, we may have more than 2k2 vertices in G′ and may
get fingerprint collisions. Nevertheless, when using the BFS tree to send the (fingerprinted)
identifiers to the leader, we can identify that such a collision happened and the leader can
notify all vertices to report that no k-sized cover exists.

I Theorem 16. For any δ = k−O(1), there exists a randomized algorithm for k-MVC that
terminates in O

(
k + k2 log k

logn

)
rounds, while being correct with probability at least 1− δ.

Approximations. As we may add all nodes of degree more than k to the cover, this
bounds ∆, the maximum degree in the remaining graph, by k. We can now apply the
algorithm of [5] which runs in O(log ∆/ log log ∆ + log ε−1 log ∆/ log2 log ∆) and achieves
a (2 + ε)-approximation. This immediately results in a deterministic O(log k/ log log k +
log ε−1 log k/ log2 log k)-round (2 + ε)-approximation algorithm in the CONGEST model.
Further, since there exists a cover of size OPT ≤ k, setting ε = 1/(k + 1) implies that the
resulting cover is of size bOPT (2+ε)c ≤ 2OPT +bk/(k+1)c = 2OPT . Thus, we conclude that
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our algorithm computes a 2-approximation for the problem in O(log2 k/ log2 log k) rounds.
Unfortunately, while this succeeds if there indeed exists a solution of size k, validating the
size of the solution takes O(k) rounds.

We now expand the discussion and propose an algorithm that computes a (2 − ε)-
approximation. For ε = o(1), this gives a better round complexity than our exact algorithm,
while for ε = O(1/

√
k) it improves the approximation ratio of the above 2-approximation

while still terminating in O(k) rounds. In the full version [7], we use this algorithm to
derive the first (2 − ε)-approximation algorithm for the (non-parametric) MVC problem
that runs in o(n2) rounds.

I Theorem 17. ∀ε ∈ [1/k, 1], there exists a deterministic CONGEST algorithm for k-MVC
that computes a (2− ε)-approximation in O

(
k + (kε)2) rounds. For any δ = (kε)−O(1), there

also exists a randomized algorithm that terminates in O
(
k + (kε)2 log(kε)

logn

)
rounds and errs

with probability ≤ δ.

Proof. We utilize the framework of Fidelity Preserving Transformations [14]. Intuitively, if
there exists a vertex cover of size k in the original graph, and we remove two vertices u, v that
share an edge, then the new graph must have a cover of size at most k− 1. This allows us to
reduce the parameter at the cost of introducing error (we add both u and v to the cover, while
an optimal solution may only include one of them). This process is called (1, 1)-reduction
step as it reduces the parameter by 1 and increases the size of the cover (compared with an
optimal solution) by at most 1. Roughly speaking, we repeat the process until the parameter
reduces to kε, at which point we run an exact algorithm on the remaining graph.

[14] proved that for any α ≤ 2, repeating a (1, 1)-reduction step until the parameter re-
duces to k(2−α) allows computing an α-approximation by finding an exact solution to the res-
ulting subgraph and adding all vertices that have an edge that was reduced in the process. For
our purpose, we set α = 2− ε; thus, the exact algorithms only need to find a cover of size kε.

Our algorithm begins by checking the diameter is O(k) and finding a leader vertex v.
This is doable in O(k) rounds as having a vertex cover of size k guarantees that the diameter
is O(k). We proceed with applying the (1, 1)-reduction steps. To that end, we compute a
maximal matching M and send it to v, which requires O(k) rounds. If |M | ≤ k(1 − ε), v
instructs all matched vertices to enter the cover, and the algorithm terminates with a solution
of size at most 2k(1−ε) < k(2−ε), as needed. If |M | > k(1−ε), the leader selects an arbitrary
submatching M ′ ⊂M of size k(1− ε) and the reduction rules are simultaneously applied for
every e ∈M ′. The remaining graph has a cover of size at most kε, at which point we apply
the exact algorithms. Finally, we validate the size of the solution as in the above algorithms.
By Theorems 15 and 16, we establish the correctness and runtime of our algorithms. J

5.3 CONGEST algorithms for k-MaxM

In the full version [7], we present deterministic and randomized upper bounds for the exact
and approximate variants of the k-MaxM matching problem. Our exact algorithm first checks
that the diameter is O(k) and then uses a leader node to iteratively compute augmenting paths
which extend the matching until it becomes of size k. Our approximations are derived from
the Fidelity Preserving Transformations framework [14] and leverage the fact that a maximal
matching (or a matching of size k) can be found in O(k) rounds. We then sends the maximal
matching to a leader node which arbitrarily selects a (k/2−O(kε))-sized submatching and
sends it to all nodes which then find the exact maximum matching on the residual graph.
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