2,761 research outputs found

    Learning Discriminative Stein Kernel for SPD Matrices and Its Applications

    Full text link
    Stein kernel has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: i) Eigenvalue estimation becomes biased when the number of samples is inadequate, which may lead to unreliable kernel evaluation; ii) More importantly, eigenvalues only reflect the property of an individual SPD matrix. They are not necessarily optimal for computing Stein kernel when the goal is to discriminate different sets of SPD matrices. To address the two issues in one shot, we propose a discriminative Stein kernel, in which an extra parameter vector is defined to adjust the eigenvalues of the input SPD matrices. The optimal parameter values are sought by optimizing a proxy of classification performance. To show the generality of the proposed method, three different kernel learning criteria that are commonly used in the literature are employed respectively as a proxy. A comprehensive experimental study is conducted on a variety of image classification tasks to compare our proposed discriminative Stein kernel with the original Stein kernel and other commonly used methods for evaluating the similarity between SPD matrices. The experimental results demonstrate that, the discriminative Stein kernel can attain greater discrimination and better align with classification tasks by altering the eigenvalues. This makes it produce higher classification performance than the original Stein kernel and other commonly used methods.Comment: 13 page

    Quality data assessment and improvement in pre-processing pipeline to minimize impact of spurious signals in functional magnetic imaging (fMRI)

    Get PDF
    In the recent years, the field of quality data assessment and signal denoising in functional magnetic resonance imaging (fMRI) is rapidly evolving and the identification and reduction of spurious signal with pre-processing pipeline is one of the most discussed topic. In particular, subject motion or physiological signals, such as respiratory or/and cardiac pulsatility, were showed to introduce false-positive activations in subsequent statistical analyses. Different measures for the evaluation of the impact of motion related artefacts, such as frame-wise displacement and root mean square of movement parameters, and the reduction of these artefacts with different approaches, such as linear regression of nuisance signals and scrubbing or censoring procedure, were introduced. However, we identify two main drawbacks: i) the different measures used for the evaluation of motion artefacts were based on user-dependent thresholds, and ii) each study described and applied their own pre-processing pipeline. Few studies analysed the effect of these different pipelines on subsequent analyses methods in task-based fMRI.The first aim of the study is to obtain a tool for motion fMRI data assessment, based on auto-calibrated procedures, to detect outlier subjects and outliers volumes, targeted on each investigated sample to ensure homogeneity of data for motion. The second aim is to compare the impact of different pre-processing pipelines on task-based fMRI using GLM based on recent advances in resting state fMRI preprocessing pipelines. Different output measures based on signal variability and task strength were used for the assessment

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Advances in image acquisition and filtering for MRI neuroimaging at 7 tesla

    Get PDF
    Performing magnetic resonance imaging at high magnetic field strength promises many improvements over low fields that are of direct benefit in functional neuroimaging. This includes the possibility of improved signal-to-noise levels, and increased BOLD functional contrast and spatial specificity. However, human MRI at 7T and above suffers from unique engineering challenges that limit the achievable gains. In this thesis, three technological developments are introduced, all of which address separate issues associated with functional magnetic resonance neuroimaging at very high magnetic field strengths. First, the image homogeneity problem is addressed by investigating methods of RF shimming — modifying the excitation portion of the MRI experiment for use with multi-channel RF coils. It is demonstrated that in 2D MRI experiments, shimming on a slice-by slice basis allows utilization of an extra degree of freedom available from the slice dimension, resulting in significant gains in image homogeneity and reduced RF power requirements. After acceptable images are available, we move to address complications of high field imaging that manifest in the fMRI time series. In the second paper, the increased physiological noise present in BOLD time series at high field is addressed with a unique data-driven noise regressor scheme based upon information in the phase component of the MRI signal. It is demonstrated that this method identifies and removes a significant portion of physiological signals, and performs as good or better than other popular data driven methods that use only the magnitude signal information. Lastly, the BOLD phase signal is again leveraged to address the confounding role of veins in resting state BOLD fMRI experiments. The phase regressor technique (previously developed by Dr. Menon) is modified and applied to resting state fMRI to remove macro vascular contributions in the datasets, leading to changes in spatial extent and connectivity of common resting state networks on single subjects and at the group level

    MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    Get PDF
    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources

    Mathematical modeling and visualization of functional neuroimages

    Get PDF

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental condition that can be debilitating to social functioning. Previous functional Magnetic Resonance Imaging (fMRI) classification studies have included only small subject sample sizes (n 50) and have seen high classification accuracy. The recent release of the Autism Brain Imaging Data Exchange (ABIDE) provides fMRI data for over 1,100 subjects. In our research, we derive a subject\u27s functional network connectivity (FNC) from their fMRI data and develop a regularized logistic classifier to determine whether a subject has autism. We obtained up to 65% classification accuracy, similar to other studies using the ABIDE dataset, suggesting that generalizing a classifier over a large number of subjects is much more difficult than smaller studies. The connectivity among several brain regions of ASD subjects were highlighted in the model as abnormal compared to the control subjects which potentially warrants future investigations about how these regions affect ASD. Although the classification accuracy was lower than what could be considered as clinically applicable, this research contributes to the continuing development of an automated classifier for diagnosing autism
    • …
    corecore