405 research outputs found

    Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

    Get PDF
    We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Non-uniform sampling and reconstruction of multi-band signals and its application in wideband spectrum sensing of cognitive radio

    Full text link
    Sampling theories lie at the heart of signal processing devices and communication systems. To accommodate high operating rates while retaining low computational cost, efficient analog-to digital (ADC) converters must be developed. Many of limitations encountered in current converters are due to a traditional assumption that the sampling state needs to acquire the data at the Nyquist rate, corresponding to twice the signal bandwidth. In this thesis a method of sampling far below the Nyquist rate for sparse spectrum multiband signals is investigated. The method is called periodic non-uniform sampling, and it is useful in a variety of applications such as data converters, sensor array imaging and image compression. Firstly, a model for the sampling system in the frequency domain is prepared. It relates the Fourier transform of observed compressed samples with the unknown spectrum of the signal. Next, the reconstruction process based on the topic of compressed sensing is provided. We show that the sampling parameters play an important role on the average sample ratio and the quality of the reconstructed signal. The concept of condition number and its effect on the reconstructed signal in the presence of noise is introduced, and a feasible approach for choosing a sample pattern with a low condition number is given. We distinguish between the cases of known spectrum and unknown spectrum signals respectively. One of the model parameters is determined by the signal band locations that in case of unknown spectrum signals should be estimated from sampled data. Therefore, we applied both subspace methods and non-linear least square methods for estimation of this parameter. We also used the information theoretic criteria (Akaike and MDL) and the exponential fitting test techniques for model order selection in this case

    Structured Compressed Sensing: From Theory to Applications

    Full text link
    Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.Comment: To appear as an overview paper in IEEE Transactions on Signal Processin

    A machine learning route between band mapping and band structure

    Get PDF
    The electronic band structure (BS) of solid state materials imprints the multidimensional and multi-valued functional relations between energy and momenta of periodically confined electrons. Photoemission spectroscopy is a powerful tool for its comprehensive characterization. A common task in photoemission band mapping is to recover the underlying quasiparticle dispersion, which we call band structure reconstruction. Traditional methods often focus on specific regions of interests yet require extensive human oversight. To cope with the growing size and scale of photoemission data, we develop a generic machine-learning approach leveraging the information within electronic structure calculations for this task. We demonstrate its capability by reconstructing all fourteen valence bands of tungsten diselenide and validate the accuracy on various synthetic data. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales in conjunction with theory, while realizing a path towards integrating band mapping data into materials science databases
    • …
    corecore