747 research outputs found

    Numerical Simulation and Spice Modeling of Organic Thin FilmTransistors (OTFTs)

    Get PDF
    As organic thin film transistors are playing important role in low cost, large area and flexible integrated circuits, there is urgent need of accurate modeling and simulation of these devices with emphasis of compact modeling suitable in integrated circuit simulation using Spice like simulators. This paper presents a 2D numerical simulation of pentacene based organic thin film transistors. Also a spice model extraction methodology of OTFTs base on Silvaco's UOTFT model is presented for circuit simulation. The numerically simulated results are in good agreement with OTFT spice modeling results. The Organic TFT model is extracted from the numerically simulated data and further it is used in circuit simulation of CMOS like hybrid inverter and five stage ring oscillator circuit realized from hybrid inverter. In the hybrid inverter circuit an amorphous silicon TFT is used in place of the NMOS devices and a Pentacene based TFT is used in place of the PMOS devices. Circuit simulation results proves the applicability of the model in circuit design of organic thin film based transistors

    Circuit Design and Compact Modeling in Printed Electronics Based on Inorganic Materials

    Get PDF
    Die gedruckte Elektronik ist ein im Vergleich zur konventionellen Siliziumtechnologie junges Forschungsgebiet. Die Idee hinter der gedruckten Elektronik ist es elektronische Bauteile wie Widerstände, Kapazitäten, Solarzellen, Dioden und Transistoren mit gängigen Druckmethoden herzustellen. Dabei ist es möglich die elektronischen Bauteile auf unbiegsamen Substrate, wie Glas oder Silizium, als auch auf biegsamen Substrate, wie Papier und Folie, zu drucken. Aufgrund des Druckprozesses, sind die Herstellungskosten gering, da drucken ein additiver Prozess ist und somit teure Masken obsolet sind. In einem Feldeffekttransistor, wird der Halbleiter zwischen zwei Elektroden (Drain- und Source) gedruckt. Die Drain- und Source-Elektroden werden dabei durch einen Vakuum- oder Druckprozess abgeschieden und strukturiert. Der halbleitende Kanal wird durch einen Dielektrikum von der Gate-Elektrode isoliert. Auch für das Dielektrikum und die Gate-Elektrode sind ein Vakuum- oder Druckprozess denkbar. Standardmäßig finden organische Materialien Einsatz in der gedruckten Elektronik. Leider weisen organische Halbleiter, in einem Feldeffekttransistor, nur eine geringe Ladungsträgerbeweglichkeit (≤1\leq 1 cm2^2(Vs)−1^{-1}) auf. Die niedrige Ladungsträgerbeweglichkeit führt zu einer geringen Ladungsträgerdichte im Halbleiter und als Resultat zu geringen Stromdichten. Auch sind größtenteils nur p-leitende Halbleiter für den Einsatz in Schaltungen vorhanden, weswegen die meisten Schaltungen nur p-leitende Feldeffekttransistoren besitzen. Ein weiterer Nachteil der organischen Elektronik ist, dass die eingesetzten Dielektrika mit dem Halbleiter eine mangelhafte Grenzfläche bildet. Deshalb sind Versorgungsspannungen in Bereich von 5 V keine Seltenheit. Eine interessante Alternative zu organischen Halbleitern sind Materialien die der Kategorie der Oxide zugeordnet sind. Zum Beispiel in Indiumoxid (In2_{2}O3_{3}) ist eine Ladungsträerbeweglichkeit um die 100 cm2^2(Vs)−1^{-1} messbar. Leider sind durch Oxide realisierte p-leitende Feldeffekttransistoren sehr selten, weshalb die meisten Schaltungen auf n-leitenden Feldeffekttransistoren basieren. Ein weiterer Nachteil von Metalloxidhalbleitern is das hohe Glühtemperaturen (\sim 400 \, ^\circC) benötigt werden um die richtige Kristallstruktur zu erzielen. Durch den Einsatz eines Elektrolyten, anstatt eines Dielektrikum, werden die benötigten hohen Versorgungsspannungen auf 1 V reduziert. Der Grund für die Reduzierung der Versorgungsspannung liegt in der hohen Kapazität (∼5 μ\sim 5 \, \muF(cm)−1^{-1}), die sich zwischen der Gate-Elektrode und dem Kanal ausbildet. Die optimale Grenzfläche zwischen der Gate-Elektrode und dem Elektrolyten sowie als auch zwischen dem Elektrolyten und dem Kanal, wo sich eine Helmholtz-Doppelschicht ausbildet, ist der Grund für die hohe Kapazität. In dieser Arbeit, werden die Vorteile der hohen Ladungsträgerbeweglichkeit, resultierend von einem Indiumoxid-Kanal, und der niedrigen Versorgungsspannungen, durch den Einsatz eines Elektrolyten als Isolator, in einem gedruckten Transistor kombiniert. Daher ist das Ziel zunächst Transistoren basierend auf einem Elektrolyten und Indiumoxid-Kanal zu charakterisieren und zu modellieren. Auch werden Möglichkeiten zum Schaltungsentwurf mit der hier vorgestellten Transistortechnologie ausgearbeitet. Der Schaltungsentwurf wird anhand mikroelektronischen Zellen und Ringoszillator-Strukturen verifiziert. Wichtig für den Schaltungsentwurf sind Modelle die fähig sind die elektrischen Eigenschaften eines Transistors abzubilden. Dabei muss die simulierte Kurve Stetigkeit und Kontinuität aufweisen um Konvergenzprobleme während der Simulation zu verhindern. Zur Modellierung der elektrischen Eigenschaften und Ströme der Transistoren wird ein Modell basierend auf den Curtice-Modell entwickelt. Der Bereich über der Schwellwertspannung wird daher durch das Curtice-Modell abgebildet und der Bereich unter der Schwellspannung durch ein aus Siliziumtransistoren bekanntes Standard-Modell beschrieben. Kontinuität und Stetigkeit wird durch eine Interpolation zwischen den beiden Transistormodellen gewährleistet. Ein Verglich zwischen gemessenen und simulierten Daten zeigt das das Modell die hier vorgestellte Transistortechnologie sehr gut abbilden kann. Das entwickelte Transistormodel wird zur unterstützung des Schaltungsentwurf in einem Prozesskit (PDK) integriert. Dadurch ist das Verhalten einer Schaltung durch Simulation vorhersehbar. In der Simulation können auch der Einfluss der Umwelt, z.B. Luftfeuchtigkeit, auf die Transistoren analysiert werden. In der digitalen Schaltungstechnik wird ein p-leitender Feldeffekttransistor verwendet um ein Eingangssignal hochzusetzen, während um ein Signal runterzusetzen, ein n-leitender Feldeffekttransistor von Vorteil ist. Da p-leitende Oxide selten und unzuverlässig sind, wird der p-leitende Feldeffekttransistor durch einen Widerstand (Transistor-Widerstand-Logik (TRL)) oder einen n-leitenden Feldeffekttransistor (Transistor-Transistor-Logik (TTL)) ersetzt. Ein Inverter in TRL weist bei einer Versorgungsspannung von 1 V einen Verstärkungsfaktor von ungefähr -5 auf und eine Signalverzögerung von 0.9 ms. Die Oszillatorfrequenz im entsprechend Ringoszillator beträgt 296 Hz. Weitere Logikgatter (NAND, NOR und XOR) sind ebenfalls realisierbar mit TRL-Entwürfe. In TTL wird der p-leitende Feldeffekttransistor durch einen n-leitenden Verarmungstyps Feldeffekttransistor ersetzt. Die in der TTL entworfene Logikgatter verhalten sich identisch zu den TTR-Zellen aber die Frequenz vom Ringoszillator steigt bis in den unteren kHz-Bereich an. In TTL ist es ebenfalls möglich die Verlustleistung um einen Faktor von 6 zu reduzieren

    Static and dynamic modelling for IGZO-TFT devices with high-k multilayer dielectric

    Get PDF
    Indium-Gallium-Zinc-Oxide thin-film transistors (IGZO-TFT) are a strong alternative technology for the current trend of Si based field-effect transistor (FET) for flat-panel display backplane and internet of things internet of things (IoT). In these applications, comprehensive understanding and accurate modelling of thin-film transistor (TFT) is compulsory for systematic circuit design. In this study, IGZO-TFTs with high- multilayer dielectric, which were previously fabricated at CENIMAT/I3N Portugal are characterized in the University of Cambridge at the department of electrical engineering. Alongside this characterization, it is developed a compact static model that is capable of describing above-threshold linear behaviour. This model is based on physical parameters and also accounts the effects of contact resistance in source and drain terminals. Furthermore, it is developed a dynamic small signals model, based on conventional FET models and its validity is studied with the help of S-Parameters and capacitance-voltage characteristics (C-V) characteristics. The great advantage of the developed models, in both static and dynamic aspects, is the low number of parameters required to be extracted physically with good fitting results. This can empower new users that are not so familiar with the modelling aspect to design simple electrical circuits with IGZO-TFTs

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Current Status and Opportunities of Organic Thin-Film Transistor Technologies

    Get PDF
    Ajudes: National Key Research and Development Program of "Strategic Advanced Electronic Materials" under Grant 2016YFB0401100 and in part by the NSFC of China under Grant 61274083 and Grant 61334008.Attributed to its advantages of super mechanical flexibility, very low-temperature processing, and compatibility with low cost and high throughput manufacturing, organic thin-film transistor (OTFT) technology is able to bring electrical, mechanical, and industrial benefits to a wide range of new applications by activating nonflat surfaces with flexible displays, sensors, and other electronic functions. Despite both strong application demand and these significant technological advances, there is still a gap to be filled for OTFT technology to be widely commercially adopted. This paper providesa comprehensive reviewof the current status of OTFT technologies ranging from material, device, process, and integration, to design and system applications, and clarifies the real challenges behind to be addressed

    Compact Modeling and Physical Design Automation of Inkjet-Printed Electronics Technology

    Get PDF

    Compact modeling of thin-film silicon transistors fabricated on glass

    Get PDF
    The semiconductor industry, now entering its seventh decade, continues to innovate and evolve at a breakneck pace. E. O. Wilson, the famous Harvard biologist who is an expert on ants, estimates that there are 1017 ants on earth. The semiconductor industry is now shipping 100 transistors per ant every year. In addition, the pace of growth means we are building more electronics in a year than existed on January 1st of that year! A major driver for this growth in recent years is the portable consumer electronics market which includes cell phones, personal digital assistants, and tablets. The focus of this dissertation is centered on a new thin-film silicon technology on glass introduced by Corning Inc., and targeted to meet the needs of the portable product display market. The work presented in this dissertation revolves around a new technology developed by Corning Inc. known as Silicon on Glass or SiOG which permits the transfer of a thin single-crystal silicon film to a glass substrate. This technology coupled with a low-temperature CMOS process has the potential to create devices with performance characteristics rivaling those developed using conventional bulk CMOS processes. These higher performing devices permit an increased level of circuit integration directly on the glass substrate and have the potential to enable new display technologies such as OLED (Organic Light Emitting Diode). The SiOG CMOS devices are distinctly different from traditional thin-film, silicon-on-insulator, and bulk CMOS devices in that they rely on both surface and bulk conduction. Furthermore, their current-voltage characteristics are heavily influenced by fringing electric fields in the glass substrate. This dissertation presents an overview of display technology as well as a review of computer- aided design tools for integrated circuit development with a focus on compact modeling. In addition, some early work on developing advanced OLED display driver circuits using SiOG technology is presented.The bulk of this dissertation is focused on the development of compact models which properly describe the electrical characteristics of SiOG CMOS devices. For all but the most trivial cases, the set of coupled nonlinear partial differential equations that describe semiconductor device behavior has not been solved analytically. Even when the semiconductor equations that represent current flow, charge distribution, and potential distribution are decoupled and device-specific simplifications are applied, analytic solutions remain elusive. Two different methods for developing compact models for the SiOG CMOS devices are presented with distinct methods for developing approximate solutions. In addition, a model for the fringing electric field is developed using conformal mapping techniques, and its effect on drain current is explored. Finally, a new technique for solving the nonlinear semiconductor equations is explored. The application of a new mathematical technique known as the Homotopy Analysis Method (HAM) is presented as it relates to the general Poisson\u27s equation for semiconductor devices

    Amorphous Silicon Thin Film Transistor Models and Pixel Circuits for AMOLED Displays

    Get PDF
    Hydrogenated amorphous Silicon (a-Si:H) Thin Film Transistor (TFT) has many advantages and is one of the suitable choices to implement Active Matrix Organic Light-Emitting Diode (AMOLED) displays. However, the aging of a-Si:H TFT caused by electrical stress affects the stability of pixel performance. To solve this problem, following aspects are important: (1) compact device models and parameter extraction methods for TFT characterization and circuit simulation; (2) a method to simulate TFT aging by using circuit simulator so that its impact on circuit performance can be investigated by using circuit simulation; and (3) novel pixel circuits to compensate the impact of TFT aging on circuit performance. These challenges are addressed in this thesis. A compact device model to describe the static and dynamic behaviors of a-Si:H TFT is presented. Several improvements were made for better accuracy, scalability, and convergence of TFT model. New parameter extraction methods with improved accuracy and consistency were also developed. The improved compact TFT model and new parameter extraction methods are verified by measurement results. Threshold voltage shift (∆Vt) over stress time is the primary aging behavior of a-Si:H TFT under voltage stress. Circuit-level aging simulation is very useful in investigating and optimizing circuit stability. Therefore, a simulation method was developed for circuit-level ∆Vt simulation. Besides, a ∆Vt model which is compatible to circuit simulator was developed. The proposed method and model are verified by measurement results. A novel pixel circuit using a-Si:H TFTs was developed to improve the stability of OLED drive current over stress time. The ∆Vt of drive TFT caused by voltage stress is compensated by an incremental gate voltage generated by utilizing a ∆Vt-dependent charge transfer from drive TFT to a TFT-based Metal-Insulator-Semiconductor (MIS) capacitor. A second MIS capacitor is used to inject positive charge to the gate of drive TFT to improve OLED drive current. The effectiveness of the proposed pixel circuit is verified by simulation and measurement results. The proposed pixel circuit is also compared to several conventional pixel circuits.4 month

    Amorphous Silicon Thin Film Transistor Models and Pixel Circuits for AMOLED Displays

    Get PDF
    Hydrogenated amorphous Silicon (a-Si:H) Thin Film Transistor (TFT) has many advantages and is one of the suitable choices to implement Active Matrix Organic Light-Emitting Diode (AMOLED) displays. However, the aging of a-Si:H TFT caused by electrical stress affects the stability of pixel performance. To solve this problem, following aspects are important: (1) compact device models and parameter extraction methods for TFT characterization and circuit simulation; (2) a method to simulate TFT aging by using circuit simulator so that its impact on circuit performance can be investigated by using circuit simulation; and (3) novel pixel circuits to compensate the impact of TFT aging on circuit performance. These challenges are addressed in this thesis. A compact device model to describe the static and dynamic behaviors of a-Si:H TFT is presented. Several improvements were made for better accuracy, scalability, and convergence of TFT model. New parameter extraction methods with improved accuracy and consistency were also developed. The improved compact TFT model and new parameter extraction methods are verified by measurement results. Threshold voltage shift (∆Vt) over stress time is the primary aging behavior of a-Si:H TFT under voltage stress. Circuit-level aging simulation is very useful in investigating and optimizing circuit stability. Therefore, a simulation method was developed for circuit-level ∆Vt simulation. Besides, a ∆Vt model which is compatible to circuit simulator was developed. The proposed method and model are verified by measurement results. A novel pixel circuit using a-Si:H TFTs was developed to improve the stability of OLED drive current over stress time. The ∆Vt of drive TFT caused by voltage stress is compensated by an incremental gate voltage generated by utilizing a ∆Vt-dependent charge transfer from drive TFT to a TFT-based Metal-Insulator-Semiconductor (MIS) capacitor. A second MIS capacitor is used to inject positive charge to the gate of drive TFT to improve OLED drive current. The effectiveness of the proposed pixel circuit is verified by simulation and measurement results. The proposed pixel circuit is also compared to several conventional pixel circuits.4 month

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before
    • …
    corecore