54,960 research outputs found

    Stochastically Resilient Observer Design for a Class of Continuous-Time Nonlinear Systems

    Get PDF
    This work addresses the design of stochastically resilient or non-fragile continuous-time Luenberger observers for systems with incrementally conic nonlinearities. Such designs maintain the convergence and/or performance when the observer gain is erroneously implemented due possibly to computational errors i.e. round off errors in computing the observer gain or changes in the observer parameters during operation. The error in the observer gain is modeled as a random process and a common linear matrix inequality formulation is presented to address the stochastically resilient observer design problem for a variety of performance criteria. Numerical examples are given to illustrate the theoretical results

    An LMI Approach to Discrete-Time Observer Design with Stochastic Resilience

    Get PDF
    Much of the recent work on robust control or observer design has focused on preservation of stability of the controlled system or the convergence of the observer in the presence of parameter perturbations in the plant or the measurement model. The present work addresses the important problem of stochastic resilience or non-fragility of a discrete-time Luenberger observer which is the maintenance of convergence and/or performance when the observer is erroneously implemented possibly due to computational errors i.e. round off errors in digital implementation or sensor errors, etc. A common linear matrix inequality framework is presented to address the stochastic resilient design problem for various performance criteria in the implementation based on the knowledge of an upper bound on the variance of the random error in the observer gain. Present results are compared to earlier designs for stochastic robustness. Illustrative examples are given to complement the theoretical results

    Impact of noise on a dynamical system: prediction and uncertainties from a swarm-optimized neural network

    Get PDF
    In this study, an artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey--Glass chaotic time series in the short-term x(t+6)x(t+6). The performance prediction was evaluated and compared with another studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called {\it stochastic} hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute uncertainties of predictions for noisy Mackey--Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σN\sigma_{N}) from 0.01 to 0.1.Comment: 11 pages, 8 figure

    Detecting and Estimating Signals over Noisy and Unreliable Synapses: Information-Theoretic Analysis

    Get PDF
    The temporal precision with which neurons respond to synaptic inputs has a direct bearing on the nature of the neural code. A characterization of the neuronal noise sources associated with different sub-cellular components (synapse, dendrite, soma, axon, and so on) is needed to understand the relationship between noise and information transfer. Here we study the effect of the unreliable, probabilistic nature of synaptic transmission on information transfer in the absence of interaction among presynaptic inputs. We derive theoretical lower bounds on the capacity of a simple model of a cortical synapse under two different paradigms. In signal estimation, the signal is assumed to be encoded in the mean firing rate of the presynaptic neuron, and the objective is to estimate the continuous input signal from the postsynaptic voltage. In signal detection, the input is binary, and the presence or absence of a presynaptic action potential is to be detected from the postsynaptic voltage. The efficacy of information transfer in synaptic transmission is characterized by deriving optimal strategies under these two paradigms. On the basis of parameter values derived from neocortex, we find that single cortical synapses cannot transmit information reliably, but redundancy obtained using a small number of multiple synapses leads to a significant improvement in the information capacity of synaptic transmission

    Modern control concepts in hydrology

    Get PDF
    Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise
    corecore