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Abstract 
Much of the recent work on robust control or observer design has focused on preservation of stability of the 
controlled system or the convergence of the observer in the presence of parameter perturbations in the plant or 
the measurement model. The present work addresses the important problem of stochastic resilience or non-
fragility of a discrete-time Luenberger observer which is the maintenance of convergence and/or performance 
when the observer is erroneously implemented possibly due to computational errors i.e. round off errors in 
digital implementation or sensor errors, etc. A common linear matrix inequality framework is presented to 
address the stochastic resilient design problem for various performance criteria in the implementation based on 
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the knowledge of an upper bound on the variance of the random error in the observer gain. Present results are 
compared to earlier designs for stochastic robustness. Illustrative examples are given to complement the 
theoretical results. 

Keywords 
Discrete-time Luenberger observer, LMI, Resilence 

1. Introduction 
A controller for which the closed-loop system is destabilized by a small perturbation in the control gains is 
referred to as a “fragile” or “non-resilient” controller. In fact, the fragility problem is not new. Extreme fragility 
of various controllers is studied in [5]. It is shown that even vanishingly small perturbations in the control 
coefficients may destabilize the closed-loop system. After the publication of [5], the subject of fragility has 
gained more attention. A quadratic optimal state feedback controller that is non-fragile against perturbations in 
control gain is proposed in Ref. [4]. In Ref. [2], an overview of the non-fragile design techniques are presented. 
The robustness of control systems in digital implementation of a continuous time controller design is 
investigated in [6]. The synthesis of a resilient regulator for linear systems is described in [3]. In Ref. [8], the 
design of robust non-fragile state feedback controllers with controller gains in a given polytope is addressed. 
Robust non-fragile Kalman filter design for a class of linear systems with norm-bounded uncertainties and 
multiplicative uncertainties in the filter gain is given in [9]. Resilient filtering for a class of linear continuous-time 
systems with norm-bounded uncertainties and multiplicative and additive perturbations is investigated in [7]. 

In practice, more and more controllers and observers are implemented digitally. Thus implementation is subject 
to finite word length round off errors in numerical computations. Moreover, in some implementations, it is 
necessary to make manual tuning to obtain the desired performance for the closed-loop system. Therefore, the 
design process needs to be modified to accommodate perturbations in the controller and observer coefficients. 
This means that any useful design procedure should generate a controller or observer, which also has sufficient 
room for readjustment of its coefficients. 

In this paper, in contrast with the earlier contributions, a stochastic approach to resilience is taken. A novel 
design of stability- and performance-resilient observers is introduced in discrete time. Process and measurement 
disturbances are modeled as random additive noise sequences with finite energy and the observer gain 
perturbations are modeled as white multiplicative noise sequences. Various design formulations are expressed 
in a general linear matrix inequality (LMI) [1] framework. The results obtained in this paper on stochastic 
resilience are compared with earlier ones on the robust observer design for stochastic parameters in system and 
measurement equations [10], [12]. Some illustrative examples are also included. 

The following notation is utilized in this work: 𝑥𝑥 ∈ ℝ𝑛𝑛 denotes an n-dimensional vector with real elements and 
with the associated norm ∥ 𝑥𝑥 ∥= (𝑥𝑥T𝑥𝑥)1 2⁄  where (·)T represents the transpose. 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 denotes 
an 𝑚𝑚 × 𝑛𝑛 matrix with real elements. 𝐴𝐴−1 is the inverse of matrix A, 𝐴𝐴 > 0(𝐴𝐴 < 0) means A is a positive 
(negative) definite matrix, and 𝐼𝐼𝑚𝑚 is an identity matrix of dimension 𝑚𝑚. 𝜆𝜆min(𝐴𝐴)(𝜆𝜆max(𝐴𝐴)) denotes the 
minimum (maximum) eigenvalue of the symmetric matrix 𝐴𝐴. 𝐸𝐸{𝑥𝑥} and 𝐸𝐸{𝑥𝑥/𝑦𝑦} denote the expectation of x and 
the expectation of x conditional on y. ℓ2 is the space of all random infinite sequences of vectors {𝑥𝑥0,𝑥𝑥1, … } with 
finite energy lim𝑁𝑁→∞∑𝑁𝑁𝑖𝑖=0 𝐸𝐸{∥ 𝑥𝑥𝑖𝑖 ∥2} < ∞. 

2. Signal and error dynamics 
Consider the following discrete-time system and measurement equations 
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𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑘𝑘,  

𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐺𝐺𝐹𝐹𝑘𝑘, (1) 

where 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛 is the state to be estimated from the knowledge of the measurements 𝑦𝑦𝑘𝑘 ∈ ℝ𝑝𝑝. wk is 
an ℓ2 disturbance input. Consider the following equation in the Luenberger observer form: 

𝑥𝑥
^
𝑘𝑘+1 = 𝐴𝐴𝑥𝑥

^
𝑘𝑘 + (𝐾𝐾 + 𝛥𝛥𝑘𝑘)(𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑥𝑥

^
𝑘𝑘), 𝑥𝑥

^
0 = 𝐸𝐸{𝑥𝑥0}, (2) 

where 𝛥𝛥𝑘𝑘 represents the time-varying error made in computing the observer gain K. In this work, a general 
stochastic description of the error in the filter gain is given as follows: 

𝛥𝛥𝑘𝑘 = � 𝛾𝛾𝑘𝑘𝑖𝑖𝐾𝐾𝑖𝑖𝑁𝑁
𝑖𝑖=1 , (3) 

where 𝛾𝛾𝑘𝑘𝑖𝑖  are zero mean mutually uncorrelated scalar white noise sequences with known variance upper 
bounds 𝜎𝜎𝑖𝑖 and 𝐾𝐾𝑖𝑖 are known perturbation matrices. 𝛾𝛾𝑘𝑘𝑖𝑖  are assumed to be uncorrelated with the additive 
noise 𝐹𝐹𝑘𝑘. The zero mean property chosen for the multiplicative noise represents the physical situation where 
the perturbations can be positive or negative in an equally likely manner. The general time varying property is 
attributed to the gain perturbations by assuming 𝛾𝛾𝑘𝑘𝑖𝑖  as random sequences rather than random constants, 
because this allows different amounts of perturbations that may occur during operation. If only an a priori 
computation error in the gain is to be considered, then 𝛾𝛾𝑖𝑖  can be modeled as random constants and not as 
random sequences. This would be a special case of the general description in (3), which has been used in 
robustness studies involving structured parameter perturbations [11]. 

Let 𝑒𝑒𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝑥𝑥 𝑘𝑘 denote the estimation error. Substituting from Eqs. (1) and (2), we find that the error 
dynamics obey 

𝑒𝑒𝑘𝑘+1 = (𝐴𝐴 − (𝐾𝐾 + 𝛥𝛥𝑘𝑘)𝐶𝐶)𝑒𝑒𝑘𝑘 + (𝐹𝐹 − (𝐾𝐾 + 𝛥𝛥𝑘𝑘)𝐺𝐺)𝐹𝐹𝑘𝑘. (4) 

3. Performance criteria 
Let 𝑍𝑍𝑘𝑘  denote the performance output where 

𝑍𝑍𝑘𝑘 = 𝐶𝐶𝑧𝑧𝑒𝑒𝑘𝑘 + 𝐷𝐷𝑧𝑧𝐹𝐹𝑘𝑘. (5) 

Consider the general performance objective 

𝐸𝐸{𝑉𝑉𝑘𝑘+1 − 𝑉𝑉𝑘𝑘 + 𝛿𝛿 ∥ 𝑍𝑍𝑘𝑘 ∥2+ 𝜀𝜀 ∥ 𝐹𝐹𝑘𝑘 ∥2− 𝛽𝛽𝑍𝑍𝑘𝑘T𝐹𝐹𝑘𝑘|𝑒𝑒𝑘𝑘, 𝑒𝑒𝑘𝑘−1, … , 𝑒𝑒0} ⩽ 0 (6) 

for a 𝑉𝑉𝑘𝑘 = 𝑒𝑒𝑘𝑘T𝑃𝑃𝑒𝑒𝑘𝑘, where 𝑃𝑃 > 0. 

Notice that upon summation, taking expectation and using the interlacing property of expectation, 

𝐸𝐸{𝐸𝐸{𝑥𝑥/𝑦𝑦}} = 𝐸𝐸{𝑥𝑥} 

inequality (6) yields 

𝐸𝐸{𝑒𝑒𝑁𝑁T𝑃𝑃𝑒𝑒𝑁𝑁} ⩽ 𝐸𝐸{𝑒𝑒0T𝑃𝑃𝑒𝑒0} − 𝐸𝐸�∑  𝑁𝑁
𝑘𝑘=0 (𝛿𝛿 ∥ 𝑍𝑍𝑘𝑘 ∥2+ 𝜀𝜀 ∥ 𝐹𝐹𝑘𝑘 ∥2− 𝛽𝛽𝑍𝑍𝑘𝑘T𝐹𝐹𝑘𝑘)� (7) 

or 
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𝜆𝜆min(𝑃𝑃)𝐸𝐸{∥ 𝑒𝑒𝑁𝑁 ∥2} ⩽ 𝜆𝜆max(𝑃𝑃)𝐸𝐸{∥ 𝑒𝑒0 ∥2} − ∑  𝑁𝑁
𝑘𝑘=0 𝐸𝐸{(𝛿𝛿 ∥ 𝑍𝑍𝑘𝑘 ∥2+ 𝜀𝜀 ∥ 𝐹𝐹𝑘𝑘 ∥2− 𝛽𝛽𝑍𝑍𝑘𝑘T𝐹𝐹𝑘𝑘)} 

(8) 

by using Rayleigh's inequality (𝜆𝜆min(𝑃𝑃) ∥ 𝑒𝑒 ∥2⩽ 𝑒𝑒T𝑃𝑃𝑒𝑒 ⩽ 𝜆𝜆max(𝑃𝑃) ∥ 𝑒𝑒 ∥2) twice, that allows several optimization 
formulations possible in a unified eigenvalue problem [1] framework. 

First of all, we take 𝐹𝐹 = 0,𝐺𝐺 = 0, and 𝐷𝐷𝑧𝑧 = 0 to eliminate the additive noise dependence. In this case, if we 
let 𝛿𝛿 = 𝜀𝜀 = 0, and 𝛽𝛽 = 0, (8) yields 

𝐸𝐸{∥ 𝑒𝑒𝑁𝑁 ∥2} ⩽ 𝜆𝜆max(𝑃𝑃)
𝜆𝜆min(𝑃𝑃)

𝐸𝐸{∥ 𝑒𝑒0 ∥2}. (9) 

This means that by minimizing 𝜆𝜆max(𝑃𝑃) and maximizing 𝜆𝜆max(𝑃𝑃), we can lower the bound on the mean square 
(m.s.) of the estimation error, which will guarantee a faster response for the observer. For systems such as (4), it 
was shown in [10] that this also guarantees almost sure (with probability one) boundedness of the estimation 
error. 

For the same choice of parameter matrices, taking 𝛿𝛿 > 0, 𝛽𝛽 = 0, and 𝜀𝜀 = 0, (8) will yield a bound on the energy 
of the performance output in terms of the initial m.s. estimation error 𝑒𝑒0 

∑𝑁𝑁
𝑘𝑘=0 𝐸𝐸{∥ 𝑍𝑍𝑘𝑘 ∥2} ⩽ 1

𝛿𝛿
𝜆𝜆max(𝑃𝑃)𝐸𝐸{∥ 𝑒𝑒0 ∥2}.(10) 

Minimizing 𝜆𝜆max(𝑃𝑃) and maximizing 𝛿𝛿 will give us a smaller bound on the energy of the performance output. 
This is a sub-optimal 𝐻𝐻2 observer. 

In the case of additive noise 𝐹𝐹𝑘𝑘, and for general choices of 𝐹𝐹,𝐺𝐺, and 𝐷𝐷𝑧𝑧, by setting 𝛿𝛿 = 1, 𝛽𝛽 = 0, and 𝜀𝜀 <
0 for 𝑒𝑒0 = 0, gives the result 

∑  𝑁𝑁
𝑘𝑘=0 𝐸𝐸{∥ 𝑍𝑍𝑘𝑘 ∥2} ⩽ −𝜀𝜀 ∑  𝑁𝑁

𝑘𝑘=0 𝐸𝐸{∥ 𝐹𝐹𝑘𝑘 ∥2} (11) 

which means a bound on the ℓ2 to ℓ2 gain of the estimator, or a suboptimal H∞ design. 

Again when 𝑒𝑒0 = 0, if we use this formulation, we can design several m.s. dissipative observers by using 
different values of 𝛿𝛿, 𝛽𝛽, and 𝜀𝜀. All of these cases will require the choice 𝐷𝐷𝑧𝑧 + 𝐷𝐷𝑧𝑧T > 0 in the performance output 
in (5). 

For example, taking 𝛿𝛿 = 0, 𝛽𝛽 = 1, and 𝜀𝜀 = 0 will give m.s. passivity 

∑  𝑁𝑁
𝑘𝑘=0 𝐸𝐸{𝑍𝑍𝑘𝑘T𝐹𝐹𝑘𝑘} ⩾ 0. (12) 

If we take 𝛿𝛿 = 0, 𝛽𝛽 = 1, and 𝜀𝜀 > 0, it will yield the m.s. input strict passivity result: 

∑  𝑁𝑁
𝑘𝑘=0 𝐸𝐸{𝑍𝑍𝑘𝑘T𝐹𝐹𝑘𝑘} ⩾ 𝜀𝜀∑  𝑁𝑁

𝑘𝑘=0 𝐸𝐸{∥ 𝐹𝐹𝑘𝑘 ∥2}. (13) 

If we set 𝛿𝛿 > 0, 𝛽𝛽 = 1, and ε=0, we will get m.s. output strict passivity: 

∑  𝑁𝑁
𝑘𝑘=0 𝐸𝐸{𝑍𝑍𝑘𝑘T𝐹𝐹𝑘𝑘} ⩾ 𝛿𝛿∑  𝑁𝑁

𝑘𝑘=0 𝐸𝐸{‖𝑍𝑍𝑘𝑘‖2}. (14) 

M.s. very strict passivity, which is the m.s. passivity both in the terms of the input and the output, will be 
obtained if we set 𝛿𝛿 > 0, 𝛽𝛽 = 1, and 𝜀𝜀 > 0: 

∑  𝑁𝑁
𝑘𝑘=0 𝐸𝐸{𝑍𝑍𝑘𝑘T𝐹𝐹𝑘𝑘} ⩾ 𝜀𝜀∑  𝑁𝑁

𝑘𝑘=0 𝐸𝐸{∥ 𝐹𝐹𝑘𝑘 ∥2} + 𝛿𝛿 ∑  𝑁𝑁
𝑘𝑘=0 𝐸𝐸{∥ 𝑍𝑍𝑘𝑘 ∥2}. (15) 
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As described above, the LMI formulation enables us to design various observers according to different 
performance criteria in a common framework. 

4. LMI formulation 
The non-noisy and noisy cases will be treated separately in the following development. First, consider inequality 
(6) with 𝐹𝐹 = 0,𝐺𝐺 = 0,𝐷𝐷𝑧𝑧 = 0, and 𝜀𝜀 = 𝛽𝛽 = 0. Substituting for the terms in the inequality from (1)–(5), and after 
some manipulations involving taking expectations and rearrangement, we obtain 

𝐸𝐸{𝑉𝑉𝑘𝑘+1 − 𝑉𝑉𝑘𝑘 + 𝛿𝛿 ∥ 𝑍𝑍𝑘𝑘 ∥2 |𝑒𝑒𝑘𝑘, 𝑒𝑒𝑘𝑘−1, … , 𝑒𝑒0} ⩽ 𝐸𝐸�𝑒𝑒𝑘𝑘T[−𝑃𝑃 + 𝛿𝛿𝐶𝐶𝑧𝑧T𝐶𝐶𝑧𝑧 + 𝐶𝐶T∑(𝑃𝑃)𝐶𝐶 + (𝐴𝐴 −
𝐾𝐾𝐶𝐶)T𝑃𝑃(𝐴𝐴 − 𝐾𝐾𝐶𝐶)]𝑒𝑒𝑘𝑘� (16) 

for ∑(𝑃𝑃) = ∑𝑁𝑁𝑖𝑖=1 𝜎𝜎𝑖𝑖𝐾𝐾𝑖𝑖T𝑃𝑃𝐾𝐾𝑖𝑖. This is negative semidefinite if and only if 

�𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧T𝐶𝐶𝑧𝑧 − 𝐶𝐶T∑(𝑃𝑃)𝐶𝐶 𝐴𝐴T𝑃𝑃 − 𝐶𝐶T𝑌𝑌T
∗ 𝑃𝑃

� ⩾ 0 (17) 

by using Schur's complement [1] for 𝑌𝑌 = 𝑃𝑃𝐾𝐾. Therefore, we have: 

Theorem 1 
Let (17) hold for 𝑃𝑃 > 0 and 𝑌𝑌. Then, for 𝛿𝛿 = 0, this implies inequality (9) and for 𝛿𝛿 > 0, this implies (10). The 
necessary resilient observer gain is found by 𝐾𝐾 = 𝑃𝑃−1𝑌𝑌. 

In the noisy case, similar arguments will lead to 

𝐸𝐸 �[𝑒𝑒𝑘𝑘T𝐹𝐹𝑘𝑘T]��
𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧T𝐶𝐶𝑧𝑧 − 𝐶𝐶T∑(𝑃𝑃)𝐶𝐶 −𝛿𝛿𝐶𝐶𝑧𝑧T𝐷𝐷𝑧𝑧 + 𝐶𝐶T∑(𝑃𝑃)𝐺𝐺 + 0.5𝛽𝛽𝐶𝐶𝑧𝑧T

∗ −𝛿𝛿𝐷𝐷𝑧𝑧T𝐷𝐷𝑧𝑧 − 𝜀𝜀𝐼𝐼 + 0.5𝛽𝛽(𝐷𝐷𝑧𝑧 + 𝐷𝐷𝑧𝑧T) − 𝐺𝐺T∑(𝑃𝑃)𝐺𝐺
� −

�
(𝐴𝐴 − 𝐾𝐾𝐶𝐶)T

(𝐹𝐹 − 𝐾𝐾𝐺𝐺)T
� 𝑃𝑃[(𝐴𝐴 − 𝐾𝐾𝐶𝐶), (𝐹𝐹 − 𝐾𝐾𝐺𝐺)� �

𝑒𝑒𝑘𝑘
𝐹𝐹𝑘𝑘�� > 0. (18) 

Using the Schur's complement result, (18) is equivalent to 

𝑄𝑄 = �
𝑞𝑞11 𝑞𝑞12 𝑞𝑞13
∗ 𝑞𝑞22 𝑞𝑞23
∗ ∗ 𝑞𝑞33

� ⩾ 0 (19) 

for 

𝑞𝑞11 = 𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧T𝐶𝐶𝑧𝑧 − 𝐶𝐶T∑(𝑃𝑃)𝐶𝐶, 

𝑞𝑞12 = −𝛿𝛿𝐶𝐶𝑧𝑧T𝐷𝐷𝑧𝑧 + 0.5𝛽𝛽𝐶𝐶𝑧𝑧T − 𝐶𝐶T∑(𝑃𝑃)𝐺𝐺, 

𝑞𝑞13 = 𝐴𝐴T𝑃𝑃 − 𝐶𝐶T𝑌𝑌T, 

𝑞𝑞22 = −𝛿𝛿𝐷𝐷𝑧𝑧T𝐷𝐷𝑧𝑧 − 𝜀𝜀𝐼𝐼 + 0.5𝛽𝛽(𝐷𝐷𝑧𝑧 + 𝐷𝐷𝑧𝑧T) − 𝐺𝐺T∑(𝑃𝑃)𝐺𝐺, 

𝑞𝑞23 = 𝐹𝐹T𝑃𝑃 − 𝐺𝐺T𝑌𝑌T, 

𝑞𝑞33 = 𝑃𝑃, 

where ∑(𝑃𝑃) is defined above. 
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So, in the noisy case, we have: 

Theorem 2 
Let the LMI (19) hold for 𝑃𝑃 > 0 and 𝑌𝑌. Then for different choice of design parameters 𝛿𝛿,𝛽𝛽, and 𝜀𝜀, the 
inequalities(11)–(15) hold and the necessary resilient observer gain K is found from 𝐾𝐾 = 𝑃𝑃−1𝑌𝑌. 

5. Comparison with earlier results 
Consider the following stochastically perturbed signal and measurement models: 

𝑥𝑥𝑘𝑘+1 = �𝐴𝐴 + ∑  𝑁𝑁
𝑖𝑖=1 𝛾𝛾𝑘𝑘𝑖𝑖 𝐴𝐴𝑖𝑖�𝑥𝑥𝑘𝑘 + 𝐹𝐹𝐹𝐹𝑘𝑘, (20) 

𝑦𝑦𝑘𝑘 = �𝐶𝐶 + ∑  𝑁𝑁
𝑖𝑖=1 𝛾𝛾𝑘𝑘𝑖𝑖 𝐶𝐶𝑖𝑖�𝑥𝑥𝑘𝑘 + 𝐺𝐺𝐹𝐹𝑘𝑘, (21) 

where the definitions of the variables are the same. Let us again use the Luenberger observer 

𝑥𝑥
^
𝑘𝑘+1 = 𝐴𝐴𝑥𝑥

^
𝑘𝑘 + 𝐾𝐾(𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑥𝑥

^
𝑘𝑘), 𝑥𝑥

^
0 = 𝐸𝐸{𝑥𝑥0}. (22) 

Then we have the following robust observer result available: 

Theorem 3 
Yaz and Yaz [12] 

Let the following LMI hold for some 𝑋𝑋 > 0 and scalar 𝛼𝛼1 > 0: 

�𝑋𝑋 − 𝐼𝐼 − 𝐴𝐴T𝑋𝑋𝐴𝐴 − ∑  𝑁𝑁
𝑖𝑖=1 𝜎𝜎𝑖𝑖𝐴𝐴𝑖𝑖T𝑋𝑋𝐴𝐴𝑖𝑖 −𝐴𝐴T𝑋𝑋𝐹𝐹

∗ 𝛼𝛼1𝐼𝐼 − 𝐹𝐹T𝑋𝑋𝐹𝐹
� > 0. (23) 

If there exist matrices 𝑃𝑃 > 0,𝑌𝑌 and scalar 𝛼𝛼2 > 0, such that 

�
𝑃𝑃 0 𝐴𝐴𝑃𝑃 − 𝐶𝐶T𝑌𝑌T
∗ 𝛼𝛼2𝐼𝐼 𝐹𝐹T𝑃𝑃 − 𝐺𝐺T𝑌𝑌T
∗ ∗ 𝑃𝑃

� ⩾ 0 (24) 

then 𝐾𝐾 = 𝑃𝑃−1𝑌𝑌 and 

𝐸𝐸{𝑒𝑒𝑁𝑁T𝑃𝑃𝑒𝑒𝑁𝑁} < 𝐸𝐸{𝑒𝑒0T𝑃𝑃𝑒𝑒0} (25) 

for all 𝑁𝑁 ⩾ 0. 

If instead of (24), the following is true: 

�
𝑃𝑃 − 𝐶𝐶𝑧𝑧T𝐶𝐶𝑧𝑧 0 𝐴𝐴𝑃𝑃 − 𝐶𝐶T𝑌𝑌T

∗ 𝛼𝛼2𝐼𝐼 𝐹𝐹T𝑃𝑃 − 𝐺𝐺T𝑌𝑌T
∗ ∗ 𝑃𝑃

� ⩾ 0 

together with (23), then the performance output defined as 

𝑍𝑍𝑘𝑘 = 𝐶𝐶𝑧𝑧𝑒𝑒𝑘𝑘 

satisfies the energy bound 
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�  
𝑁𝑁

𝑘𝑘=0

𝐸𝐸{‖𝑍𝑍𝑘𝑘‖2} < 𝐸𝐸{𝑒𝑒0T𝑃𝑃𝑒𝑒0} 

with 𝐾𝐾 = 𝑃𝑃−1𝑌𝑌. 

One can see that the solution to the stochastically robust observer design problem necessitates also the 
satisfaction of the LMI (23) in addition to the main LMI. This additional LMI condition is interpreted by the 
following lemma in the same work [12]: 

Lemma 1 
The unforced system (20) with 𝐹𝐹 = 0 is m.s. exponentially stable if and only if there exist 𝑋𝑋 > 0 and 𝛼𝛼1 > 0 such 
that (23) holds. 

Therefore, the solution of the robust stochastic observer problem necessitates the m.s. exponential stability of 
the system model, which is a more stringent requirement, whereas the solution of the stochastic resilient 
observer design problem does not. 

6. Solution surfaces 
The following section contains an investigation into the regions in the 𝑃𝑃 and 𝑌𝑌 coordinates in which the 
LMIs (17) and (19) have solutions for a one-dimensional system and various design parameters. In this paper, we 
chose to work in the 𝑌𝑌 and 𝑃𝑃 coordinates rather than 𝐾𝐾 and 𝑃𝑃 because 𝑌𝑌 vs. 𝑃𝑃 feasibility regions directly 
describe the solution set of the corresponding LMIs. In a design situation, the corresponding resilient observer 
gains can be found from 𝐾𝐾 = 𝑃𝑃−1𝑌𝑌. The design parameters are given in Table 1 for three different performance 
indices: 𝐻𝐻2 sub-optimal, m.s. input and output strict passivity. 

Table 1. Design parameter values 
 

A C 𝐶𝐶𝑧𝑧 𝐷𝐷𝑧𝑧 F G σ 𝐾𝐾𝑖𝑖 δ β ε 
𝐻𝐻2-observer 0.5 1 1 0 0 0 0.1 1 0.001, 

0.01, 
0.1, 
1,5, 
10 

0 0 

Input strict passivity 0.5 1 1 1 1 0.1 0.1 1 0 1 0.001, 
0.01, 
0.1, 
0.3, 
0.4, 
0.49 

Output strict passivity 0.5 1 1 1 1 0.1 0.1 1 0.001, 
0.01, 
0.1, 
0.3, 
0.4, 
0.5 

1 0 
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The corresponding areas are shaded differently to indicate how the shape of the regions change as the design 
parameters change. Large areas should be interpreted as containing the small areas inside. Magnified form of 
the critical parts of the regions in Fig. 1(a) are presented in (b). 

 

Fig. 1. (a) H2 sub-optimal observer feasibility regions. (b) H2 sub-optimal observer feasibility regions (vicinity of 
origin magnified). 

Figs. 1(a) and (b) show how the feasibility region for the H2 sub-optimal resilient observer gets smaller 
as δ increases as expected. This is because it gets more difficult to satisfy the bound on the output energy which 
keeps getting smaller in (10). 

Fig. 2. shows the feasibility region of the m.s. input strictly passive resilient observer. As ε increases from 0 to 
0.49, the feasibility region gets smaller as expected. This is because the dissipation rate increases with ε and it 
becomes more difficult to satisfy (13) with increasing 𝜀𝜀. When the maximum εvalue that is smaller than 0.49 is 
exceeded, LMI (19) ceases to have a positive definite solution. 
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Fig. 2. M.s. input strictly passive observer feasibility regions. 

The result given in Fig. 3. for m.s. output strict passivity is similar to the one given in Fig. 2. As 𝛿𝛿 increases, the 
feasibility region shrinks because it becomes more difficult to satisfy inequality (14) due to a higher required 
dissipation rate. For a 𝛿𝛿 value slightly larger than 0.5, the LMI ceases to be feasible. 

 

Fig. 3. M.s. output strictly passive observer feasibility regions. 

7. Conclusions 
This paper has presented a simple solution to the problem of non-fragile or resilient observer design for 
discrete-time systems with ℓ2-type additive stochastic disturbances where the observer gain is randomly 
perturbed possibly due to computational errors. An LMI-based approach has been proposed to design observers 
with guaranteed performance and/or stability and the theoretical results introduced have been accompanied by 
illustrations of feasibility regions. 
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