266 research outputs found

    Orbit Estimation of Non-Cooperative Maneuvering Spacecraft

    Get PDF
    Due to the ever increasing congestion of the space environment, there is an increased demand for real-time situation awareness of all objects in space. An unknown spacecraft maneuver changes the predicted orbit, complicates tracking, and degrades estimate accuracies. Traditional orbit estimation routines are implemented, tested, and compared to a multiple model format that adaptively handles unknown maneuvers. Multiple Model Adaptive Estimation is implemented in an original way to track a non-cooperative satellite by covariance inflation and filtering-through a maneuver. Parameters for successful instantaneous maneuver reconstruction are analyzed. Variable State Dimension estimation of a continuously maneuvering spacecraft is investigated. A requirements based analysis is performed on short arc orbital solutions. Large covariance propagation of potential maneuvers is explored. Using ground-based radars, several thousand simulations are run to develop new techniques to estimate orbits during and after both instantaneous and continuous maneuvers. The new methods discovered are more accurate by a factor of 700 after only a single pass when compared to non-adaptive methods. The algorithms, tactics, and analysis complement on-going efforts to improve Space Situational Awareness and dynamic modeling

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Air-to-Air Missile Vector Scoring

    Get PDF
    An air-to-air missile vector scoring system is proposed for test and evaluation applications. Three different linear missile dynamics models are considered: a six-state constant velocity model and nine-state constant acceleration and three-dimensional coordinated turn models. Frequency modulated continuous wave radar sensors, carefully located to provide spherical coverage around the target, provide updates of missile kinematic information relative to a drone aircraft. Data from the radar sensors is fused with predictions from one of the three missile models using either an extended Kalman filter, an unscented Kalman filter or a particle filter algorithm. The performance of all nine model/filter combinations are evaluated through high-fidelity, six-degree of freedom simulations yielding sub-meter end-game accuracy in a variety of scenarios. Simulations demonstrate the superior performance of the unscented Kalman filter incorporating the continuous velocity dynamics model. The scoring system is experimentally demonstrated through flight testing using commercial off the shelf radar sensors with a Beechcraft C-12 as a surrogate missile

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    corecore