3 research outputs found

    Combined state and parameter estimation for Hammerstein systems with time-delay using the Kalman filtering

    Get PDF
    This paper discusses the state and parameter estimation problem for a class of Hammerstein state space systems with time-delay. Both the process noise and the measurement noise are considered in the system. Based on the observable canonical state space form and the key term separation, a pseudo-linear regressive identification model is obtained. For the unknown states in the information vector, the Kalman filter is used to search for the optimal state estimates. A Kalman-filter based least squares iterative and a recursive least squares algorithms are proposed. Extending the information vector to include the latest information terms which are missed for the time-delay, the Kalman-filter based recursive extended least squares algorithm is derived to obtain the estimates of the unknown time-delay, parameters and states. The numerical simulation results are given to illustrate the effectiveness of the proposed algorithms

    Output Information Based Fault-Tolerant Iterative Learning Control for Dual-Rate Sampling Process with Disturbances and Output Delay

    Get PDF
    For a class of single-input single-output (SISO) dual-rate sampling processes with disturbances and output delay, this paper presents a robust fault-tolerant iterative learning control algorithm based on output information. Firstly, the dual-rate sampling process with output delay is transformed into discrete system in state-space model form with slow sampling rate without time delay by using lifting technology; then output information based fault-tolerant iterative learning control scheme is designed and the control process is turned into an equivalent two-dimensional (2D) repetitive process. Moreover, based on the repetitive process stability theory, the sufficient conditions for the stability of system and the design method of robust controller are given in terms of linear matrix inequalities (LMIs) technique. Finally, the flow control simulations of two flow tanks in series demonstrate the feasibility and effectiveness of the proposed method

    Adaptive filtering-based multi-innovation gradient algorithm for input nonlinear systems with autoregressive noise

    Get PDF
    In this paper, by means of the adaptive filtering technique and the multi-innovation identification theory, an adaptive filtering-based multi-innovation stochastic gradient identification algorithm is derived for Hammerstein nonlinear systems with colored noise. The new adaptive filtering configuration consists of a noise whitening filter and a parameter estimator. The simulation results show that the proposed algorithm has higher parameter estimation accuracies and faster convergence rates than the multi-innovation stochastic gradient algorithm for the same innovation length. As the innovation length increases, the filtering-based multi-innovation stochastic gradient algorithm gives smaller parameter estimation errors than the recursive least squares algorithm
    corecore