59,734 research outputs found

    Self-adaptation of mutation distribution in evolutionary algorithms

    Get PDF
    This paper is posted here with permission from IEEE - Copyright @ 2007 IEEEThis paper proposes a self-adaptation method to control not only the mutation strength parameter, but also the mutation distribution for evolutionary algorithms. For this purpose, the isotropic g-Gaussian distribution is employed in the mutation operator. The g-Gaussian distribution allows to control the shape of the distribution by setting a real parameter g and can reproduce either finite second moment distributions or infinite second moment distributions. In the proposed method, the real parameter q of the g-Gaussian distribution is encoded in the chromosome of an individual and is allowed to evolve. An evolutionary programming algorithm with the proposed idea is presented. Experiments were carried out to study the performance of the proposed algorithm

    Half a billion simulations: evolutionary algorithms and distributed computing for calibrating the SimpopLocal geographical model

    Get PDF
    Multi-agent geographical models integrate very large numbers of spatial interactions. In order to validate those models large amount of computing is necessary for their simulation and calibration. Here a new data processing chain including an automated calibration procedure is experimented on a computational grid using evolutionary algorithms. This is applied for the first time to a geographical model designed to simulate the evolution of an early urban settlement system. The method enables us to reduce the computing time and provides robust results. Using this method, we identify several parameter settings that minimise three objective functions that quantify how closely the model results match a reference pattern. As the values of each parameter in different settings are very close, this estimation considerably reduces the initial possible domain of variation of the parameters. The model is thus a useful tool for further multiple applications on empirical historical situations

    An Experimental Study of Adaptive Control for Evolutionary Algorithms

    Get PDF
    The balance of exploration versus exploitation (EvE) is a key issue on evolutionary computation. In this paper we will investigate how an adaptive controller aimed to perform Operator Selection can be used to dynamically manage the EvE balance required by the search, showing that the search strategies determined by this control paradigm lead to an improvement of solution quality found by the evolutionary algorithm

    A test problem for visual investigation of high-dimensional multi-objective search

    Get PDF
    An inherent problem in multiobjective optimization is that the visual observation of solution vectors with four or more objectives is infeasible, which brings major difficulties for algorithmic design, examination, and development. This paper presents a test problem, called the Rectangle problem, to aid the visual investigation of high-dimensional multiobjective search. Key features of the Rectangle problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-variable decision space and 2) are similar (in the sense of Euclidean geometry) to their images in the four-dimensional objective space. In this case, it is easy to examine the behavior of objective vectors in terms of both convergence and diversity, by observing their proximity to the optimal rectangle and their distribution in the rectangle, respectively, in the decision space. Fifteen algorithms are investigated. Underperformance of Pareto-based algorithms as well as most state-of-the-art many-objective algorithms indicates that the proposed problem not only is a good tool to help visually understand the behavior of multiobjective search in a high-dimensional objective space but also can be used as a challenging benchmark function to test algorithms' ability in balancing the convergence and diversity of solutions

    A statistical learning based approach for parameter fine-tuning of metaheuristics

    Get PDF
    Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selection of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.Peer ReviewedPostprint (published version
    corecore