545 research outputs found

    A comparative analysis of nature-inspired optimization approaches to 2d geometric modelling for turbomachinery applications

    Get PDF
    A vast variety of population-based optimization techniques have been formulated in recent years for use in different engineering applications, most of which are inspired by natural processes taking place in our environment. However, the mathematical and statistical analysis of these algorithms is still lacking. This paper addresses a comparative performance analysis on some of the most important nature-inspired optimization algorithms with a different basis for the complex high-dimensional curve/surface fitting problems. As a case study, the point cloud of an in-hand gas turbine compressor blade measured by touch trigger probes is optimally fitted using B-spline curves. In order to determine the optimum number/location of a set of Bezier/NURBS control points for all segments of the airfoil profiles, five dissimilar population-based evolutionary and swarm optimization techniques are employed. To comprehensively peruse and to fairly compare the obtained results, parametric and nonparametric statistical evaluations as the mathematical study are presented before designing an experiment. Results illuminate a number of advantages/disadvantages of each optimization method for such complex geometries’ parameterization from several different points of view. In terms of application, the final appropriate parametric representation of geometries is an essential, significant component of aerodynamic profile optimization processes as well as reverse engineering purposes

    Aerodynamic CFD Based Optimization of Police Car Using Bezier Curves

    Get PDF
    This paper investigates the optimization of the aerodynamic design of a police car, BMW 5-series which is popular police force across the UK. A Bezier curve fitting approach is proposed as a tool to improve the existing design of the warning light cluster in order to reduce drag. A formal optimization technique based on Computational Fluid Dynamics (CFD) and moving least squares (MLS) is used to determine the control points for the approximated curve to cover the light-bar and streamline the shape of the roof. The results clearly show that improving the aerodynamic design of the roofs will offer an important opportunity for reducing the fuel consumption and emissions for police vehicles. The optimized police car has 30% less drag than the non-optimized counter-part

    Functional Generative Design: An Evolutionary Approach to 3D-Printing

    Full text link
    Consumer-grade printers are widely available, but their ability to print complex objects is limited. Therefore, new designs need to be discovered that serve the same function, but are printable. A representative such problem is to produce a working, reliable mechanical spring. The proposed methodology for discovering solutions to this problem consists of three components: First, an effective search space is learned through a variational autoencoder (VAE); second, a surrogate model for functional designs is built; and third, a genetic algorithm is used to simultaneously update the hyperparameters of the surrogate and to optimize the designs using the updated surrogate. Using a car-launcher mechanism as a test domain, spring designs were 3D-printed and evaluated to update the surrogate model. Two experiments were then performed: First, the initial set of designs for the surrogate-based optimizer was selected randomly from the training set that was used for training the VAE model, which resulted in an exploitative search behavior. On the other hand, in the second experiment, the initial set was composed of more uniformly selected designs from the same training set and a more explorative search behavior was observed. Both of the experiments showed that the methodology generates interesting, successful, and reliable spring geometries robust to the noise inherent in the 3D printing process. The methodology can be generalized to other functional design problems, thus making consumer-grade 3D printing more versatile.Comment: 8 pages, 12 figures, GECCO'1

    تمثيل الإطار الخارجي للكلمات العربية بكفاءة من خلال الدمج بين نموذج الكنتور النشط وتحديد ونقاط الزوايا

    Get PDF
    Graphical curves and surfaces fitting are hot areas of research studies and application, such as artistic applications, analysis applications and encoding purposes. Outline capture of digital word images is important in most of the desktop publishing systems. The shapes of the characters are stored in the computer memory in terms of their outlines, and the outlines are expressed as Bezier curves. Existing methods for Arabic font outline description suffer from low fitting accuracy and efficiency. In our research, we developed a new method for outlining shapes using Bezier curves with minimal set of curve points. A distinguishing characteristic of our method is that it combines the active contour method (snake) with corner detection to achieve an initial set of points that is as close to the shape's boundaries as possible. The method links these points (snake + corner) into a compound Bezier curve, and iteratively improves the fitting of the curve over the actual boundaries of the shape. We implemented and tested our method using MATLAB. Test cases included various levels of shape complexity varying from simple, moderate, and high complexity depending on factors, such as: boundary concavities, number of corners. Results show that our method achieved average 86% of accuracy when measured relative to true shape boundary. When compared to other similar methods (Masood & Sarfraz, 2009; Sarfraz & Khan, 2002; Ferdous A Sohel, Karmakar, Dooley, & Bennamoun, 2010), our method performed comparatively well. Keywords: Bezier curves, shape descriptor, curvature, corner points, control points, Active Contour Model.تعتبر المنحنيات والأسطح الرسومية موضوعاً هاماً في الدراسات البحثية وفي التطبيقات البرمجية مثل التطبيقات الفنية، وتطبيقات تحليل وترميز البيانات. ويعتبر تخطيط الحدود الخارجية للكلمات عملية أساسية في غالبية تطبيقات النشر المكتبي. في هذه التطبيقات تخزن أشكال الأحرف في الذاكرة من حيث خطوطها الخارجية، وتمثل الخطوط الخارجية على هيئة منحنيات Bezier. الطرق المستخدمة حالياً لتحديد الخطوط الخارجية للكلمات العربية تنقصها دقة وكفاءة الملاءمة ما بين الحدود الحقيقية والمنحنى الرسومي الذي تقوم بتشكيله. في هذا البحث قمنا بتطوير طريقة جديدة لتخطيط الحدود الخارجية للكلمات تعتمد على منحنيات Bezier بمجموعة أقل من المنحنيات الجزئية. تتميز طريقتنا بخاصية مميزة وهي الدمج بين آلية لاستشعار الزوايا مع آلية نموذج الكنتور النشط (الأفعى). يتم الدمج بين نقاط الزوايا ونقاط الأفعى لتشكيل مجموعة موحدة من النقاط المبدئية قريبة قدر الإمكان من الحدود الحقيقية للشكل المراد تحديده. يتشكل منحنى Bezier من هذه المجموعة المدمجة، وتتم عملية تدريجية على دورات لملاءمة المنحنى على الحدود الحقيقية للشكل. قام الباحث بتنفيذ وتجربة الطريقة الجديدة باستخدام برنامج MATLAB. وتم اختيار أشكال رسومية كعينات اختبار تتصف بمستويات متباينة من التعقيد تتراوح ما بين بسيط إلى متوسط إلى عالي التعقيد على أساس عوامل مثل تقعرات الحدود، عدد نقاط الزوايا، الفتحات الداخلية، إلخ. وقد أظهرت نتائج الاختبار أن طريقتنا الجديدة حققت دقة في الملائمة تصل نسبتها إلى 86% مقارنة بالحدود الحقيقية للشكل المستهدف. وكذلك فقد كان أداء طريقتنا جيداً بالمقارنة مع طرق أخرى مماثلة

    Automatic constraint-based synthesis of non-uniform rational B-spline surfaces

    Get PDF
    In this dissertation a technique for the synthesis of sculptured surface models subject to several constraints based on design and manufacturability requirements is presented. A design environment is specified as a collection of polyhedral models which represent components in the vicinity of the surface to be designed, or regions which the surface should avoid. Non-uniform rational B-splines (NURBS) are used for surface representation, and the control point locations are the design variables. For some problems the NURBS surface knots and/or weights are included as additional design variables. The primary functional constraint is a proximity metric which induces the surface to avoid a tolerance envelope around each component. Other functional constraints include: an area/arc-length constraint to counteract the expansion effect of the proximity constraint, orthogonality and parametric flow constraints (to maintain consistent surface topology and improve machinability of the surface), and local constraints on surface derivatives to exploit part symmetry. In addition, constraints based on surface curvatures may be incorporated to enhance machinability and induce the synthesis of developable surfaces;The surface synthesis problem is formulated as an optimization problem. Traditional optimization techniques such as quasi-Newton, Nelder-Mead simplex and conjugate gradient, yield only locally good surface models. Consequently, simulated annealing (SA), a global optimization technique is implemented. SA successfully synthesizes several highly multimodal surface models where the traditional optimization methods failed. Results indicate that this technique has potential applications as a conceptual design tool supporting concurrent product and process development methods

    Multi-Objective Optimization of the Switched Reluctance Motor for Improved Performance in a Heavy Hybrid Electric Vehicle Application

    Get PDF
    The goal of this research is to improve the performance of the switched reluctanc

    A B-Spline-Based Generative Adversarial Network Model for Fast Interactive Airfoil Aerodynamic Optimization

    Get PDF
    Airfoil aerodynamic optimization is of great importance in aircraft design; however, it relies on high-fidelity physics-based models that are computationally expensive to evaluate. In this work, we provide a methodology to reduce the computational cost for airfoil aerodynamic optimization. Firstly, we develop a B-spline based generative adversarial networks (BSplineGAN) parameterization method to automatically infer design space with sufficient shape variability. Secondly, we construct multi-layer neural network (MNN) surrogates for fast predictions on aerodynamic drag, lift, and pitching moment coefficients. The BSplineGAN has a relative error lower than 1% when fitting to UIUC database. Verification of MNN surrogates shows the root means square errors (RMSE) of all aerodynamic coefficients are within the range of 20%–40% standard deviation of testing points. Both normalized RMSE and relative errors are controlled within 1%. The proposed methodology is then demonstrated on an airfoil aerodynamic optimization. We also verified the baseline and optimized designs using a high-fidelity computational fluid dynamic solver. The proposed framework has the potential to enable web-based fast interactive airfoil aerodynamic optimization
    corecore