VISUALIZATION WITH NURBS USING SIMULATED ANNEALING
OPTIMIZATION TECHNIQUE

By

MOHAMMED RIYAZUDDIN

A Thesis Presented to the

DEANSHIP OF GRADUATE STUDIES

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS,
Dhahran, Saudi Arabia

January 2004

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis written by MOHAMMED RIYAZUDDIN under the direction of his thesis
advisor and approved by his thesis committee has been presented to and accepted by the
Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

Dr. Muhammad Sarfraz (Advisor)

Dr. Wasfi Ghassan Al-Khatib (Member)

Dr. Onur Toker (Member)

Department Chairman
Dr. Faisal A. Kanaan.

Dean of Graduate Studies
Prof. Osama A. Jannadi

Date

This is dedicated to my
Grandmother and

Parents.

i1

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful

All praise and glory to Almighty Allah (Subhanahu Wa Taalaa) who gave me courage
and patience to carry out this work. Peace and blessing of Allah be upon last Prophet
Muhammad (Peace Be Upon Him). Acknowledgment is due to King Fahd University of

Petroleum & Minerals for supporting this research.

My unrestrained appreciation goes to my advisor, Dr. Muhammad Sarfraz, for all the help
and support he has given me throughout the course of this work and on several other
occasions. [simply cannot begin to imagine how things would have proceeded without
his help, his support, and his patience. I also wish to thank my thesis committee members
Dr. Wasfi Ghassan Al-Khatib and Dr. Onur Toker for their help, support, and

contributions.

I also acknowledge my colleagues and friends as I had a pleasant, enjoyable and fruitful
company with them. Finally, I wish to express my gratitude to my family members for
being patient with me and offering words of encouragements to spur my spirits, at

moments of depression.

v

CONTENTS

ACKNOWLEDGEMENTS ...ccconinninnninsensnsssmsssasssssssssss iv
CONTENTS uceitiinnicsnnsesssesssisssssisssans v
LIST OF TABLES.....cuuooiiiitininnicsnicinssicssissesssesssissssssessssssssssssssssssssssssssssssssasssssssssans viii
LIST OF FIGURESuuooiitintiniininsnissensisssisssssssssssssssssessstsss ix
THESIS ABSTRACT (ENGLISH) .ccouuieviiniisuicsnicensnecssissessncssecsesssnssssssssssssssssssssassane xiii
THESIS ABSTRACT (ARABICQC) ...uuivuinenruinsuissensaesssnssessanssanssssssesssssssssssssassssssssssssssass Xiv
1 INTRODUCTION ...uucciiiiisrecsensenssecssissesssscsssssnsssssssssssssssssasssssssssssssssssssssssssssssssss 1
1.1 Review of visualization by curve and surface fitting.cccceeevvveevieeecieencieeee. 1
1.2 IMOTIVALIONeieeeiiiee et et ettt e e e et e e te e et e e e etaeeetaeeeaaeeesseeessaeesnsseesnsseessseeennseeas 3
1.3 Objectives and APPIroachoccvieviiiiiiiiiieieece e 3
L4 CONIIDULIONS ...evtiiieiieiieeieee ettt ettt ettt et et esbe e b et eseeenee 4
1.5 TRESIS OVEIVIEW ...ttt ettt ettt ettt e st eeneeas 4
2 LITERATURE REVIEWuciiiiiiininnninsensnssasssssses 6
2.1 INEPOAUCTION ...ttt 6
2.2 ParameteriZationoouiiiiiiiieie ettt 7
23 Curve and surface fittingccccecueiiiniiiiiiiieee e 8
23.1 Curve and Surface Representations..........coeevveeeererrienienieenienieneeeeseeeeee e 9
232 Choice of Independent Parameters...........c.oocveeviieriienieeiiienieeiieee e 11
233 Optimization Methods Used in Curve and Surface Fittingc.ccceeevvennnne. 14
3 FITTING OF FREE-FORM SURFACEScouveninrnsinsunssensessarssessacssasssessans 18
3.1 INEEOAUCTION ...ttt sttt 18
3.2 Curve and Surface BasiCs......c.ccuruiriiriiiiiiierieieeeeseee e 18

3.2.1
322
323
324
33
3.3.1
332
333
34
34.1
342
3.5
3.6

4.1
4.2
4.3
4.4

5.1
52
53
54
5.5
5.6
5.7
5.7.1
5.8

Implicit and Parametric FOrmSccccoeeiiieeiiieciiecie e 18
BEZICT CUIVES ..ottt ettt st et e st 21
Rational BeZIer CUIVES........coviviiiiirieiieieniiesieeteeitesie ettt 22
Tensor Product SUfaces........coouveiiiieiiiienieeee e 23
B-Spline Curves and SUrfaces..........ccceevcuiieriiieniieeciee et 24
Definition and Properties of B-Spline Basis Functions..........cccccoceveevenicnnenne 24
Definition and Properties of B-Spline Curves..........ccccoevveeviienienieenienieeeeene 27
Definition and Properties of B-Spline Surfacescccccceevvveevvieeniieeniieennnn. 33
Rational B-Spline Curves and Surfacescccceeevieeeiiieeiiieeiieeecceee e 41
Definition and Properties of Non-Uniform Rational B-Spline Curves............. 41
Definition and Properties of NURBS Surfaces........ccccoovveveiienienciienienieenne 47
Curve and Surface FItting..........ccvevieriiieiiieiieiieeie e e 51
Optimization of NURBS Parametersccccccvveeviieeiiieeciieeiee e 53
SIMULATED ANNEALINGcocuiiviinuinsenssinssnsssnssessasssasssssssssssssssssassssssssssssssssss 56
INErOAUCTION ...ttt 56
Simulated Annealing AlGOTIthimccooiiiiieiiiiiiiicce e 58
Parameters of the S.A. al@orithmocooiiiiiiiiiicee, 61
S.A. REQUITEMENTScouviiiieiiieiieeieeeiie ettt ettt ettt e et e snseesseesnbeenbeeenseenneas 63
THE PROPOSED METHOD.......ccovuiiiinuinreiiennuicsnnsessaccssnssesssessssssessssssssssesssses 65
INEPOAUCTION ...ttt et et e e e e s eas 65
Obtaining a digitized iIMage/SUrface..........coceeviieriiieriieniieie e 66
CONLOUT EXITACLION ...ttt sttt sttt et ettt et e b enees 68
Parameter eXtraCtion.........oooueiiiiiiieniiiiiie ettt 74
Control POINE GENETALION........eeeiiieeiieeeiieeeiieeeieeeeteeesteeesaeeesereeeaaeesseeesseeessseees 77
Generation of KNot VAlUES.........cccueiiiiiiiiiiiiecee e 78
Weight OPHIMIZATIONeouviieiiieiieeiieciie ettt ettt e sbe e esaaeeseesaneens 78
Weight optimization using Simulated Annealingccccoevveevieenienieennnnne. 79
KNOt OPtIMIZAtIONviiieiiieciiieciie ettt e e et e e e e srre e esaeeeesneeesnns 81

vi

6 RESULTS c.ouceiiiiinienentennenenstessnsssssssnsssesssssssssssssssssssssesssssassssssssssassssessassasssssaes 86

6.1 INErOAUCTION ... ettt e e e e tr e e e rae e s ereeeesneeenens 86
6.2 Weight OPtIMIZATIONeeciiiiiieiiieiieeie ettt ettt e sae et siae e e e ssbeesaesanaens 87
6.2.1 Curve Fitting reSUILSeoeiiiiiiiiieiie ettt 87
6.2.2 Surface fitting reSUILS.......cccviiiiiieeiie e 99
6.3 KNOt OPtiMIZAtION....c..eiiiiiiiiiiieeie et 108
6.3.1 Curve fitting TESULLScuieeiieiiecie e 108
6.3.2 Surface fitting reSUILS.......cccuiiiiiiiiiie e 118
7. CONCLUSION ...uutiuiisnicrensensaicssissssssessssssssssessssssesssssssssssssssssssssssssssssssssssassssssns 128
BIBLIOGRAPHY ...uucoiiiiirinnicsensenssicssnssnsssecssnssnssseessessssssesssssssssssssssssssssssssssssssssssssans 130
VITA iiiiinuinsnnsenssisssnssesssassssssss 136

vil

LIST OF TABLES

Table (5.1) Surface generating fUNCLIONSceevvuieriieriieiieiie ettt ens 66
Table (5.2) Scanned data POINTScccveeriieeiieiieiieeieeeie e eee et e sre et e eveebeessseeseesanaens 68
Table(5.3) Sample data points fOr SUFfACE Iccueeeceeeeciieeiiieiieeeeeee e 70
Table(5.4) Sample data points for Surface 2...........cococceeveeviiiiniiniiiiniiiiececseeeeens 71
Table(5.5) Sample data points fOr SUFFACE 3cccoeveiiiiiiiiiiiieieeee e 72
Table(5.6) Sample data POINtS fOr Jar........cccuievieiiieriiieiieieee et 73
Table (6.1) S.A. parameters fOI CUTVES. ...cccuieeiiiieiiieeeiieecieeerteeereeeereeeeveesreeeereeeenneees 87
Table (6.2) Metropol function eXecution time.ccccueereerieeriienieenie e 90
Table (6.3) Weight optimization parameters for ‘Pound’.cccccceevvveeceeveencieennennnnn. 90
Table (6.4) Weight optimization parameters for ‘AiChcccevvevcueeveeniieenieeieesieeiens 91
Table (6.5) Weight optimization parameters for ‘Aliccccoeevveeviieeiiiieeiieeieeeie e 93
Table (6.6) Weight optimization parameters for ‘Apple’.cccoviiviniiniiiiininienncnnens 95
Table (6.7) Weight optimization parameters for ‘Open Curve’...........cccoovvvevveniennennns 97
Table (6.8) Weight optimization parameters for ‘Surface 1.cccccvvevvvveviveneenneennen. 101
Table (6.9) Weight optimization parameters for ‘Surface 2°.ccccoevveeeveeecveeecenennne. 103
Table (6.10) Weight optimization parameters for ‘Surface 37,c.ccocveviiieiiieencieenee. 105
Table (6.11) Weight optimization parameters for Jar’.c.cccccovvevievenicneenenicneenne. 107
Table (6.12) Knot optimization parameters for ‘Pound’............cccccceeeeevveecereneencnnennen. 108
Table (6.13) Knot optimization parameters for ‘Aichccccceevvevveecienieeiiienieereeneen. 109
Table (6.14) Knot optimization parameters for ‘Ali’.ccceevvveeviieeiieeeieeeee e 111
Table (6.15) Knot optimization parameters for ‘Apple’..........ccccovvviviiiniiniienieneenen. 113
Table (6.16) Knot optimization parameters for ‘Open Curve'............cccoeeveecveveenveannen. 115
Table (6.17) Knot optimization parameters for ‘Surface I'........cccccoeevevvievcveneeeneennen. 118
Table (6.18) Knot optimization parameters for ‘Surface 2°.........ccocevvveeecveeevcveeeceeenne 119
Table (6.19) Knot optimization parameters for ‘Surface 3°........ccccoveevervicnveinenvcnenne. 121
Table (6.20) Knot optimization parameters for Jar’.........ccccoceevveniieiienieeiiieieeeeee. 123
Table (6.21) Weight & Knot optimization results SUMMAry.c.ccoeeeerveecveenreenreennen. 125

viil

LIST OF FIGURES

Figure (2.1) Control polygon of free form Curvecccceevvierieeiieiieeieceeeeeeeeee e 10
Figure (3.1). A circle of radius 1, centered at the origin.cccceeeevvevcieeecieeeieeeeeeee, 19
Figure (3.2). A sphere of radius 1, centered at the origin...........cecceeeveeriiinieniieieeeee, 20

Figure (3.3) The Non-Zero Zeroth-Degree Basis Functions, U = {0,0,0,1,2,3,4,4,5,5,5} .. 27
Figure (3.4) The nonzero first-degree basis functions, U = {0,0,0,1,2,3,4,4,5,5,5} .(Youssef

Figure (3.5).The nonzero second-degree basis functions,

U ={0,0,0,1,2,3,4,4,5,5,5} .(YOUSSET [35]) cuveeeirrieeiieeeiie ettt ettt 27
Figure (3.6) A cubic B-Spline curve on U ={0,0,0,0,1,1LL,1}, i.e., a cubic Bezier curve.

(Y OUSSET [35])eeureeeetieiiiie ettt ettt e ettt e et e e st e e st e e s teeessaeeessaeeessseeensseeensseesnsseessseeennseens 28
Figure (3.7a) Cubic basis functions on U ={0,0,0,0,1/4,1/2,3/4,1,1,1,1} .(Youssef [35]).. 30
Figure (3.7b) A cubic curve using the basis functions of figure 3.7a. (Youssef [35])...... 30
Figure (3.8a) Quadratic basis functions on U = {0,0,0,1/5,2/5,3/5,4/5,1,1,1} .(Youssef

Figure (3.8b) A quadratic curve using the basis functions of figure 3.8a. (Youssef [35]) 30
Figure (3.9) The strong convex hull property for a quadratic B-Spline curve; for
uelu,,u,,), Cu) is in the triangle P_,P_, P, .(Youssef [35]) cccccoereninininiiiiiiiinicnns 31

Figure (3.10) The strong convex hull property for a cubic B-Spline curve; for
uelu,,u,,), C(u) is in the quadrilateral P_,P_,P_ P, .(Youssef [35])...ccccccevveruininunncns 31

Figure (3.11) A quadratic B-Spline curve on U ={0,0,0,1/5,2/5,3/5,4/5,1,L,1} . The curve
is a straight line between C(2/5) and C(3/5).(Youssef [35]) cccvevvvrerveniienienieeiieeienne 31
Figure (3.12) A cubic curve on U = {0,0,0,0,1/4,1/2,3/4,1,L11} ; moving P, (to P))
changes the curve in the interval [1/4,1).(Youssef [35]) .cccveeviierieniiiiieeiieeecieeeeee 32

Figure (3.13) B-Spline curves (a) A ninth-degree Bezier curve on the knot vector

U ={0,0,0,0,0,0,0,0,0,0,L,LL, LLLLLLT} .(YOUSSEF [35]):urveermreeeremeeeereeseeeeeseeesesseeesesseneenn 33

X

Figure (3.13) B-Spline curves (b) A quadratic curve using the same control polygon

defined on U ={0,0,0,1/8,2/8,3/8,4/8,5/8,6/8,7/8,1,L1} .(Youssef [35]) ..cccvrvererrurnnnnns 34
Figure (3.14) B-Spline curves of different degrees, using the same control polygon.

(Y OUSSEE [35]) . eeureeeetieieiie ettt ettt et e et e e st e e et e e esteeesbeeenebeeensseeennaeeensaeesnseeennseeas 34
Figure (3.15) Product of a cubic and a quadratic basis function (a) N (u)N 02 (v);

U =1{0,0,0,0,1/4,2/43/4,1,1,1,1} and V ={0,0,0,1/5,2/5,3/5,3/5,4/5,1,1,1} (Youssef
1 ST 35
Figure (3.15) Product of a cubic and a quadratic basis function (b) N, ; (u)N 2.2 (v);

U =10,0,0,0,1/4,2/4,3/4,L,L11} and ¥ ={0,0,0,1/5,2/5,3/5,3/5,4/5,1,1,1} (Youssef [35]).

... 35
Figure (3.16a) A B-Spline surface-control net (Youssef [35]). .ooovvvevierviieveeniiieieeieenen, 37
Figure (3.16b) A B-Spline surface (Youssef [35])..ccceeriiieriiieiieeieeeeeeeeeeee e 37
Figure (3.17a) Product of a cubic and a quadratic B-Spline surface (Youssef [35]). 38
Figure (3.17b) The strong convex hull property (Youssef [35])...ccccovervieinieniienienieenen. 38
Figure (3.18a) A biquadratic surface (Youssef [35]). covevvveriierieriieiiecieeieeeee e 39

Figure (3.18b) A biquadratic surface (p =q= 4) using figure 3.18a control points

(Y OUSSEE [35]) e iurieeetie ettt ettt ettt et e et e e etae e e at e e e b e e etbeeeaaeesasseesnnaeeeaneeas 39
Figure (3.19a) A product of a planar quadratic and a cubic surface,

U ={0,0,0,1/4,1/2,3/4,1,1,1} and V ={0,0,0,0,1/5,2/5,3/5,4/5,1,1,1,1} (Youssef [35])....40
Figure (3.19b) P, 5 is moved, affecting surface shape only in the rectangle

[1/4,1)x[2/5,1) (YOUSSEE [35]). ceeeueeiieieeiieieeie ettt ettt 40
Figure (3.20a) U = {0,0,0,0,1/4,1/2,3/4,L.LL1} and {w,,...,w,} ={LL13,LL1} A cubic
NURBS curve. (YOUSSEE [35]) ueerieeiieniieeiienie ettt ettt 43
Figure (3.20b) U ={0,0,0,0,1/4,1/2,3/4,1,1,1,1} and {w,,...,w,} ={L,1,13,1,1,1} Associated
basis functions. (YOUSSET [35]).iicuiiiiiiiiiiie ettt et e e e 43
Figure (3.21) Rational cubic B-Spline curves, with w; varying. (Youssef [35]) 44

Figure (3.22a) The cubic basis functions for the curves of figure 3.21 (Youssef [35]).... 44
Figure (3.22b) The cubic basis functions for the curves of figure 3.21(Youssef [35])..... 44

X

Figure (3.22c) The cubic basis functions for the curves of figure 3.21 (c) w; =0 .(Youssef

[35]) cvereereeteeieete et ettt ettt ettt ettt b e ettt se e st et e b e b e eaeebeeteereestenae s e s enbesaeene e 45
Figure (3.24b) The quadratic basis functions for the curves of figure 3.23
W, =3/10 .(YOUSSET [35]) ettt 46

Figure (3.24c) The quadratic basis functions for the curves of figure 3.23 w, =0.(Youssef

Figure (3.26a) Control net and biquadratic NURBS surface, w,;, =w,, =w,, =w,, =10

with the rest of the weights 1. U =V ={0,0,0,1/3,2/3,1,1,1} Control net (Youssef [35]). 48
Figure (3.26b) Control net and biquadratic NURBS surface, w,;, =w,, =w,, =w,, =10

with the rest of the weights 1. U =V ={0,0,0,1/3,2/3,1,1,1} Biquadratic NURBS surface

(Y OUSSEE [35])ieureeeitieeeiie ettt ettt e et e e e st e et e e saaeeetaeeessaeesssseeesseeesssaeessseeennsenas 48
Figure (3.27) Bicubic NURBS surface defined by the control net in figure 3.26a, with
U=V ={0,0,0,0,1/2,1,1,LL1} and with the same weights (Youssef [35]). ..c..ccceeerrrurrrrnne. 49

Figure (3.28a) The basis function R, ,(u,v), with U ={0,0,0,0,1/4,1/2,3/4,1,1,L1} and
V' ={0,0,0,1/5,2/5,3/5,3/54/5,LL1}, w, ; =1 forall (i, j) # (4,2) (Youssef [35])........... 50
Figure (3.28b) The basis function R, ,(u,v), with U =1{0,0,0,0,1/4,1/2,3/4,1,11,1} and
V ={0,0,0,1/5,2/5,3/5,3/5,4/5,1,1,1}, w,; =1 for all (i, j) # (4,2) (Youssef [35])........... 51

Figure (3.29) A curve interpolating five points and two end derivatives............c.cceeuernens 51

Figure (3.30) A curve approximating m+/ points; the curve is constrained to pass through

the end points, Qp and Oy veeeveeeeiiieeiiece et 52
Figure (4.1a) The Simulated Annealing Algorithm.cccccoeiiiniiiiniiniiiiecs 58
Figure (4.1b) The Metropolis ProCedure.cccueevvierieeriienieeiieeie ettt 59
Figure (5.1a) Curve — weight OptimiZation.cceerveeriieriieiiienieereeeeeeiee e eveeeeneennees 67

x1

Figure (5.1b) Surface — weight Optimization...........ccueeeeiiieeiieeriie e 67

Figure (5.2) Input Curves and Surfaces...........ccoeeverieriiiiniiniiicneeeeeeeeecseee s 69
Figure (5.3a) Detailed Curve weight OptimiZation.c.ceeveerieerieeniieeieeieesie e eve e 75
Figure (5.3b) Detailed Surface weight optimization.cecveevieeiienieeneenieeieeeeennenn 76
Figure (5.4a) Detailed Curve knot optimization.ccceeeveeerieeerieeeiieeeieeeeeeeevee e 84
Figure (5.4b) Detailed Surface knot optimization.ccceceevueevienieneniieneenicnieneecnens 85
Figure (6.1) GUI fOT CUIVES.......coiuiiiiiiiieiie ettt ettt ettt eae e 88
Figure (6.2) Weight optimization for ‘Pound’.ccccoeevveeeeenciieiiecieeceeeieeee e 89
Figure (6.3) Weight optimization for ‘Aich’.cccoevveeviieeeiiieieeeee e 92
Figure (6.4) Weight optimization for “Ali"..........ccccoeviiviiiiniiniinieeececeeee s 94
Figure (6.5) Weight optimization for Apple’ccoccvevievieiiiiiieieeeeeeeeee e 96
Figure (6.6) Weight optimization for ‘Open Curve’ccccooevvvevveeveeeneencieeneenveenn 98
Figure (6.7) GUI fOr SUITACES.vviiiiiieciiiecie ettt 99
Figure (6.8) Weight optimization for ‘Surface 1’ccccoccevviviiviniinieniiniineecneene, 100
Figure (6.9) Weight optimization for ‘Surface 2ccccccooevviiiiiiiieieeeeeieeie e 102
Figure (6.10) Weight optimization for ‘Surface 3.cccoovvevevieoieniienieeieeieeieeiee e 104
Figure (6.11) Weight optimization for ‘Jar’.cccveeviieeiiieeiiieeiee et 106
Figure (6.12) Knot optimization for ‘Pound’cccccccueeeouieeiiieeiiieeiieeeeieeeieeeieeens 110
Figure (6.13) Knot optimization for “Aich’.ccocceeiiiniiiiiiiiiiiieceeee e 112
Figure (6.14) Knot optimization for “ALi”ccccoeviiiieiiieiecieeieeee e 114
Figure (6.15) Knot optimization for “Apple’........ccceerieeiierieniieieecie e 116
Figure (6.16) Knot optimization for ‘Open Curve’............ccoeeveveeeeieeecieeeiieeecieeeceeenns 117
Figure (6.17) Knot optimization for ‘Surface 1°.c..ccccovevviiniiiiiniiinieniinicseeicneenn, 120
Figure (6.18) Knot optimization for ‘Surface 2.ccceceeiiiiiiiiieniieee e 122
Figure (6.19) Knot optimization for ‘Surface 3.ccccocovevveeciieiieeiieieeieeee e 124
Figure (6.20) Knot optimization fOr Jar’.coeevieeioiieeiiie et 126
Figure (6.21) Weight — Knot CompariSON.ccceeverienerienienieeienieesie e 127

xii

THESIS ABSTRACT (ENGLISH)

NAME: MOHAMMED RIYAZUDDIN

TITLE: VISUALIZATION WITH NURBS USING SIMULATED
ANNEALING OPTIMIZATION TECHNIQUE.

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: JANUARY 2004

The global optimization strategy of Simulated Annealing is applied to the optimization of
weight and knot parameters of NURBS for curve fitting and surface fitting; the objective
being the reduction of fitting error to obtain smooth curves and surfaces with the least

cumulative error possible.

For weight optimization, a uniform knot vector and a fixed number of control points are
calculated using the least squares technique, while the sum of squared errors is taken as
the objective function. In knot optimization, the weight vector is set to unity. The number
of elements of the weight vector is taken the same as the number of control points. A good
initial solution of knot vector is taken. New knot vectors are calculated using the

neighborhood function of the Simulated Annealing Algorithm.

Finally, results obtained from optimization of weights and knots of NURBS for both
curves and surfaces indicate that weight optimization is a better option than knot
optimization because knot optimization requires a good initial location of knot vector.
Keywords: NURBS, Simulated Annealing, Weight Optimization, Knot Optimization,
Control Polygon, Control Points, B-Splines.
MASTER OF SCIENCE DEGREE
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, DHAHRAN, KSA
January 2004

xiil

THESIS ABSTRACT (ARABIC)

AL
Gl Gl) dena s pud)

bl 2 il Culld 2asiuls (NURBS) cilbinia Gash e bl Jia s sl) o) g
(Simulated Annealing)

) anlal) o le s aadil)
2004 1z AL &k

(NURBS) Cliisias aSxill Lléil 5 jliiall il sl (Simulated Annealing) (Aiaill 20 il ool (o
hiiad (A o Lh Y] Juléi N Ldanl) 038 Cigliy o po S gy i) (fiiaT 6 a0 il 5 g sl s
Sas e Lad g pene ol Lol Cliinie o Jpasd N 595 Las CLLLY

o plodf plasinly cOLalead 23] Ll of i LSl (NURBS) Coliinde ci)laleal 5 jlisall aill (pun’ dulac 2
Al LS il Dulae] ling JLARY) 38 (e il (il (ulis fiass (least squares) s siaal Cles yel
oY Il s Jonivg SlI5 ey Bl ol il s g S jsY] i PIE o iniall aSa b7 Lk

oot a0 ill o gloaly 46 jeall N gl plasiicaly Jif (s uliia <3 g Jicadl (Sl ilund

hiadl 44y yhall 038 f e (NURBS) & s s lsinio (o SSI) s¥) 5 aSail) Lléif psuunill dubae zeilii i
cindalls aSa il Ll oY) LAY 50 sa Ao dated Ll s dulac Y Sl g Laan o LI Cpueal re

LUl aSaiall pliad caiel Lliof o) Y Lulidf ccalail 5SIse « NURBS <l s
B-Splines ¢«iaSxid

astall b bl s, 2
Cdlaall g J g iall agd Gllal) daala
300 grd) Ay) ASlaal) - o gl

X1v

1 INTRODUCTION

This chapter gives a brief review of the visualization of data by curve and surface fitting,
the motivations behind the presented research, the approach followed during the research,

the scientific contributions and an overview of the thesis.

1.1 Review of visualization by curve and surface fitting.

Visualization has long been a powerful tool for the analysis of data sets, either as a means
of communicating results of data gathering/processing or as a precursor to focused
quantitative analysis. Familiar examples include histograms, plots, graphs, maps, images,
surfaces, and volumes. By harnessing the perceptual abilities of the human vision system
we are often able to rapidly obtain insights into the data characteristics (e.g. relationships,

patterns, anomalies, trends, clusters and models).

There are many well-known applications in data visualization, in which it is desirable to
create geometric models of existing images and objects, for which no such models exist.
This is exactly what reverse engineering aims at. The existence of a computer model
provides a multitude of gain in improving the quality and efficiency of design, analysis
and manufacturing. Thus reverse engineering involves establishing a CAD model from

prototypes or manufactured parts such as spare parts of different machines.

Researches in the past have spent considerable time, figuring out how best to fit curves
and surfaces to a set of data points. Curve fitting plays an essential part in many
applications. Scientists use curve fitting in application such as data reduction,
approximating noisy data, curve and surface fairing and image processing application like

generating smooth curves to digitized data [1].

There are several hardware and software tools used in the area of reverse engineering of
geometric curves and surfaces. Hardware tools include: (1) laser scanners, (2) tactile
sensing co-ordinate measuring machines and (3) tactile sensing robotic arms. The tools
sample clouds of points from the prototype. The measured points need further processing
in several steps. These steps include: (1) curve and surface identification from the
scanned points, (2) parameterization of the scanned points and (3) curve and surface
fitting. Research trends in reverse engineering cover the three sub-areas. The third area is

of a crucial importance in the data visualization and reverse engineering research.

Accurate fits give better representation of the actual curve and surface. In addition, there
are several applications where accurate fits are a must (e.g. aircraft components with tight
tolerances). There are several commercial packages that perform the various reverse
engineering tasks. These packages are either stand-alone or embedded within famous
commercial CAD packages. The fits used in these packages depend heavily on least
squares approximations, which give crude fits. The use of optimization in curve and

surface fitting is still an open area of research, although it witnessed a proliferating

number of applications in the last decade. The presented thesis focuses on the area of

minimizing the error between the fitted curve and surface and the laser-scanned points.

1.2 Motivation

The available literature in data visualization and reverse engineering focuses on using
traditional optimization techniques for the curve and surface-fitting problem. These
methods usually linger in local minima and therefore might miss better fits. On the other
hand, the few available publications that used global optimization methods used Genetic
Algorithms (GA's), which needs a large number of function evaluations. These
computationally exhaustive algorithms are not practical in use for reverse engineering
applications even when fast computers are used, due to the large number of sampled
points involved in the fitting process. Therefore, there is a need for either finding,
modifying or devising a global optimization technique that utilize a relatively small

number of function evaluations to be used in curve and surface fitting.

1.3 Objectives and Approach

The objective of the research reported in this thesis is to develop a procedure for fitting
free form curves/surfaces to measured points. The fit should have the lowest possible
fitting error. This goal is achieved in this thesis using the following approach:

1. Free form surfaces are modeled using Non-Uniform Rational B-Splines (NURBS) to

achieve the maximum possible geometric flexibility.

2. The approximate shape of the fitted curve and surface is evaluated using a least

squares estimation of the NURBS control points.

Further refinement of the fitted curve and surface is obtained by optimizing the values
of the NURBS weights and knots separately.

The Simulated Annealing (SA) optimization heuristic is used for the global
optimization of the fitting error, which has a promising performance and small

cumulative error values.

1.4 Contributions

The reported research makes the following contributions in the fields of surface fitting

and SA:

1.

SA is used for the first time in the fitting of free form curves and surfaces to scanned
data, leading to better fitting accuracy and lower fitting time as well.
The applied SA algorithm utilizes a relatively low execution time than Tabu Search

and GA’s and is thus useful for practical reverse engineering applications.

1.5 Thesis Overview

The thesis is divided into six chapters and three appendices:

1.

Chapter 1 includes the motivation, research objectives, approach and scientific
contributions.
Chapter 2 surveys the literature related to the optimization of NURBS parameters and

application of optimization heuristics to the problem. It also presents a review of

related research topics covering areas of reverse engineering, geometric modeling and
global optimization. It concludes by pointing out several key issues directly related to
the research topic.

Chapter 3 describes a procedure for the least squares fitting of NURBS surfaces to
scanned data. The chapter starts with an overview of the NURBS theory, the fitting
procedure and concludes with the formulation of the optimization problem.

Chapter 4 provides a detailed description of the Simulated Annealing optimization
heuristic

Chapter 5 presents several fitted curves and surfaces to show the merits of the
developed algorithm. The chapter concludes with the comparison with curves and
surfaces fitted by optimizing the NURBS weights and knots separately.

Chapter 6 concludes the thesis and provides suggestions for future research.

. All procedures and algorithms were developed using MATLAB software.

2 LITERATURE REVIEW

2.1 Introduction

Reverse Engineering can be defined as the process of deduction of design criteria and
parameters from an existing prototype. It is an increasingly growing discipline that can be
divided into several branches [29]. These include: (1) functional analysis where the
overall/detailed design function is guessed, (2) material analysis where the possible
material composition of the prototype is estimated, and (3) geometric analysis where the
prototype's geometry is evaluated. It is desirable, in many areas of industry, to create

computerized geometric models of existing objects for which no such model is available.

The existence of a geometric model provides a multitude of gain in improving the quality
and efficiency of design, manufacturing, and analysis. A main advantage of such process
is the re-manufacturing of spare parts of different machines whose blueprints are
unavailable or whose vendors are out of business. Another application that depends
heavily on reverse engineering is the die and mold industry where modifications of
existing geometric models is a necessity after the die manufacture for subsequent analysis
[12]. Further analysis may include finite element analysis, NC path generation and

process planning.

The process of reverse engineering of geometric curves and shapes can be divided into
four main consecutive tasks [29]. These are: (1) Data acquisition, (2) Segmentation, (3)
Parameterization and (4) Surface Fitting. Since, the presented thesis is concerned with the
last task, a brief review of the third task is provided, and then a comprehensive review of

the last task is presented.

2.2 Parameterization

When free-form curves or surfaces are reverse engineered, a parametric curve or surface
is fitted to the measured points. These curves/surfaces are function of a pair of
independent parameters. Each measured point needs approximate values of the
independent parameters to be associated with it. The estimation of such approximate
values is known as parameterization. Piegl [16] proposed three parameterization methods
for line-by-line parameterization, and recommended a parameterization method known as
the centripetal method. Line by line parameterization, may be plausible for tactile sensing
methods and some laser scanning setups, but may not be applicable to some laser

scanning methods which produce non-uniform distribution of the sampled points.

Methods for parameterizing unorganized points are given by Hoscheck et. al. [8], which
include projection of the data points to planes and the development of approximate
parametric patches on which the data points are projected. However, none of their

proposed methods can be considered a robust method working for all free-form surfaces

and hence they state that all of those methods are to a certain extent ad hoc. A recent
publication by Floater et. al. [4] demonstrates a method using iterative projection to balls.
Their method is shown to be successful on highly irregular surfaces (a human face was
used as an example). However, they state that the method needs further trials and

elaborations.

2.3 Curve and surface fitting

Fitting of curves and surfaces to the measured points is the last step in the reverse
engineering process. In case the exponent r is equal to 2, Equation (2.1) reduces to the
least squares function and in case r is equal to infinity, Equation (2.1) reduces to the
maximum error. Low values of r are recommended for high measurement or sampling

errors, otherwise the minimization of the maximum error gives the best fit.

A study on the exponent » was conducted by Nassef et. al. [15] showing that for laser
scanning applications, the sampling error is low due to the large number of sampled
points, but the high measurement errors inherent to laser scanners necessitate the use of
lower values for r. Generally the fitting problem can be divided into three sub-tasks.
These are: (1) the choice of the fitting surface representation, (2) the choice of the
independent parameters within the fitting surface, and (3) the choice of the optimization

method for error minimization. The following sub-sections review each sub-task.

2.3.1 Curve and Surface Representations

Fitting curve/surface representations fall into two major categories. These are: (1) implicit
curves/surfaces that relate the x, y and z coordinates of a curve/surface implicitly, and (2)
parametric curves/surfaces, which relate the coordinates of any given point on a
curve/surface to a pair of independent variables. Chivate et. al. provide an excellent
review of curve/surface representations in both categories and shows that implicit surface
representations are more suitable to the fitting of standard shapes such as planes,
cylinders, spheres and tori, while parametric representations yield themselves better to the

fitting of free-form surfaces [2].

While implicit algebraic representations are easy to formulate, parametric surface
representations are more complex and saw continuous evolution since the early seventies.
Initially they were formed using power basis functions, which were not easy for CAD
representations. Later, Bezier curves and surfaces [16] were introduced with the concept
of having an approximating polygon that gives the rough shape of the free form curve.
The actual curve is then formed by multiplying the control points on the polygon, which
is better known as the control polygon, by some basis functions based on Bernstein

polynomials (Figure 2.1).

Bezier curves and surfaces have two major drawbacks:

10

1. They do not offer some form of local control on curve segments (or surface patches)
and hence do not provide the maximum flexibility, and

2. The degree of the curves increases with the increase in the number of control points,
and hence cannot be used to approximate semi-quadratic surfaces with a large number of

control points.

The drawbacks of Bezier surfaces were taken care of when B-Spline curves and surfaces
were used for curve and surface fitting in the early nineties [26] [27]. Similar to Bezier
curves/surfaces, B-Spline curves/surfaces depend on control polygons/nets to represent
the approximate shape of the free form curves/surfaces. Their basis functions are piece-
wise polynomials defined between breakpoints (known as knot values) along the span of
the independent parameters. Such definition over local spans of the independent
parameters gives B-Splines a local modification property. In addition, the curve/surface

degree is controllable.

Control
Polygon

Figure (2.1) Control polygon of free form curve

11

The advantages of B-Spline surfaces led to the fitting of surfaces that were too complex
for previous representations such as swept surfaces [36]]. The problem of curve and

surface fitting using B-Splines was addressed by Kitson [11].

A more general form of B-Spline curve/surfaces known as Non-Uniform Rational B-
Splines (NURBS) were used later for representing free form shapes [17]. Although
NURBS are more general than mere B-Splines and give the maximum possible flexibility
to the fitted curve/surface, their complex equations were not easy to use for surface
fitting. Some recent publications [31] [32] and [28] use B-Splines in their initial fit then

revert to NURBS for subsequent re-fitting.

2.3.2 Choice of Independent Parameters

The fitting curves/surfaces have a multitude of independent parameters that can be used
as independent variables for the minimization of the error function (Equation 2.1).
Although the best solution to the error minimization problem would involve all
independent variables, such choice might yield a large search space for the optimization
algorithm. Therefore, reverse engineering researchers resort to the selection of some

specific parameters as independent variables.

In the case of fitting implicit algebraic curves/surfaces, the curve/surface coefficients
become the independent variables. Such curves/surfaces do not need any reduction in the

number of independent variables since they are not as complex as free-form

12

representations. The estimation of such coefficients for different standard shapes is given

thoroughly by Werghi et. al. [30].

B-Spline (or NURBS) curves/surfaces have the following parameters that need to be
estimated either by some rough approximation or by their inclusion within the
independent variables of the error minimization problem.

1. Control Points

2. Knot values

3. Weights (in case of NURBS surfaces)
Piegl [17] made some approximate estimation of the knot values and optimized the values
of the points. Huang et. al. [9] have Simulated various facial expression in animation by
fixing the control points and changing weights, while Prahasto et. al. [19] optimized the

knot vector for mult-curve B-Spline approximation.

The key to using a spline is the determination of good knots [23] [3]. In order to obtain a
good curve or surface approximation, knots have to be placed as precisely as possible. A
new alternative is presented by Yoo et. al. [34], which computes control points for
approximation using object-oriented paradigm. This paradigm requires a central
constructor evaluator, for generating the control points and derivatives for a given
mapping. Computing control points is a classical approximation. Following the object
oriented design principles of data hiding, the defining curves (private) control points are

only accessed by their homogeneous evaluators and the approximation procedures does

13

not know about the ruling curves. A theoretically optimal solution for this is produced by

meta-algorithm[18].

However, almost all of the more recent publications use a subset of the above parameters
as independent variables. By adjusting the positions of control points and manipulating
associated weights, one can design a large variety of shapes using NURBS. A matrix
representation for NURBS curves and surfaces has been described by Gregory et. al. [6].
They represent the matrix form for NURBS by straightforward algebraic manipulation by
using Bohem’s knot insertion algorithm instead of Deboor. For a NURB curve of degree
‘d’, the basic handles are control points, weights and knots. The method first performs a

linear transformation between ¢ (knots) and [0, /] by using a normalized parameter.

Usually subsets of the NURBS parameters are used as independent variables for
optimization. The optimization of the control points and then the subsequent knot values
was explored by Limeaiem et.al. [12] and Sarkar et. al. [26]. Raza [22] optimized both the
knots and the weights corresponding to the control points for curve and surface fitting.
Yau et. al. [32], then Shalaby et. al. [28] demonstrated that better flexibility of the fitted
curve, and hence lower fitting errors, can be obtained by optimizing over the control

points and then the weights of a NURBS curve/surface.

In [25], a simple tool addresses the problem of selecting the parameters of NURBS. It

consists of a perspective functional transformation of arbitrary origin O. The extra

14

freedom provided by the weights in rational form is controlled in a geometric way
without any numerical input. The displacement of several control points, keeping a
common center O, can manipulate NURBS in ways that are simply impossible to achieve
in integral form. This tool effectively employs the added flexibility provided by weights.
By varying weights, a push/pull in the curve towards/away from the control points is
created. Cases involving several control points in perspective functional transformations

are also considered.

However, all of the previous fitting research resorted to a two-step approach, where the
control points are estimated using least-squares approximation (which is the simplest
form of quadratic programming) and then knots or weights are optimized using non-linear
programming. The combination of subsets of the above parameters in the optimization
problem has always been avoided on grounds of narrowing down the optimization search

space, but in fact such combination still has to be explored.

2.3.3 Optimization Methods Used in Curve and Surface Fitting

As mentioned in the above sub-section, the control points of a B-Spline/NURBS
representation of a fitted curve/surface have been traditionally estimated using least
squares. The knot values are either taken to be uniform or approximated according to the
distribution of the measured points [17] and the weights are set to unity. After the
estimation of the control points, optimizing over either the knot values or the weights

further enhances the fitting. This enhancement is usually solved as a non-linear

15

programming problem. Gradient-based methods, such as Levenberg-Marquardt method
[21], have been used for knot value optimization [26]. Direct search methods, such as
Powell method, have also been used for the weights optimization [32]. Both approaches
have the advantage of rapid convergence, but on the other hand may linger in local

minima.

Yoshimoto et al.[33] proposed a new method that determines the number of knots and
their locations simultaneously and automatically by using a G.A. This has the same
problem of enlarged searched space. Raza [22] optimized both the knots and the weights
corresponding to the control points using G.A's. The chromosomes have been constructed

by considering the candidates of the locations of knots as genes.

Limeaiem et.al. [12] showed that the error minimization of parametric curves/surfaces is a
global optimization problem, and used binary-coded GA’s [5] for knot values
optimization. Although the binary-coded GA’s arrive to near global optimum solutions,

the binary representation of the independent variables tend to enlarge the search space.

Shalaby et. al. [28] used real-coded GA’s for the optimization of the NURBS weights.
Real-coded GA’s [37] have been proven to be better suited for continuous domain
optimization. The same method has also been used by Nassef et. al. [15] for the fitting of

prismatic features. However, both types of GA’s need a large number of objective

16

function evaluations and hence can be used only for fitting small curve/surface patches or

prismatic features.

In [13], a general framework is setup for the application of genetic algorithms in curve
design. Then, within this scheme, the problem of spline interpolation- a frequently used
method for representing complex geometrical shapes in CAD/CAM system- is dealt with.
While the method is simple and robust, it suffers from the drawback that some parameters
must be given that are needed for the mathematical description but are not closely related

to the geometrical input data of the object.

There are two other possible candidate global optimization methods that have not been
used yet in surface fitting. These are: (1) Simulated Annealing (SA) and Tabu Search
(TS). A good review of these methods is given by Pham et. al. [38]. Regarding the
number of objective function evaluations, TS has the same drawback as GA’s, since it
needs an excessive amount of objective function evaluations. This leaves SA as the
candidate method to be explored for achieving globally minimum fitting errors with lower

objective function evaluations.

A modified Tabu Search (T.S) global optimization technique has been used by Youssef
[35], to optimize NURBS’ weights to minimize the fitting error in surface fitting, but a

clear stopping criterion has not been used for this modified Tabu Search algorithm. To

17

our knowledge, the S.A. global optimization heuristic has not been applied to optimize

NURBS parameters.

18

3 FITTING OF FREE-FORM SURFACES

3.1 Introduction

As previously discussed in Chapter 2, the measured points obtained by the measuring
devices are to be fitted into a surface in order to obtain the geometric model of the
required object. The error function between the measured points and the fitted surface is
given in equation 2.1. Minimization of this error function is the main problem to be
solved. This chapter describes the surface representation used for the fitting operation and
the steps performed in order to obtain the initial fit. In addition, the choice of the
parameters that can be used as independent variables for the minimization of the error

function is discussed in details.

3.2 Curve and Surface Basics

3.2.1 Implicit and Parametric Forms

There are two main methods of representing curves and surfaces in geometric modeling.
These methods are implicit equations and parametric functions.The implicit equation of a

curve lying in the xy plane has the form f(x,y) = 0. Figure 3.1 shows an example of the

circle with unit radius centered at the origin, specified by the equation

Sy =2 +y" =1=0.

18

19

In parametric form, each of the coordinates of a point on the curve is represented
separately as an explicit function of an independent parameter:

C(u) = (x(u), y(u)) alu<b (3.1)
Therefore, C(u) is a vector-valued function of the independent variable, u . Although the
interval [a,b] is arbitrary, it is usually normalized to [0,1]. The circle shown in

figure 3.1 is defined by the parametric functions:

x(u) = cos(u)
y(u) = sin(u)

o
IA
S
IA

N

(3.2)

Radius = 1

Figure (3.1). A circle of radius 1, centered at the origin.

Surfaces can be defined by implicit equations of the form f(x,y,z) = 0. For example the
sphere of unit radius centered at the origin, shown in figure 3.2, can be specified by the
equation x° + y° +z° —1=0. A parametric representation of the same sphere is given by
S(x(u,v), y(u,v),z(u,v)), where

x(u,v) = sin(u) cos(v)

Y(u,v) = sin(u)sin(v) SusmT (3.3)
0<v<
z(u,v) = cos(u)

20

Both implicit and parametric forms have their advantages and disadvantages. Successful

geometric modeling is done using both techniques. Piegl [17] gives a comparison

between both representations as follows:

e By adding a z coordinate, the parametric method is easily extended to represent
arbitrary curves in three-dimensional space, C(u) = (x(u),y(u),z(u)); the implicit

form only specifies curves in the xy (or xz or yz) plane.

Figure (3.2). A sphere of radius 1, centered at the origin.

e [t is difficult to represent bounded curve segments (or surface patches) with the
implicit form. However, boundedness is built into the parametric form through the
bounds on the parameter interval. On the other hand, unbounded geometry (e.g., a
simple straight line given by f(x,y) = ax+ by +c =0) is difficult to implement using
parametric geometry.

e Parametric curves possess a natural direction of traversal (from C(a) to C(b) if

a <u <b); implicit curves do not. Hence, it is easy to generate ordered sequences of

21

points along a parametric curve. A similar statement holds for generating meshes of
points on surfaces.

e The complexity of many geometric operations and manipulations depends greatly on
the method of representation.

Two classic examples are:
e Computing a point on a curve or surface, which is difficult in the implicit form and
e Determining if a given point is on the curve or surface, which is difficult in the

parametric form.

Parametric representations are the most suitable forms for representing free-form
surfaces. Since the main concern of the presented thesis is the fitting of free-form surfaces
to a set of measured points, the rest of this chapter concentrates on free-form

representations.

3.2.2 Bezier Curves

One of the early parametric curve and surface representations that became widely used is

the Bezier representation. An nth-degree Bezier curve is defined by:

Cu) = zo B, ()P 0<u<l (3.4)
The basis (blending) functions, {B,,(u)}, are the classical nth-degree Bernstein
polynomials given by:

B, ,(u)= z'(nle)'ul (I-u)"" (3.5

22

The geometric coefficients of this form, { P}, are called control points. The control

points form a linear approximation of the free-form curve as shown in figure 2.5. The
polynomial given by equation 3.5 covers the whole range of the independent parameter

u.

3.2.3 Rational Bezier Curves

It is known from classical geometry that all conic curves, including circles, can be
represented using rational functions, which are defined as the ratio of two polynomials. In

fact, they are represented with rational functions of the form:

X (u))= T (3.6)

) = “ W)

where X(u),Y(u), and W (u) are polynomials, that is, each of the coordinate functions

has the same denominator.

Thus an nth-degree rational Bezier curve is defined by:

C(u)= R,)P 0<u<l (3.7)
i=0
where
B, |
Ri’n (Z,[) — - nn (u)wl

sz,n (Z/I)Wj
Jj=0

23

The P; = (x;, yi, z;) represents control points and B, ,(u) represents basis functions; the w,

are scalars, called the weights. Thus, W(u)= % B, ,(u)w, is the common denominator
pra2

function. It is assumed that w, > 0 for all ;. This ensures that ¥ (u) > 0 for all u €[0,1].

3.2.4 Tensor Product Surfaces

While a curve C(u) is a vector-valued function of one parameter, a surface is a vector-

valued function of two parameters, u and v. Thus it has the form

S(x(u,v), y(u,v),z(u,v)), (u,v) € R. There are many schemes for representing surfaces.

Probably the simplest method, and the one most widely used in geometric modeling

applications, is the tensor product scheme.

The tensor product method is basically a bi-directional curve scheme. It uses basis
functions and geometric coefficients. The basis functions are bivariate functions of u and
v. Nonrational Bezier surfaces are obtained by taking a bi-directional net of control points

and products of the univariate Bernstein polynomials:

Su,v) =3 3B, w)B,,(v)P, 0<u,v<l (3.8)

i=0 j=o0

A rational Bezier surface is defined as follows:

S@,v) =3 SR, ,(u,v)P, 0<u,v<l (3.9)

i=0 j=o0

where

24

lghn(ll)l}}nl(v)vvh'
R, (u,v)=—— - /

>3 B, (w)B,,(vw,,

r=0s=0

Bezier curves and surfaces are considered to be a prelude to the more flexible B-Spline

curves and surfaces.

3.3 B-Spline Curves and Surfaces

3.3.1 Definition and Properties of B-Spline Basis Functions

Curves consisting of just one polynomial or rational segment (as in the case of Bezier

curves) are often inadequate. Their shortcomings are:

e A high degree is required in order to satisfy a large number of constraints; e.g.,
(n—1)-degree is needed to pass a polynomial Bezier curve through »n data points.
However, high degree curves are inefficient to process and are numerically unstable.

e A high degree is required to accurately fit some complex shapes.

e A change in one control point changes the whole curve and hence, there is no local

control on segments of the curve.

The solution is to use curves (surfaces) which are piecewise polynomial, or piecewise
rational of which the most common type is the B-Spline curves (surfaces). B-Spline
curves use the same structure of Bezier curves, but the Bernstein polynomial (equation

3.5) is replaced with B-Spline basis function.

25

The following paragraph describes how a B-Spline curve is defined.

Let U ={u,,...,u,} be a non-decreasing sequence of real numbers, ie., u, <u,,,
i=0,..,m—1. The u, are called knots, and U is the knot vector. The i B-Spline basis
function of p-degree (order k), denoted by N, ,(u), is defined as follows:

Noyw)y=1 ifu <u<u,

N,,(u)=0 otherwise

u—u,; Uipg —U
Nip () =———= N,y () + = Ny, (@) (3.10)

i+p i Uippor Uiy
Note that:

e N,,(u) is a step function, equal to zero everywhere except on the half-open interval
uelu,u,,).
e For p>0, N, ,(u) is alinear combination of two (p-1) -degree basis functions.

e Computation of a set of basis functions requires specification of a knot vector, U, and
the degree, p.

e The N,, is a piecewise polynomial, defined on the entire real line. Generally the
interval [u,,u, | is of interest.

e The half-open interval, [u,,u,,,), is called the i knot span. It can have zero length,

since knots need not be distinct.

26

Ex3.1: Let U ={u,=0,u, =0,u, =0,u; =Lu, =2,u;, =3,u, =4,

u, =4,ug =5u, =4,u;, =5u, =5u,, =5} and p=2. The zeroth-, first-, and second-
degree basis functions, which are not identically zero, are shown in figures 3.3, 3.4, and
3.5, respectively.

B-Spline basis functions possess the following important properties :

1

e N, (u) ifuis outside the interval [u,,u,, ,.,) (local support property).
e In any given knot span, [u,,u), at most p+1 ie. k of the N, (u) are nonzero,

namely the functions N, N

J=p:p2 7 jp”

e N, ,(u) forall i, p, and u (nonnegativity).

e For an arbitrary knot span, [u,,u,,,), i N, ,(u)=1 forall u elu,,u,,) (partition of

J=i=p
unity).

Except for the case p=0, N, ,(u) attains exactly one maximum value.
Once the degree is fixed the knot vector completely determines the functions N, ,(u).

There are several types of knot vectors. In this thesis, only nonperiodic (or clamped or

open) knot vectors are considered. These have the form:

U ={a,..,a,u u b,...,b} (3.11)

TP TN o
where there are p+1 a’sand p+1 b’s. That is the first and last knots have multiplicity

p+1. The knots {u } are called interior knots. A knot vector U = {u,,...,u,,}

p+l ""’um—p—l

27

is defined to be uniform if all the interior knots are equally spaced; otherwise it is non-

uniform.

Y

Y

Figure (3.4) The nonzero first-degree basis functions, U ={0,0,0,1,2,3,4,4,5,5,5} .(Youssef
[35])

Figure (3.5).The nonzero second-degree basis functions,
U ={0,0,0,1,2,3,4,4,5,5,5} .(Youssef [35])

3.3.2 Definition and Properties of B-Spline Curves

A p"-degree B-Spline curve is defined by:

28
Cw)=3N,, WP, (3.12)

where the {F} are the control points, and the {N, ,(u)} are the pth-degree B-Spline basis

functions defined on the nonperiodic (and nonuniform) knot vector:

U:{a,...,a,upﬂ,...,um_p_l,b,...,b}. Generally, it is assumed that a=0 and b=1. The

polygon formed by the {P} is called the control polygon. Three steps are required to

compute a point on a B-Spline curve at a fixed u value:

1. Find the knot span in which u lies.

2. Compute the nonzero basis functions.

3. Multiply the values of the nonzero basis functions with the corresponding control
points.

Examples of B-Spline curves (in some cases together with their basis functions) are

shown in figures 3.6 through 3.14). B-Spline curves have the following properties:

e If n=p and U ={0,...,0,1,...,1} , where there are p+I number of 0’s and p+/ number

of 1’s, then C(u) is a Bezier curve as shown in figure 3.6.

Figure (3.6) A cubic B-Spline curve on U =1{0,0,0,0,1,1,L,1}, i.e., a cubic Bezier curve.
(Youssef [35])

29

C(u) is a piecewise polynomial curve (since the N, | (u) are piecewise polynomials);
the degree, p, number of control points, n + 1, and number of knots, m + 1, are related

by:

m=n+p+1 (3.13)

Figures 3.7 and 3.8 show basis functions and sections of the B-Spline curves

corresponding to the individual knot span; in both figures the alternating solid/dashed

segments corresponds to the different polynomials (knot spans) defining the curve.

End point interpolation: C(0) = P, and C(/) = P,.

Affine invariance: an affine transformation is applied to the curve by applying it to the
control points. Affine transformations include translations, rotations, scaling, and
shears.

Strong convex hull property: the curve is contained in the convex hull of its control

polygon; in fact, if u €[u,,u,,,), p<i<m-p-1,then C(u) is in the convex hull of
the control points P, ... P (figures 3.9, 3.10, and 3.11). This follows from the
nonnegativity and partition of unity properties of the N, ,(u), and the property that
N, ,w)=0 for uelu,,u,,.). Figure 3.11 shows how to construct a quadratic curve
containing a straight line segment. Since P,, P,, and P, are colinear, the strong

convex hull property forces the curve to be a straight line segment from C(2/5) to

C(3/5).

30

el
=~

1
fit -
1

Py

Figure (3.8b) A quadratic curve using the basis functions of figure 3.8a. (Youssef [35])

31

Figure (3.9) The strong convex hull property for a quadratic B-Spline curve; for
uelu;,u,), C(u) isinthe triangle P_,P_ P .(Youssef [35])

Figure (3.10) The strong convex hull property for a cubic B-Spline curve; for u € [ul.,qu),
C(u) is in the quadrilateral P_,P_,P_ P .(Youssef [35])

i—

N
\l\) /

Crs)

Figure (3.11) A quadratic B-Spline curve on U ={0,0,0,1/5,2/5,3/5,4/5,1,1,1} . The curve is
a straight line between C(2/5) and C(3/5).(Youssef [35])

32

« Local modification scheme: moving F, changes C(u) only in the interval [u;,u,,)

(figure 3.12). This follows from the fact that N, ,(u) =0 for u ¢[u,,u

. As a general rule, the lower the degree, the closer a B-Spline curve follows its control
polygon (figures 3.13 and 3.14). The curves of figure 3.14 are defined using the same
six control points, and the knot vectors:

p=1:U={0,0,1/52/53/5,4/51}

p=2:U={0,0,0,1/4,1/23/4111}

p=3:U={0,0,0,0,1/3,2/3,1,1,1,1}

p=4:U=1{0,0,0,0,0,1/2,1,1,1,1,1}

p=5:U={0,0,0,0,0,0,LL1L111}

The reason for this phenomenon is intuitive: the lower the degree, the fewer the control

points that are contributing to the computation of C(u,) for any given u,. The extreme

case is p =1 for which every point C(u) is just a linear interpolation between two

control points. In this case, the curve is the control polygon.

Fa
Figure (3.12) A cubic curve on U = {0,0,0,0,1/4,1/2,3/4,1,1,1,1} ; moving P, (to P4/)
changes the curve in the interval [1/4,1) .(Youssef [35])

33

 Moving along the curve from u =0 to u=1, the N, ,(u) functions act like switches;

as u moves past a knot, one N, (u) (and hence the corresponding F,) switches off,

and the next one switches on (Figure 3.7 and 3.8).

3.3.3 Definition and Properties of B-Spline Surfaces

A B-Spline surface is obtained by taking a bi-directional net of control points, two set of

knot vectors, and the products of the univariate B-Spline functions:

Su.v)=X YN, ,@N,, (P, (3.14)

i=0 j=0
with

U ={0,...,0,u u L...,1}

PISERE L PP EEIEREE

V=10,....0,v 155V oLl

where we have p+1 of 0’sand p+1 of 1’s in both U and V.

U has r+1 knots, and V' has s +1, where

r=n+p+land s=m+qg+1 (3.15)
P 3
P / ____q\ s
L .-"III_ |)J{G‘
_ ;'I'J_ T H,,Ilf'. - rfff”'f_l?-*;,
// v T a -_f___f
P \ —# /

|
x/
Ty | :

igure (3.13) B-Spline curves (a) A ninth-degree Bezier curve on the knot vector
U ={0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1} .(voussef [35])

34
F

P

| &1

Figure (3.13) B-Spline curves (b) A quadratic curve using the same control polygon defined
on U ={0,0,0,1/8,2/8,3/8,4/8,5/8,6/8,7/8,1,1,1} .(Youssef [35])

Figure (3.14) B-Spline curves of different degrees, using the same control polygon.
(Youssef [35])

Five steps are required to compute a point on a B-Spline surface at fixed (u,v) parameter
values:

1. Find the knot span in which u lies, say u €[u,,u,,,).

2. Compute the nonzero basis functions N, , (u),..., N, ,(u).

3. Find the knot span in which v lies, say ve[v,,v,,,).

4. Compute the nonzero basis functions N, (v),..., N, (v).

35

5. Multiply the values of the nonzero basis functions with the corresponding control
points.

Figures (3.15a and 3.15b) show the tensor product basis functions N, ;(u)N,,(v) and

N, ;@)N,,(v) respectively. Figures 3.16 to 3.19 show examples of B-Spline surfaces.

My afu) NMy202)

Figure (3.15) Product of a cubic and a quadratic basis function (a) N453(u)N452(v);
U =1{0,0,0,0,1/4,2/4,3/4,LLL1} and V ={0,0,0,1/5,2/5,3/5,3/5,4/5,1,1,1} (Youssef [35]).

Nq,s(“}”zzfv}

Figure (3.15) Product of a cubic and a quadratic basis function (b) N4’3(u)N2,2(v);
U ={0,0,0,0,1/4,2/4,3/4,1,1,1,1} and V' ={0,0,0,1/5,2/5,3/5,3/5,4/5,1,1,1} (Youssef [35]).

36

The properties of the tensor product basis functions follow from the corresponding
properties of the univariate basis functions as follows:

« Nonnegativity: N, (u)N, (v)20 forall i/, p,q,u,v.

. Partition of unity: > 3 N, , ()N, (v) =1 forall (u,v) e [0,1]x[0,1].

i=0,j=0

. If n=p, m=q, U ={0,...,0,1,....1}, and V ={0,...,0,1,...,1}, then
N,,)N, (v)=8B,,w)B,,(v) for all i,;; that is, products of B-Spline functions
degenerate to products of Bernstein polynomials.

« N,,WN,, (v)=0 if (u,v) is outside the rectangle [u,u, ,,)X[v,,v,,.,) (Figures
3.15a and 3.15b).

- Inany given rectangle, [u, ,u, ,,)x[v, ,v,), at most (p + 1)(q + 1) basis functions are
nonzero, in particular the N, ,(u)N, (v) for i, — p<i<i, and j,—g<j< j,.

- If p>0and ¢>0,then N, (u)N, (v) attains exactly one maximum value (figures

3.15a and 3.15b).

B-Spline surfaces have the following properties:
e If n=p, m=q, U={0,..,0,1,...,1}, and V' ={0,...,0,1,....1}, then S(u,v) is a Bezier
surface.

« The surface interpolates the four corner control points: S(0,0)=F,,, S(1,0)=P,,,

S$0,0)=F,, ,and S(1,1,) = P, (figures 3.16 through 3.19).

Figure (3.16a) A B-Spline surface-control net (Youssef [35]).

", o

Figure (3.16b) A B-Spline surface (Youssef [35]).

37

Affine invariance: an affine transformation is applied to the surface by applying it to

the control points.

Strong convex hull property: if (u,v)e[u, ,u,

Iy

7

%[y 5v,), then S(u,v) is in the

convex hull of the control points 7, ;, i, — p<i<i; and j,—g < j< j, (figure 3.17).

38

l_.u-.._f___ a.i":; -..d:*?-‘\x\" . X \
aya%
_.#"}
-~

g
£

A AN

P /" ¥
o \ !
. /

Figure (3.17a) Product of a cubic and a quadratic B-Spline surface (Youssef [35]).

Figure (3.17b) The strong convex hull property (Youssef [35]).

39

 If triangulated, the control net forms a piecewise planar approximation to the surface;
as is the case for curves, the lower the degree the better the approximation (figures

3.18a and 3.18b).

Figure (3.18b) A biquadratic surface (p =q= 4) using figure 3.18a control points (Youssef
[35]).

40

« Local modification scheme: if 7, is moved, it affects the surface only in the

rectangle [u;,u,,,.)x[v;,v,.,). Now consider figures 3.19a and 3.19b: the initial

surface is flat because all the control points lie in a common plane; the control net is

offset from the surface only for better visualization. When P, ; is moved, it affects the

surface shape only in the rectangle [1/4,1)x[2/5,1).

Figure (3.19a) A product of a planar quadratic and a cubic surface,
U ={0,0,0,1/4,1/2,3/4,1,1,1} and V' ={0,0,0,0,1/5,2/5,3/5,4/5,1,1,1,1} (Youssef [35]).

Figure (3.19b) P, ; is moved, affecting surface shape only in the rectangle [1/4,1)x[2/5,])
(Youssef [35]).

41
3.4 Rational B-Spline Curves and Surfaces

3.4.1 Definition and Properties of Non-Uniform Rational B-Spline
Curves

A Non-Uniform Rational B-Spline Curve, denoted by NURBS, of degree p is defined by:

Cu)= >R, ,)P a<u<bh (3.16)
i=0
where
N, |
R, ()=——"—— G (3.17)
/Z:ONLP (u)wj

where {P} are the control points (forming a control polygon), {w,} is the set of weights,
the {N, ,(u)}is the set of pth-degree B-Spline basis functions defined on the nonperiodic
(and nonuniform) knot vector:

U ={a,...,a,u

u__.b,..b}

pH12 ¥ m—p-1°
{R,,(u)} is the set of rational basis functions; they are piecewise rational functions on

u € [0,1] where we assume that =0, b=1, and w, >0 for all i.

R, ,(u) have the following properties:

- Nonnegativity: R, ,(u) >0 forall i,p,and u e [0,1].

. Partition of unity: >R, ,(u) =1 for all u<[0,1].
i=0

42

R(),p (0) = Rn,p (]) =] .
For p>0,all R, (u) attain exactly one maximum value on the interval u € [0,]].

Local support: R, ,(u) =0 for u [u,,u,,). Furthermore, in any given knot span, at

most p+1 ie. k (order of the curve) of the R, (u) are nonzero (in general,

R,_, ,(u),....R, , (u) are nonzero in [u;,u,,,)).

If w,=0 for all 7, then R, ,(u)=N, ,(u) forall i;ie., N, (u) is a special case of
R, ,(u) . Infact, forany a#0,if w, =a forall i then R, ,(u)=N, ,(u) forall i.

The previous properties yield the following important geometric characteristics of
NURBS curves:

Affine invariance: an affine transformation is applied to the curve by applying it to the
control points; NURBS curves are also invariant under perspective projections, which
is very important in computer graphics.

Strong convex hull property: if u €[u,,u,,,), then C(u) lies within the convex hull of

i+l
the control points P_,,...,F, (figure 3.20, where C(u) for ue[1/4,1/2) (dashed
segment) is contained in the convex hull of {A,P,,P,, P}, the dashed area).

A NURBS curve with no interior knots is a rational Bezier curve, since the N, (u)

reduce to the B, (u). This implies that NURBS curves contain nonrational B-Spline

and rational and nonrational Bezier curves as special cases.

43

« Local approximation: if the control point P is moved, or the weight w, is changed, it

affects only that portion of the curve on the interval u €[u;,u,,).

7

Figure (3.20a) U ={0,0,0,0,1/4,1/2,3/4,LLL,1} and {w,,...,w} ={1,1,13,1,L1} A cubic
NURBS curve. (Youssef [35])

HEJ

Figure (3.20b) U = {0,0,0,0,1/4,1/2,3/4,LLL1} and {w,,...,w,} ={1,1,13,1,1,1} Associated
basis functions. (Youssef [35])

The last property is very important for refining surface fits to measured points. Using
NURBS curves, both control point movement and weight modification can be utilized to
attain local shape control. Figures 3.21 to 3.25 show the effects of modifying a single

weight. (eg: Assuming u €[u;,u,,,,,), the effect is that if w, increases (decreases), the

point C, moves closer to (farther from) P, and hence the curve is pulled toward (pushed

44
away from) P.. Furthermore, the movement of C, for fixed u is along a straight line
(figure 3.25)). In figure 3.25, u is fixed and w; is changing. Let B = C(u;w; =0) and
N =C(u;w; =1). Then the straight line defined by B and N passes through P, and for

arbitrary 0 <w, <o, B, = C(u;w,) lies on this line segment between B and P,.

I &
P

Te

Figure (3.21) Rational cubic B-Spline curves, with w; varying. (Youssef [35])

fina

Figure (3.22a) The cubic basis functions for the curves of figure 3.21 (Youssef [35])

PR,
. o He. 2

I"l.l Hl.ﬂ ft!_ﬂ HJ'S qu_; }?5_: ."JIII

\ e o /
=, - -
R X

[N e > :
o L= e e M"'-—..-: ot

] S
0 'I.“."l1l].I'I!J :tllll"' 1

Figure (3.22b) The cubic basis functions for the curves of figure 3.21(Youssef [35])
(b) w, =3/10.

45

Figure (3.22c) The cubic basis functions for the curves of figure 3.21 (c) w; =0 .(Youssef

F,

Figure (3.24a) The quadratic basis functions for the curves of figure 3.23 w, =4 .(Youssef
[35])

46

Figure (3.24b) The quadratic basis functions for the curves of figure 3.23
w, =3/10 .(Youssef [35])

[35])

Py

Figure (3.25) Modification of the weight w;.(Youssef [35])

47

3.4.2 Definition and Properties of NURBS Surfaces

A NURBS surface of degree p in the u direction and degree ¢ in the v direction is a

bivariate vector-valued piecewise rational function of the form:

S@u,v) =Y SR,)P, 0<uyv<l (3.18)

i=0 j=0
where
Ni,p (”)N_/,q (V)Wi,j
22 Nk,p (u)Nz,p (V)Wk,l

k=01=0

Ri’j (u,v) =

(3.19)

{F,,} forms a bi-directional control net, {w, ;} is the set of weights, R, (u,v) are the
piecewise rational basis functions for 0<i<n and 0<j<m , and {N, ,(u)} and {N, (v)}

are the nonrational B-Spline basis functions defined on the knot vectors:

U ={0,...,0,u u L...1}

prloes iy p palsees

V ={0,...,0,v Y L...1}

gi1oees Vo g 1sloees
where there are p+1 0’sand p+1 1I’sand r=n+p+1and s=m+q+1

Figures 3.26 and 3.27 show examples of NURBS surfaces.

¥
Poa
P
H L}
H it
-a. "'I-uil- P.I_‘
- - l
! ! (W A
. BTk
. i fart
- .{i .-‘
e
i
" 1
| .
\ .
L .
1
1
r
H b
e T,
L o
.

Figure (3.26a) Control net and biquadratic NURBS surface, w,; =w,, =w,, =w,, =10

with the rest of the weights 1. U =V ={0,0,0,1/3,2/3,1,1,1} Control net (Youssef [35]).

Figure (3.26b) Control net and biquadratic NURBS surface, w,, =w,, =w,, =w,, =10

with the rest of the weights 1. U =V ={0,0,0,1/3,2/3,1,1,1} Biquadratic NURBS surface
(Youssef [35]).

48

49

Figure (3.27) Bicubic NURBS surface defined by the control net in figure 3.26a, with
U=V ={0,0,0,0,1/2,1,1,1,1} and with the same weights (Youssef [35]).
The important properties of the functions R, ;(u,v) are the same as those given in Section

3.3 for the nonrational basis functions, N, (u)N, (V)

The following are the main properties of NURBS surfaces:

Corner points interpolation: $(0,0)=F,,, S(1,0)=F,,, S(0,1)=F,,,, S(1,I)=F,

Affine invariance: an affine transformation is applied to the surface by applying it to the
control points.

Strong convex hull property: assume w, ;>0 for all i,j. If

(u,v)€lu; ,u;) x[v;,v,,), then S(u,v) is in the convex hull of the control points
P, i,—p<i<i,and j,—q<j<j,.

LJ

Local modification: if F,; is moved, or w, ; is changed, it affects the surface shape only

in the rectangle [u;,u,, .)x[v;,v, ,..)-

50

Nonrational B-Spline and Bezier and rational Bezier surfaces are special cases of NURBS

surfaces.

It is obvious that both control point movement and weight modification to locally change
the shape of NURBS surfaces. Figures 3.28a and 3.28b show the effects on the basis

function R, ;(u,v) and the surface shape when a single weight, w, ;, is modified.

(eg: Assuming (u,v)€[u,,u,,,)x[v;,v,,,;), then the effect on the surface if w,,
increases (decreases), the point S(u,v) moves closer to (farther from) P, ; and hence the
surface is pulled toward (pushed away from) £, ;).
I
|

b N z(1)

Nl_?.{)

Ryl v}

Uy 7 - !jrb

Figure (3.28a) The basis function R, ,(u,v), with U ={0,0,0,0,1/4,1/2,3/4,1,L1,1} and
V'=10,0,0,1/5,2/5,3/5,3/5,4/5,LL1}, w, ; =1 for all (i, j) # (4,2) (Youssef [35]).

51

I 1 e V|
e 0
! e . . Mealud
- 1 -
| / - -I:“"‘-; - / \"'.
L "

.l—-.-'-,)
H T
0 J/ = 3 \
" - L > -
B e X
o - 2,
R If e -
L

*::ng
&y

Figure (3.28b) The basis function R, ,(u,v), with U ={0,0,0,0,1/4,1/2,3/4,1,1,1,1} and
V'=10,0,0,1/5,2/5,3/5,3/5,4/5,LL1}, w, ; =1 for all (i, j) # (4,2) (Youssef [35]).

3.5 Curve and Surface Fitting

This section describes the fitting of free-form curves and surfaces to an arbitrary set of
geometric data, such as points and derivative vectors. Two types of fitting are
distinguished : interpolation and approximation. In interpolation, the constructed curve or
surface satisfies the given points precisely, e.g., the curve passes through the given points
and assumes the given derivatives at the prescribed points. Figure 3.29 shows a curve

interpolating five points and the first derivative vectors at the endpoints.

Figure (3.29) A curve interpolating five points and two end derivatives.

52

In approximation, the constructed curves and surfaces do not necessarily satisfy the given
data precisely, but only approximately. In some applications, an example is generation of
point data by use of coordinate measuring devices or digitizing tablets. In this case it is
important for the curve or surface or surface to capture the “shape” of the data, but not to
“wiggle” its way through every point. In approximation, it is often desirable to specify a
maximum bound on the derivation of the curve or surface from the given data, and to

specify certain constraints.

Figure 3.30 shows a curve approximating a set of m+1 points. A maximum deviation
bound, E, was specified, and the perpendicular distance, e;, is the approximation error
obtained by projecting O; on the curve. The e; of each point, O, is less than E. The end
point O, and Q,, were specified as constraints, with the result that e, = e,, = 0. Input to a
fitting problem generally consists of geometric data, such as points or derivatives. Output
is a curve or surface, after the calculation of control points and knots. Furthermore, either

the degree p (or (p, g) for surfaces) must be input.

Q A

Figure (3.30) A curve approximating m+1 points; the curve is constrained to pass through
the end points, Qo and Q.

53

3.6 Optimization of NURBS Parameters

The evaluation of the control points by least squares approximation can be viewed as an
initial estimation of the fitted surface. Further refinement can be obtained by optimizing
the different NURBS parameters, such as the knot values and the weights in order to
achieve better fitting accuracy. The error function between the measured points and the
fitted surface is generally given by equation (2.1). This equation has been specified to suit

the NURBS representation of the fitted surface as follows:

' /s] ,. (3.41)

1. Q, is the k"-measured point.

E= @Qk -0,

where:

2. Q, is the equivalent point on the surface to the k™-measured point. Accurately, this

point would be found by orthogonally projecting the measured point on the fitted

surface. Such evaluation would lead to cumbersome computations and hence in
Dierckx [3], this point is approximated by P(;k,_/l), where u; and v are the
independent parameters associated with measured point Q, .

3. r is the exponent. If the average deviation is to be minimized, then 7 is set to either 1
or 2 (least-squares deviation function). Setting » to infinity leads to the minimization
of the maximum deviation. The selection of such exponent depends on the

measurement device and its accuracy [15]. For the problem in hand the measurement

device is a laser scanner so the value used for 7 is 2.

54

4. s is the number of measured points.

Shalaby et.al. [28] showed that better results could be obtained by optimizing the weights
while keeping the knot values uniformly distributed. The fitting task can be viewed
mathematically as an approximation problem between an unknown function, represented
by a set of measured points {Q}, and an approximating function, represented by the
geometric model of the fitted curve/surface S(«a,, &), where {ai,, a,,} are the
parameters of the fitted curve/surface. The general formulation of the objective function

of the optimization problem is represented by the following equation:

E =(2|Qi —S(al,...,an}’/sj (3.42)

where s is the number of measured points, and 7 is an exponent, ranging from 1 to
infinity. The fitting task can then be viewed as the optimization of the curve/surface

parameters {al s O, } to minimize the error £

However the weights present a large number of independent variables (equaling the
number of control points) to the optimization problem, which may lead to a large search
space. In addition, the fitting of free-form surfaces to the measured points has been shown
by Shalaby et. al. [28] as well as by Limeaiem et.al. [12] to be a multi-modal
optimization problem. Therefore, global optimization techniques are needed for
optimizing such problems. Other researchers have used different variants of Genetic

Algorithms (GA’s), but all came to the conclusion that GA’s need a large number of

55

objective function evaluations. Since reverse engineering of free-form surfaces processes
a large number of measured points, the single evaluation of the objective function is
computationally exhaustive. The above findings inspired the research of the presented
thesis to be focused on Simulated Annealing (SA). SA is one of the global optimization
methods like GA’s and Tabu Search (TS). The next chapter presents an approach to the

global optimization of continuous functions based on Simulated Annealing.

4 SIMULATED ANNEALING

4.1 Introduction

Simulated Annealing (S.A.) exploits analogy between the way in which a metal cools and
freezes into a minimum energy crystalline structure (the Annealing process) and the
search for a minimum in a general system. If a physical system is melted and then cooled
slowly, the entire system can be made to produce the most stable (crystalline)

arrangement, and not get trapped in a local minimum.

The S.A. algorithm was first proposed by Metropolis et. al. [14] as a means to find
equilibrium configuration of a collection of atoms at a given temperature. Kirkpatrick et.
al. [10] were the first to use the connection between this algorithm and mathematical
minimization as the basis of an optimization technique for combinatorial (as well as

other) problems.

S.A’s major advantage over other methods is its ability to avoid being trapped in local
minima. The algorithm employs a random search, which not only accepts changes that
decrease the objective function E, but also some changes that would increase it. The latter

are accepted with a probability

Prob(accept) = exp(-AE/T)

56

57

where AE is the increase in £ and 7 is a control parameter, which by analogy with the
original application is known as the system “temperature” irrespective of the objective

function involved.

Briefly S.A. works in the following way. Given a function to optimize, and some initial
values for the variables, Simulated Annealing starts at a high, artificial, temperature.
While cooling the temperature slowly, it repeatedly chooses a subset of the variables, and
changes them randomly in a certain neighborhood of the current point. If the objective
function has a lower function value at the new iterate, the new values are chosen to be the
initial values for the next iteration. If the objective function has a higher function value at
the new iterate, then the new values are chosen to be the initial values for the next
iteration with a certain probability, depending on the change in the value of the objective

function and the temperature.

The higher the temperature and the lower the change, the more probable that the new
values are chosen to be the initial variables for the next iteration. Throughout this process,
the temperature is decreased gradually, until eventually the values do not change
anymore. Then, the function is presumably at its global minimum. The global minimum is
obtained by choosing an appropriate “cooling schedule” which includes the temperature
and its cooling rate. A cooling schedule describes the temperature parameter 7, and gives

rules for lowering it as the search progresses.

58

4.2 Simulated Annealing Algorithm

The Simulated Annealing algorithm is shown in Figure 4.1(a) and the Metropolis
procedure used by the algorithm is shown in figure 4.1(b).

Algorithm Simulated_Annealing (So, To, a, B, M, Maxtime);
(*So is the initial solution *)
(*BestS is the best solution™®)
(*To is the initial temperature™®)
(*a 1s the cooling rate™®)
(*B a constant™®)
(*Maxtime is the total allowed time for the Annealing process*)
(*M represents the time until the next parameter update™)
Begin
T =To;
CurS = So;
BestS = CurS; /*BestS i1s the best solution seen so far */
CurCost = Cost(CurS);
BestCost = Cost(BestS);
Time = 0;
Repeat
Call Metropolis(CurS, CurCost, BestS, BestCost, T, M);
Time = Time + M;
T=oaT;
M=pM;
Until (Time > MaxTime);
Return (BestS)

End (* of Simulated Annealing *)
Figure (4.1a) The Simulated Annealing Algorithm.

59

Algorithm Metropolis(CurS, CurCost, BestS, BestCost, T, M);
Begin
Repeat
NewsS = Neighbor(CurS);
NewCost = Cost(NewS);
ACost = (NewCost — CurCost);
If (ACost < 0) Then
CurS = NewS;
If NewCost < BestCost Then
BestS = NewS
EndIf
Else
If (RANDOM < ¢“**'T) Then
CurS = NewS;
EndIf
EndIf
M=M-1
Until M =0)

End (*of Metropolis*)
Figure (4.1b) The Metropolis procedure.

The Metropolis procedure, which simulates the Annealing process at a given temperature
T, is the core of the S.A algorithm. The Metropolis procedure receives as input the current
temperature 7, and the current solution CursS, which it improves through local search.
Finally, Metropolis must also be provided with the value M, which is the amount of time

for which Annealing must be applied for a temperature 7.

60

The procedure Simulated Annealing simply invokes Metropolis at decreasing
temperatures. Temperature is initialized to a value 7, at the beginning of the procedure,
and is reduced in a controlled manner (typically in a geometric progression); the
parameter o is used to achieve this cooling. The amount of time spent in Annealing at a
temperature is gradually increased as temperature is lowered. This is done using the
parameter > 1.The variable Time keeps track of the time being expended in each call to

the Metropolis. The Annealing procedure halts when Time exceeds the allowed time.

The Metropolis procedure uses the procedure Neighbor to generate a local neighbor NewsS
of any given solution S. The function Cost returns the cost of a given solution S. If the
cost of the new solution NewsS is better than the cost of the current solution CurS, then the
new solution is accepted, and we do so by setting CurS = NewS. If the cost of the new
solution is better than the best solution (BestS) seen thus far, we replace BestS by NewS. If
the new solution has a higher cost in comparison to the original solution CursS, Metropolis
will accept the new solution on a probabilistic basis. A random number (RANDOM) is

-ACost/T
T where ACost

generated in the range 0 to 1. If this random number is smaller than e
is the difference in costs, and 7 is the current temperature, the uphill solution is accepted.

This criterion for accepting the new solution is known as the Metropolis criterion. The

Metropolis procedure generates and examines M solutions.

The probability that an inferior solution is accepted by the Metropolis, is given by

61

P(RANDOM < ¢““*"T) The random number generation is assumed to follow a uniform

distribution. Remember that ACost > 0 since we have assumed that NewS is uphill from

CurS. At very high temperatures, (when 7 — o), ¢““*”" ~ 1. and hence the above

probability approaches 1. On the contrary, when 7' — 0, the probability 2T falls to 0.

In order to implement Simulated Annealing, we need to formulate a suitable cost function
for the problem being solved. In addition, as in the case of local search techniques, we
assume the existence of a neighborhood structure, and need Neighbor function to generate
new states (neighborhood states) from current states. And finally we need a cooling

schedule that describes the temperature parameter 7 and gives rules for lowering it.

4.3 Parameters of the S.A. algorithm

If S.A is allowed to run for an infinitely long time, starting with a high value of 7, and
allowing 7' = 0, then it will find a desired optimal configuration. In practice, however,
Simulated Annealing is only run for a finite amount of time. A finite time implementation
can be realized by generating homogeneous Markov chains of finite lengths for a
sequence of decreasing values of temperature. T achieve this, a set of parameters that
govern the convergence of the algorithm must be specified. This set of parameters is

commonly referred to as the “cooling schedule”.

62

The Metropolis procedure receives as input the current temperature 7, the current solution
CursS, and a value M, which is the amount of time for which Annealing must be applied at
temperature 7. Temperature is initialized to a value 7) at the beginning of the procedure,
and is slowly reduced in a geometric progression; the parameter « is used to achieve this
cooling. The amount of time spent in Annealing at a given temperature is gradually
increased as temperature is lowered. This is done using the parameter f > 1. The variable
Time keeps track of the time being expended in each call to the Metropolis. The
Annealing procedure halts when Time exceeds the allowed time. The cooling schedule
specifies the following:

A finite sequence of values of temperature, which are given by the initial value 7, a

decrement factor (a), and the final value, which is specified by the stopping criterion.
A finite number of transitions (denoted by fM) at each value of the temperature, which

corresponds to the finite length of each homogeneous Markov chain.

Therefore, a cooling schedule is completely specified by setting the values of parameters
a, p, M, T, and Time. It is customary to determine the schedule by trial and error.
However, some researches have proposed cooling schedules that rely on some

mathematical rigor. In our work, we have used the cooling schedule presented by

Kirkpatrick et al [Kirkpatrick 83].

63

4.4 S.A. Requirements

In order to use Simulated Annealing to solve a particular problem, a sequence of Markov
chains is to be generated at descending values of temperature. As seen earlier, the inner
loop of the Annealing algorithm is a homogeneous Markov chain, and 7" does not change
within the loop. Such Markov chains are generated by transforming a current solution to
another one by applying a generation mechanism (perturbance or neighbor function) and
using an acceptance function which is usually the Metropolis function. Application of the

Annealing algorithm therefore requires the following.

1. A concise representation of the state space, where each state represents a
configuration, and a cost function that represents the cost effectiveness of the
solutions with respect to the optimization objectives. It is important that the solution
representation be easy to manipulate. Furthermore, the cost function should be given
by a simple expression that is easy to evaluate. This requirement is important because
the manipulation of current configurations to generate new neighborhood states and
the evaluation of the cost of that solution are done a large number of times.

2. A mechanism for transforming the current solution into a subsequent one to which the
search should move. This will involve two steps.

a. First, the neighbor function is applied to generate a new solution. 7

guarantees asymptotic convergence to the set of optimal solutions, the

64

neighborhood structure must be properly chosen so that the corresponding
generation mechanism induces an irreducible and aperiodic Markov chain.

b. Second, the cost of this new solution, and hence the difference in cost ACost is
computed. Then, a decision is made whether to accept or reject this newly
generated solution.

These two steps are the most time consuming and should be executed in a time efficient

manner. Therefore, in practice, the neighbor functions are generally simple.

3. Finally, the success of a S.A algorithm depends on the choice of a proper cooling
schedule, that is, on the initial value of temperature, the decrement function, the

length of the Markov chain and a suitable stopping criterion.

S THE PROPOSED METHOD

5.1 Introduction

Figures 5.1a and 5.1b shows the basic building blocks of our implemented system for
curves and surfaces respectively for weight optimization. We discuss Figure 5.1 briefly

below.

Initially a character/surface is scanned to get a digitized image. In case of curves, its
contour is extracted using boundary detection algorithms, to obtain a number of data
points. We assume that the curves are continuous, i.e. they possess single segments. The
parametric value ‘v’ for each data point is then calculated using chord length
parameterization [24]. In the case of a surface, the parameter calculation is bi-directional.
The least squares technique is used to calculate the control points. A uniform knot vector
is calculated in the case of a curve and two uniform knot vectors are calculated in the case
of a surface, in u” and ‘w’ directions. Then, Simulated Annealing is used to optimize
weights. Once the values of all three space parameters — control points, knot vector and

weights are received, the NURBS curve is fitted to obtain a geometric model of the curve.

65

66

5.2 Obtaining a digitized image/surface

Figure 5.3 discusses in detail our proposed approach. A digitized image is obtained from
an electronic device or by scanning an image. The quality of digitized scanned image
depends of various factors such as the image on paper, scanner type and the attributes set
during scanning. The quality of digitized image obtained directly from an electronic
device depends on the resolution device, source of image, type of image, etc. Some of the
digitized images/surfaces are shown in Figure 5.2. The surfaces are generated using
mathematical functions. The Table 5.1shows the surfaces, with their respective generator
functions.

Table (5.1) Surface generating functions

Surface 1 R= /(x2+y2;z:Sin(R)/R

Surface 2 | /XY, Z] = Cylinder(2 + cos(t))
Surface 3 [XY,Z] = Sphere(N)

67

o '““\._I Get f.-“r Extract the Calculate the

[START T digitized f——m= contour (for curves —— = parametric value

X / image only) (w')
A |

v ; ek ; ¢ Calculate control
Fit the curve using Cptimize weights Calculate uniform
MURBS. usng S.A | kriat vector polnt:eing h.“‘ﬂ
squares bechnigue
!
L\ EMD)
Figure (5.1a) Curve —weight optimization.
i 7 -
— late the parametric
] B / f Cokcu Calculate control
/ \ / Get digitized values o' & 'w' sk ;
| starr /OO L [netusingleas
1 i /]
i 4 fl _.-"f o At squares technique
o 5 i . Calculate uniform
{ Fit the surface Orptimize weights 2
[END I B - e . gt - ————— knot vector in both
W f using NURBS. using S.A. W & W diraction

Figure (5.1b) Surface — weight optimization.

In Table 5.1, cylinder and sphere are the matlab functions which generate a cylinder and a
sphere respectively, where ‘%’ is a parameter in surface 2 and N produces (N+1) by (N+1)

matrices of X,Y & Z for surface 3.

68

5.3 Contour extraction

The contour of the digitized image is extracted using the boundary detection algorithms.
There are numerous algorithms for detecting boundary. We used the algorithm proposed
by Quddus [20]. The input to this algorithm is a bitmap file. The algorithm returns a
number of segments and for each segment, a number of boundary points and their values.

Table 5.1 gives the number of boundary points detected by the boundary detection
algorithm for the word ‘Ali’, the symbol ‘Pound’ and the letter ‘Aich’ and the number of

points scanned for surfaces.

Table (5.2) Scanned data points

S.No Name of the Figure # of data points
1 Ali 1640

2 Pound 689

3 Aich 320

4 Apple 1204

5 Open Curve 1001

4 Surface 1 1089

5 Surface 2 441

6 Surface 3 1024

7 Jar 1089

69

In case of surfaces, Table 5.1 shows their generating functions. Using these generating
functions, input data points are generated for the surfaces. The Tables 5.3 to 5.6 show the

data points generated for Surfacel, Surface 2, Surface 3 & Jar respectively.

Aich

Pound

Apple Open Curve Surfacel

Surface 2 Surface3 Jar

Figure (5.2) Input Curves and Surfaces.

Table(5.3) Sample data points for Surface 1

70

2.5 -7.5 0.126322
3 -7.5 0.12071

3.5 -7.5 0.1102

4 -7.5 0.0939397
4.5 -7.5 0.0717446
5 -7.5 0.0443133
5.5 -7.5 0.0133241
6 -7.5 -0.0186304
6.5 -7.5 -0.0483008
7 -7.5 -0.0722156
7.5 -7.5 -0.087238
8 -7.5 -0.0911519

-8 -7 -0.0878606
-7.5 -7 -0.0722156
-7 -7 -0.0461727
-6.5 -7 -0.0133328
-6 -7 0.0221048
-5.5 -7 0.0560617
-5 -7 0.0851882
-4.5 -7 0.107264
-4 -7 0.121354
-3.5 -7 0.127726
-3 -7 0.127599
-2.5 -7 0.12279

-2 -7 0.115356
-1.5 -7 0.10728

-1 -7 0.100248
-0.5 -7 0.0955176
0 -7 0.0938552

0.5 -7 0.0955176
1 -7 0.100248

1.5 -7 0.10728

2 -7 0.115356

2.5 -7 0.12279

3 -7 0.127599

3.5 -7 0.127726

4 -7 0.121354

4.5 -7 0.107264

5 -7 0.0851882
5.5 -7 0.0560617
6 -7 0.0221048
6.5 -7 -0.0133328
7 -7 -0.0461727
7.5 -7 -0.0722156

8 -7 -0.0878606

-8 -6.5 -0.0749569
-7.5 -6.5 -0.0483008
-7 -6.5 -0.0133328
-6.5 -6.5 0.0250537
-6 -6.5 0.0618459

-2 -6.5 0.0727498
-1.5 -6.5 0.0566662
-1 -6.5 0.0439599
-0.5 -6.5 0.0358682

L1011 10111 ONNOOTOAORADMNWWNNELREPROO
OFREFENNWWADMNOOOOOONNO© ' ' ' ' ' ' '

ODUTAPRPWWNNRELRPELROO

-6.5 0.0330954
5 -6.5 0.0358682
-6.5 0.0439599
5 -6.5 0.0566662
-6.5 0.0727498
5 -6.5 0.090402
-6.5 0.10728
5 -6.5 0.120673
-6.5 0.127814
5 -6.5 0.126322
-6.5 0.114689
5 -6.5 0.0927286
-6.5 0.0618459
5 -6.5 0.0250537
-6.5 -0.0133328
.5 -6.5 -0.0483008
-6.5 -0.0749569
-6 -0.0544021
.5 -6 -0.0186304
-6 0.0221048
.5 -6 0.0618459
-6 0.0951366
.5 -6 0.117888
-6 0.127914
.5 -6 0.125067
-6 0.110992
.5 -6 0.0886112
-6 0.0614677
.5 -6 0.0330954
-6 0.00653931
.5 -6 -0.0159051
-6 -0.0327292
.5 -6 -0.0430819
-6 -0.0465692
.5 -6 -0.0430819
-6 -0.0327292
.5 -6 -0.0159051
-6 0.00653931
.5 -6 0.0330954
-6 0.0614677
5 -6 0.0886112
-6 0.110992
5 -6 0.125067
-6 0.127914
5 -6 0.117888
-6 0.0951366

5.5 -5 0.12279
6 -5 0.127914
6.5 -5 0.114689
7 -5 0.0851882
7.5 -5 0.0443133

8 -5 -0.00097552

-8 -4.5 0.0265312
-7.5 -4.5 0.0717446
-7 -4.5 0.107264
-6.5 -4.5 0.126322
-6 -4.5 0.125067
-5.5 -4.5 0.103188
-5 -4.5 0.063807
-4.5 -4.5 0.0126789
-4 -4.5 -0.0430819
-3.5 -4.5 -0.0964682
-3 -4.5 -0.141902
-2.5 -4.5 -0.176131
-2 -4.5 -0.198521
-1.5 -4.5 -0.210717
-1 -4.5 -0.215789
-0.5 -4.5 -0.217107
0 -4.5 -0.217229

0.5 -4.5 -0.217107
1 -4.5 -0.215789
1.5 -4.5 -0.210717
2 -4.5 -0.198521
2.5 -4.5 -0.176131
3 -4.5 -0.141902
3.5 -4.5 -0.0964682
4 -4.5 -0.0430819
4.5 -4.5 0.0126789
5 -4.5 0.063807
5.5 -4.5 0.103188
6 -4.5 0.125067
6.5 -4.5 0.126322
7 -4.5 0.107264
7.5 -4.5 0.0717446
8 -4.5 0.0265312

-8 -4 0.0516787
-7.5 -4 0.0939397
-7 -4 0.121354
-6.5 -4 0.127814
-6 -4 0.110992
-5.5 -4 0.0727498
-5 -4 0.0186864
-4.5 -4 -0.0430819
-4 -4 -0.103622
-3.5 -4 -0.154996
-3 -4 -0.191785

Table(5.4) Sample data points for Surface 2

300
2.85317 0.927051 O
2.42705 1.76336 O
1.76336 2.42705 0O
0.927051 2.85317 O
1.83697e-016 3 O
-0.927051 2.85317 O
-1.76336 2.42705 O
-2.42705 1.76336 O
-2.85317 0.927051 O
-3 3.67394e-016 O
-2.85317 -0.927051 O
-2.42705 -1.76336 O
-1.76336 -2.42705 O
-0.927051 -2.85317 O
-5.51091e-016 -3 0
0.927051 -2.85317 O
1.76336 -2.42705 O
2.42705 -1.76336 0
2.85317 -0.927051 O
300
2.95106
2.80662

0 0.05

0.911927 0.05
2.38745 1.73459 0.05
1.73459 2.38745 0.05
0.911927 2.80662 0.05
1.807e-016 2.95106 0.05
-0.911927 2.80662 0.05
-1.73459 2.38745 0.05
-2.38745 1.73459 0.05
-2.80662 0.911927 0.05
-2.95106 3.614e-016 0.05
-2.80662 -0.911927 0.05
-2.38745 -1.73459 0.05
-1.73459 -2.38745 0.05
-0.911927 -2.80662 0.05
-5.421e-016 -2.95106 0.05
0.911927 -2.80662 0.05
1.73459 -2.38745 0.05
2.38745 -1.73459 0.05
2.80662 -0.911927 0.05
2.95106 0 0.05

2.80902 0 0.1

2.67153 0.868034 0.1
2.27254 1.6511 0.1
1.6511 2.27254 0.1
0.868034 2.67153 0.1
1.72003e-016 2.80902 0.1
-0.868034 2.67153 0.1
-1.6511 2.27254 0.1

0.868034 -2.67153 0.1
1.6511 -2.27254 0.1
2.27254 -1.6511 0.1
2.67153 -0.868034 0.1
2.80902 0 0.1

2.58779 0 0.15

2.46113 0.79967 0.15
2.09356 1.52106 0.15
1.52106 2.09356 0.15
0.79967 2.46113 0.15
1.58456e-016 2.58779 0.15
-0.79967 2.46113 0.15
-1.52106 2.09356 0.15
-2.09356 1.52106 0.15
-2.46113 0.79967 0.15
-2.58779 3.16912e-016 0.15
-2.46113 -0.79967 0.15
-2.09356 -1.52106 0.15
-1.52106 -2.09356 0.15
-0.79967 -2.46113 0.15
-4.75368e-016 -2.58779 0.15
0.79967 -2.46113 0.15
1.52106 -2.09356 0.15
2.09356 -1.52106 0.15
2.46113 -0.79967 0.15
2.58779 0 0.15

2.30902 0 0.2

2.19601 0.713525 0.2
1.86803 1.35721 0.2
1.35721 1.86803 0.2
0.713525 2.19601 0.2

1.41387e-016 2.30902 0.2

.713525 2.19601 0.2
.35721 1.86803 0.2
.86803 1.35721 0.2
-19601 0.713525 0.2
.30902 2.82773e-016 0.2
.19601 -0.713525 0.2
.86803 -1.35721 0.2
.35721 -1.86803 0.2
.713525 -2.19601 0.2

.2416e-016 -2.30902 0.2

0.713525 -2.19601 0.2

PRNNNRE PR

.35721 -1.86803 0.2
.86803 -1.35721 0.2
-19601 -0.713525 0.2
.30902 0 0.2

0 0.25

-90211 0.618034 0.25
.61803 1.17557 0.25

71

72

Table(5.5) Sample data points for Surface 3

WEREPNWAMITUOOOUOAWNE W

| R A L e e P
OOV UIUlThWN O

[eNoNoNoNoNoNeoNaoNal

-00512409 -0
-0253581
-0445539
.0619257
.0767623
-0884562
-0965287
-100649 -0.010235 -0.994869
-100649 0.010235 -0.994869

-12323e-017
-99789e-017
.62699e-017
.02573e-017
.21871e-017

-7.
-1.
-2.
-3.
-4.

4988e-033 -1
2326e-017 -1
41473e-017 -1
49801e-017 -1
43808e-017 -1
.23897e-017 -5.19645e-017 -1
-12663e-017 -5.74208e-017 -1
.27228e-018 -6.05262e-017 -1

-10137e-018 -6.11537e-017 -1
.5348e-017 -5.92776e-017 -1
-69664e-017
.74807e-017
.64605e-017
-35383e-017
.84242e-017
-09182e-017
-09182e-017
.84242e-017
-35383e-017
.64605e-017
.74807e-017
-69664e-017
.5348e-017 5.92776e-017 -1
-10137e-018 6.11537e-017 -1

-5.49747e-017 -1
-4.8421e-017 -1
-3.98851e-017 -1
-2.97162e-017 -1
-1.83307e-017 -1
-6.19477e-018 -1
6.19477e-018 -1
1.83307e-017 -1
2.97162e-017 -1
3.98851e-017 -1
4.8421e-017 -1

5.49747e-017 -1

.27228e-018
-12663e-017
.23897e-017
.21871e-017
.02573e-017
.62699e-017

.05262e-017
.74208e-017
-19645e-017
-43808e-017
.49801e-017 -1
-41473e-017 -1
-99789e-017 1.2326e-017 -1
-12323e-017 7.4988e-033 -1
-101168 -1.23895e-017 -0.994869
-0990974 -0.020365 -0.994869
-0929694 -0.0398963 -0.994869
-0830353 -0.0577942 -0.994869
-0697016 -0.0733261 -0.994869
-0535144 -0.0858559 -0.994869
-0351363 -0.0948708 -0.994869
-0153197 -0.100002 -0.994869
-101038 -0.994869
0979387 -0.994869
0908294 -0.994869
0800015 -0.994869
0658983 -0.994869
0490972 -0.994869
0302861 -0.994869

-1
-1
-1
-1

NFENWAOOOO

-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.

0.
0.
0.

0535144 0.0858559 -0.994869
0697016 0.0733261 -0.994869
0830353 0.0577942 -0.994869
0929694 0.0398963 -0.994869
0990974 0.020365 -0.994869
101168 1.23895e-017 -0.994869
201299 -2.4652e-017 -0.97953
197178 -0.0405211 -0.97953
184985 -0.0793833 -0.97953
.165218 -0.114995 -0.97953
.138688 -0.1459 -0.97953
-10648 -0.170831 -0.97953
.069912 -0.188768 -0.97953
.0304822 -0.198977 -0.97953

-0101956 -0.20104 -0.97953
.050456 -0.194872 -0.97953
-0886507 -0.180727 -0.97953
.123216 -0.159182 -0.97953
.152737 -0.13112 -0.97953
-.176005 -0.0976906 -0.97953
.192067 -0.0602614 -0.97953
.200266 -0.020365 -0.97953
.200266 0.020365 -0.97953
-192067 0.0602614 -0.97953
-.176005 0.0976906 -0.97953
.152737 0.13112 -0.97953
-123216 0.159182 -0.97953
-0886507 0.180727 -0.97953
.050456 0.194872 -0.97953
-.0101956 0.20104 -0.97953

.0304822 0.198977 -0.97953
-069912 0.188768 -0.97953
-10648 0.170831 -0.97953
.138688 0.1459 -0.97953
-165218 0.114995 -0.97953
.184985 0.0793833 -0.97953
.197178 0.0405211 -0.97953
.201299 2.4652e-017 -0.97953
.299363 -3.66614e-017 -0.954139
.293235 -0.0602614 -0.954139
.275102 -0.118056 -0.954139
.245706 -0.171017 -0.954139
.206251 -0.216976 -0.954139
.158352 -0.254053 -0.954139
-10397 -0.280728 -0.954139
0453319 -0.295911 -0.954139
0151625 -0.298979 -0.954139
0750361 -0.289807 -0.954139
131838 -0.26877 -0.954139

Table(5.6) Sample data points for Jar

-8 -8 0.999999
-7.5 -8 0.999997
-7 -8 0.999992
-6.5 -8 0.99998
-6 -8 0.99995
-5.5 -8 0.99988
-5 -8 0.999726
-4.5 -8 0.999411
-4 -8 0.998811
-3.5 -8 0.997757
-3 -8 0.996065
-2.5 -8 0.993617
-2 -8 0.990467
-1.5 -8 0.986937
-1 -8 0.983618
-0.5 -8 0.981226
0 -8 0.980353

0.5 -8 0.981226
1 -8 0.983618
1.5 -8 0.986937
2 -8 0.990467
2.5 -8 0.993617
3 -8 0.996065
3.5 -8 0.997757
4 -8 0.998811
4.5 -8 0.999411
5 -8 0.999726
5.5 -8 0.99988
6 -8 0.99995
6.5 -8 0.99998
7 -8 0.999992
7.5 -8 0.999997

8 -8 0.999999

-8 -7.5 0.999997
-7.5 -7.5 0.999992
-7 -7.5 0.999977
-6.5 -7.5 0.999937
-6 -7.5 0.999836
-5.5 -7.5 0.999591
-5 -7.5 0.999035
-4.5 -7.5 0.99785
-4 -7.5 0.995514
-3.5 -7.5 0.991284
-3 -7.5 0.984345
-2.5 -7.5 0.974175
-2 -7.5 0.961071
-1.5 -7.5 0.946518
-1 -7.5 0.933041
-0.5 -7.5 0.923476
0 -7.5 0.920015

3.5 -7.5 0.991284
4 -7.5 0.995514
4.5 -7.5 0.99785
5 -7.5 0.999035
5.5 -7.5 0.999591
6 -7.5 0.999836
6.5 -7.5 0.999937
7 -7.5 0.999977
7.5 -7.5 0.999992
8 -7.5 0.999997

-8 -7 0.999992
-7.5 -7 0.999977
-7 -7 0.999932
-6.5 -7 0.999808
-6 -7 0.999479
-5.5 -7 0.998652
-5 -7 0.996694
-4.5 -7 0.992376
-4 -7 0.983618
-3.5 -7 0.967559
-3 -7 0.941471
-2.5 -7 0.904688
-2 -7 0.860368
-1.5 -7 0.815192
-1 -7 0.776851
-0.5 -7 0.751481

0 -7 0.74265
0.5 -7 0.751481
1 -7 0.776851
1.5 -7 0.815192
2 -7 0.860368
2.5 -7 0.904688
3 -7 0.941471
3.5 -7 0.967559
4 -7 0.983618
4.5 -7 0.992376
5 -7 0.996694
5.5 -7 0.998652
6 -7 0.999479
6.5 -7 0.999808
7 -7 0.999932
7.5 -7 0.999977

8 -7 0.999992

-8 -6.5 0.99998
-7.5 -6.5 0.999937
-7 -6.5 0.999808
-6.5 -6.5 0.999435
-6 -6.5 0.998404
-5.5 -6.5 0.995706
-5 -6.5 0.989092

-1.5 -6.5 0.560517
-1 -6.5 0.506555
-0.5 -6.5 0.474566
0 -6.5 0.464027

0.5 -6.5 0.474566
1 -6.5 0.506555
1.5 -6.5 0.560517
2 -6.5 0.635209
2.5 -6.5 0.724457
3 -6.5 0.815192
3.5 -6.5 0.891514
4 -6.5 0.944049
4.5 -6.5 0.974175
5 -6.5 0.989092
5.5 -6.5 0.995706
6 -6.5 0.998404
6.5 -6.5 0.999435
7 -6.5 0.999808
7.5 -6.5 0.999937
8 -6.5 0.99998

-8 -6 0.99995

-7.5 -6 0.999836
-7 -6 0.999479
-6.5 -6 0.998404
-6 -6 0.995313
-5.5 -6 0.986937
-5 -6 0.966045
-4.5 -6 0.920015
-4 -6 0.835763
-3.5 -6 0.715107
-3 -6 0.582087
-2.5 -6 0.464027
-2 -6 0.373492
-1.5 -6 0.310302
-1 -6 0.269764
-0.5 -6 0.247351
0 -6 0.240199

0.5 -6 0.247351
1 -6 0.269764
1.5 -6 0.310302
2 -6 0.373492
2.5 -6 0.464027
3 -6 0.582087
3.5 -6 0.715107
4 -6 0.835763
4.5 -6 0.920015
5 -6 0.966045
5.5 -6 0.986937
6 -6 0.995313
6.5 -6 0.998404

73

74

5.4 Parameter extraction

The parameter value u; for each data point is a measure of the distance of the data point
along the curve. One useful approximation for this parameter value uses the chord length

between data points. Specifically, for j data points, the parameter value at the /¢ ™ data

point is
u;= 0
/
u{/ §2|Ds - Ds—[

== (=22 (5.1)
u J
max §|Ds -D_,

The maximum parameter value, ., is usually taken as the maximum value of the knot

vector.

The expanded version of the system is shown in Figure 5.3a and 5.3b.

! |mpowst #
i Contral

75

- ™~ Get
START > i Digitized
i Parameters. [i Image.
¥
Calculate the
Initislize So and Calculate Uniform E :.I:tesr i:incgnll;ﬂsﬂ RAMEME yalies
To. 1 Knot Vector. b sUares hi t thrnll;grgtﬁhnrd—
Technique parameterization.
S E—z e metropol
h i
Wyhile time == -
maxtime
Wyhile (annealing Calcuate new Calculate
time 'M'1 =0 zolution 'Mews' Tl MewiCost=Cost e
¥
¥
Simuate the Annealing
Process by calling 'metropal’ Calculate
fundion at temperature 'T' dCost=hewnlost-
aned no, of terdions 'M', to CurcCost,
get Bests of weights.
l lsdCost =0 YES
Time= Time + i
T=apha*T
M = beta * W
MenZost=Besdt
Cost
¥ YES
Store the weights ¢
et EEats Curs=hews BestS=hews
¥ L4 ¥
h=hi-1 b =hd-1
Fit the curve using
NURBS.
v
EMD

Figure (5.3a) Detailed Curve weight optimization.

* START 'F-

76

/ Get ;
- Digitized
f Image. f

Calculale i pararmelrss
o o g G eSO
1 Technigue direction. ;
paramederzation
miiropo
Wihile time <= +
maxtime
While (emesling - Caleulnle new Calculate
Eifme "M 7p 2ok Solbion "MNewsS’ | HewCost=CostNewS)
Sinnutabe the Annealing
Process by caling ‘metropol Cabcudate
function at termperatre ' T i dCostehrwlost-
and no. of iteralions "W, to CurCesl
ool BeslS of weights.
l] Is dCost < 0 YES
Time = Time + M
T=nlpha*T
M=bela* M
Is RANDOM 5 MewCost
< L4
& [SCoRtTy BastCiost
3
Slore the weights YES YES
wveshor in Bests ‘l l
CurS=News BenS=Newd
L L 4
M= TETR|
Fit the surlpce
using NURES.
£
L
ERD

Figure (5.3b) Detailed Surface weight optimization.

77

5.5 Control point generation

Before we discuss about control point generation, let us discuss some of the basics of
pseudo-inverse of a matrix. The inverse 4™ of a matrix 4 exists only if 4 is square and

has full rank. In this case, Ax = b has the solution x = 4™'b.

The pseudoinverse 4" is a generalization of the inverse, and exists for any (,7) matrix.
We assume m > n. If 4 has full rank (n) we define:
At =A"4)" A" (5.2)

and the solution of Ax =bis x = A"b.

The control points are calculated using the least squares technique. A fairer or smoother
curve is obtained by specifying fewer control polygon points than data points, i.e.

2 <k £n<j. Recalling that a matrix times its transpose is always square, the control
polygon for a curve that fairs or smoothes the data is given by

[D] =[B][F]

[B1"[D]=[B]" [B] [P]

[P1=1B]" [B1] " [B]" [D] (5.3)
where [D] " = [Di(t/)) Dt3) . .. Dy(t))] are data points, [P] T'=1P,P,... P,]arethe

control points and [B] is the set of B-spline basis functions.

78

5.6 Generation of knot values.

Shalaby et. al. [28] showed that better results could be obtained by optimizing the
weights while keeping the knot values uniformly distributed. Simulated Annealing
optimization heuristic is used in this thesis, to optimize weights , using non-uniform knot

values.

A knot value x; belonging to the open knot vector X , is given by

xi=0 1<i<k
x;=i—k k+1<i<n+1
xi=n—-k+2 n+tl<i<n+k+1 (5.4)

The parameter range is 0 <t <n —k + 2 i.e., from zero to the maximum knot value. The

number of knot values isn + k +1.

5.7 Weight optimization

The evaluation of the control points by least squares approximation can be viewed as an
initial estimation of the fitted curve. Further refinement can be obtained by optimizing the
different NURBS parameters, such as the knot values and the weights in order to achieve
better fitting accuracy. The error function (or cost function) between the measured points

and the fitted curve is generally given by the equation 3.41.

79

Better results could be obtained by optimizing the weights while keeping the knot values
uniformly distributed [28]. However, the weights present a large number of independent
variables (equaling the number of control points) to the optimization problem, which may
lead to a large search space. Therefore, global optimization techniques are needed for

optimizing such problems.

5.7.1 Weight optimization using Simulated Annealing

We have used the Simulated Annealing optimization heuristic to optimize weights of the
NURBS curve. Figures 5.3a and 5.3b describe in detail the algorithms used for curves and
surfaces respectively. The initial solution S,of weight vector is randomly selected from
the range [0,0.5]. The number of elements in the weight vector corresponds to the number
of control points. A uniform knot vector is calculated in the range of [0, npts+k-1] for
curves, where npts is the number of control points and k is the order of the curve. For
surfaces, two knot vectors are calculated in the range [0, npts+k-1] and [0, mpts+¢(-1] in

the ‘4’ and ‘w’ directions respectively.

The cooling schedule used here is presented in [10]. It is based on the idea that the initial

temperature 7, must be large to virtually accept all transitions and that the changes in the

temperature at each invocation of the Metropolis loop are small. The scheme provides

guidelines to the choice of 7, the rate of decrements of 7, the termination criterion and

the length of the markov chain (M).

80
Initial Temperature 7,: The initial temperature must be chosen so that almost all
transitions are accepted initially. That is, the initial acceptance ratio y(7,) must be close

to unity where

Number of moves accepted at T,

AT,)=

Total number of moves attempted at T,

(5.6)

To determine 7, , we start off with a small value of initial temperature given by 7, in the
metropol function. Then (7,) is computed. If y(7,) is not close to unity, then 7, is
increased by multiplying it by a constant factor larger than one. The above procedure is
repeated until the value of y(7,) approaches unity. The value of 7, is then the required

value of T},.

Decrement of 7: A decrement function is used to reduce the temperature in a geometric
progression, and is given by

Tivi=aly, k=0,1,..., (5.7)
where « is a positive constant less than one, as successive temperatures are decreasing.
Further, since small changes are desired, the value of « is chosen very close to unity, e.g.

0.8 <a<0.99.

Length of Markov chain M: This is equivalent to the number of times the Metropolis
loop is executed at a given temperature. If the optimization process begins with a high

value of 7,, the distribution of relative frequencies of states will be very close to the

81

stationary distribution. In such a case, the process is said to be in quasi equilibrium. The
number M is based on the requirement that at each value of 7; quasi equilibrium is

restored.

Since at decreasing temperatures, uphill transitions are accepted with decreasing
probabilities, one has to increase the number of iterations of the Metropolis loop with
decreasing 7 (so that the Markov chain at that particular temperature will remain
irreducible and with all states being non null). A factor £ is used (£ > 1) which, in a
geometric progression, increases the value of M. That is, each time the Metropolis loop is

called, T is reduced to a7 and M is increased to M.

The neighborhood of each element of the weight vector is randomly selected within a
range of [weight element value, weight element value + 1]. Since the number of
elements of the weight vector equals the number of control points, this range is selected in

order to optimize the locality of the search.

5.8 Knot optimization

Knots can also be used as a parameter for optimization, in order to achieve better fitting
accuracy. The error function (or cost function) between the measured points and the fitted

curve is generally given by the following equation

82

E= (ZSZIQ —S(ocl,...,ocn)r/s] (5.8)

i=0

where Q represents the set of measured points; S(a, ..., 0, 1s the geometric model of the
fitted curve, where (o, ..., o) are the parameters of the fitted curve; s is the number of
measured points and r is an exponent, ranging from 1 to infinity. The fitting task can then
be viewed as the optimization of the curve parameters (a, ..., 0,) to minimize the error
(or cost) E. In case the exponent r is equal to 2, the above equation reduces to the least
squares function.

We have used the Simulated Annealing heuristic to optimize knots of the NURBS curve.
Figures 5.4a and 5.4b shows the algorithm used for curves and surfaces respectively. In
Figure 5.4a, the weight vector is set to unity. The number of elements in the weight vector
corresponds to the number of control points. Knot optimization requires a good initial

solution of knot vector. The initial solution S,is a uniform knot vector, with a range of

[0,npts+k-1].

For surfaces, the optimization of knot vectors is bidirectional i.e. a knot vector in the u’
and another in the ‘w’ direction. The initial solution CurS/ and CurS2 are uniformly
generated knot vectors in the range [0,npts+k-1] and [0,mpts—+¢{-1] respectively. Figure

5.4b describes the optimization of the knots for surfaces in detail.

83

The cooling schedule used is the same as that described in section 5.7.1. Only the method
used to generate the neighbor of the current solution is different. The neighbor of the
current solution ‘CurS’ is generated in the neighborhood of [CurS - 0.001, CurS + 0.001].

The same neighborhood strategy is used for both curves and surfaces.

84

I Get ,:' Calcuiate the paramelnc
START - Drigitized valye ‘U through Chands
,._l' Image. f lensgih parametenzabon.

w

]

Generale Conbral Points Initinlize S0 ton
Inifiadze Te. using least squanes generated uriom knot Ew::i; ﬁ@";ﬂt;m
Technigus vaclor,
F : :
While time <= I
mil Fraxtirme
A | calculate new | Calcuate HewCost=
" .M.]r:'f.l 7| sohdions Hews', | Codt{NewS)
F
k
Sirmdate the Arnealng
Process by caling ‘metropol Cabculale
function at tempersiure T |l dCast=Mewlos
and no, of iberations ‘M, to CurCost j
get BestS of knots, £
I' YES
Time = Time + M

T=alpha*T
M = heta® M

I RANDOM 5 NewCost

o =
o {=danalT) BeshTost
r
Shone the knot YES YES
vectars in Basts, 1 l
CurS=NewS Baairtions
- . L]
MEk-1 Meit-1
Fil the: curve using
MNURBS.
.
p—

F

=2

Figure (5.4a) Detailed Curve knot optimization.

Initiaize To.

Gt
Digitized

85

Calculabe the parametic
vahees ‘W & W through

Image.

L

o While time <=

maxtime

‘Generabe Control Points

Initiakize the calculated
Using least SQuanes e

Chord-ength
parameterization

L

Sl the elerments of the

kot veclons X oand Y lo [

Techniqus CurS1 & CuwrS2 respl

Simuiate the Annealing
Process by caling ‘metropol
function af bemperatune *T
and no. of ierabions 'MW, 1o
gel BestS of knols

Store the knol
wechors in BestS1
and Best32

Fil the surtsce
using NURBS

C=D

weight vector to unity

@
kL
While Calculate new
(rmealing time o soiubions ‘NewSt " Caleutale NewCosts
g] B HewS CosliNewS1 NewSZ)
r
| <o Calcidabe
doosli=MHewlosl-
CurCost
WG 13 dCost <0 YES
I RANDOM 5 BlewCost
= =
i BestCost
YES YES
= BestSisMewsS1
Si=N 1
Cus2oNiows2 Beusz-Hews2
b -
ez M=Mt
)

Figure (5.4b) Detailed Surface knot optimization.

6 RESULTS

6.1 Introduction

We used the images and surfaces shown in Figure 5.2 as the input to our algorithm both
for weight optimization and knot optimization. Three curves and three surfaces have been
selected for testing our algorithm. In section 6.2, we show the results for weight
optimization for both curves and surfaces, while in section 6.3, knot optimization results

are shown.

The general parameters taken for both curves and surfaces are described below. While
cooling, since small changes in temperatures are desired, we have chosen the value of
as 0.99, which is close to unity. Since the value of £ should be greater than 1, a value of
1.5 is chosen. The algorithm executes the Metropol function, based on Maxtime, which is
set to 250. The order K, for the curves is chosen to be 4 and for surfaces, it is set to the
same value 4, in both the %’ and ‘w’ directions. The number of control points in case of

curves is taken to be 70 and in case of surfaces, 8 each in both direction ‘u’and ‘w’.

86

87
6.2 Weight optimization

6.2.1 Curve Fitting results

The general parameters used for curve fitting are tabulated in Table 6.1. The GUI
developed for weight optimization of curves is shown in Figure 6.1.Figures 6.2 shows the
pound symbol, fitted with the Simulated Annealing heuristic for the parameters shown in

Table 6.1.

Figure 6.2(a) shows the original scanned image given as an input to the algorithm. Figure
6.2(b) shows the outline of the image obtained after applying the boundary detection
algorithm. Figures 6.2(c) & 6.2(d) depict the intermediate fittings of the ‘pound’ symbol
at iterations (Time + i) =51 & 126 respectively and figure 6.2(e) shows the fitting for
the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M. Figure
6.2(f) depicts the actual reduction in the costs (error) as the number of iterations increase.

Table (6.1) S.A. parameters for curves.

Parameter Value

Number of control points | 70

M 50
a 0.99
yis 1.5
Maxtime 250

K (order) 4

88

Optimization of HUREBES weights using Simulated Annealing (5 _A}.

Select the scanned image: |pound -

MURBS Initinhizations ;
Select the ordar m
of the HURBS :
Select the number of control Iﬁ
points o be generated @ '

S.A Iniializations

Select alpha value 09 -
{Cooling Rate) ;
Select iotal allowed ime 5[] -
for the Annealing :
Generate Fit |

1r

02k

0.8 -

0.7

06 F

O5F

0.4k

03k

02F

01F

a !
0 0.2 0.4 0.6 0.6 1

Figure (6.1) GUI for curves.

Figure 6.2(f) shows the calculation of the best cost by the S.A. heuristic. A gradual

decrease in the (current) cost function can be viewed. The figure also shows that (current)

costs are selected for the next iteration, even if previous (current) costs were better, to

avoid getting trapped in the local minimum. Table 6.2 shows the actual number of times

that the Metropolis function is executed. Table 6.2 shows that, the Metropol function

executes Time + M i.e. 238.5 + 168.75, which is equal to 407 number of times, which is

correctly shown in Figure 6.2(f).

— — — Fetod Cunws | ! T —— —_— — Filted Curd
- —_ Time =51 | i = iulod]
- ¥] P—]
./ |
f | |
| o | |
i
M, \
100 - \ . g 100 \
]
J
&0 4 40
g 7 —— . .
- — B e
0 1 1 | | 0 L | L | 1
Fl [&0] w] 1 9 a il] 00 12 12

(c) (d)

Cumulative Eror for Pound Symbal

150 T T e —— e — 345 T T T T T T T T
— N Time = 260
o ’ | 45
{ |
'.. - 34

\ cF
T . 342
\ i
i 341
]
- s
— Y
s I

— 1l Py e

1 1 |
) & m 180 am 1] £11] £01] an a5
Tine +i

()

Figure (6.2) Weight optimization for ‘Pound’.

90

Table (6.2) Metropol function execution time.

S.No Time=Time+M M=p*M
1 1 50

2 51 75

3 126 112.5

4 238.5 168.75

Table (6.3) Weight optimization parameters for ‘Pound’.

Name POUND

dpts (# of data points) 688
K (Order of NURBS) 4
npts (# of control points) 70

o (Cooling rate) 0.99
[(constant) L.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 3.378
Execution time (secs) 530.859

Table 6.3 shows the various parameters used and generated in the weight optimization of
the ‘Pound’ symbol. The BestCost (Least Error) is found to be 3.378 units and the

execution time 1s found to be 530.859 seconds.

91

Figure 6.3(a) shows the original scanned image given as an input to the algorithm. Figure
6.3(b) shows the outline of the image obtained after applying the boundary detection
algorithm. Figures 6.3(c) & 6.3(d) depict the intermediate fittings of the ‘Aich’ symbol at
iterations (Time + i) =51 & 126 respectively and figure 6.3(e) shows the fitting for the
actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure

6.3(f) depicts the actual reduction in the costs (error) as the number of iterations increase.

Table 6.4 shows the various parameters used and generated in the weight optimization of
the ‘Aich’ symbol. The BestCost (Least Error) is found to be 14.332 units and the

execution time is found to be 625.406 seconds.

Table (6.4) Weight optimization parameters for ‘Aich’.

Name AICH

dpts (# of data points) 787
K (Order of NURBS) 4
npts (# of control points) 70

a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 14.332
Execution time (secs) 625.406

92

un

ToF

*0k

Mot f

™

w0k

160 |

16 =5l L L

o 240 0 %0
Cummulative Error for ‘sich’
14375
0 Fitted Curve ! i i
Tirne = 250
20 E w3k R
0+ g 14365 g
280- R B g
2601 R 14385 R
g &
i
20k 4 13 4
@
20+ 4 14345 g
20 R 1434 R
180} R 143% R
R oy Qe BB
160 ! | | | T | 1w
b1 20 260 280) 20 340 0 0 E 10 150 20 50 00 0 4 40
Tirne +i

(e)

)

Figure (6.3) Weight optimization for ‘Aich’.

93

Figure 6.4(a) shows the original scanned image given as an input to the algorithm. Figure
6.4(b) shows the outline of the image obtained after applying the boundary detection
algorithm. Figures 6.4(c) & 6.4(d) depict the intermediate fittings of the ‘A/i’ symbol at
iterations (Time + i) =51 & 126 respectively and figure 6.4(e) shows the fitting for the
actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure

6.4(f) depicts the actual reduction in the costs (error) as the number of iterations increase.

Table 6.5 shows the various parameters used and generated in the weight optimization of
the ‘Ali’ symbol. The BestCost (Least Error) is found to be 12.03 units and the execution

time is found to be 2029.8 seconds.

Table (6.5) Weight optimization parameters for ‘Ali’.

Name ALI
dpts (# of data points) 1644
K (Order of NURBS) 4
npts (# of control points) 70
a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 12.03
Execution time (secs) 2029.8

94

180

1218k

1296k

124k

Figure (6.4) Weight optimization for ‘Ali’

95

Figure 6.5(a) shows the original scanned image given as an input to the algorithm. Figure
6.5(b) shows the outline of the image obtained after applying the boundary detection
algorithm. Figures 6.5(c) & 6.5(d) depict the intermediate fittings of the ‘Apple’ symbol
at iterations (Zime + i) = 51 & 126 respectively and figure 6.5(e) shows the fitting for
the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure

6.5(f) depicts the actual reduction in the costs (error) as the number of iterations increase.

Table 6.6 shows the various parameters used and generated in the weight optimization of
the ‘Apple’ symbol. The BestCost (Least Error) is found to be 16.518 units and the

execution time is found to be 1207.1 seconds.

Table (6.6) Weight optimization parameters for ‘Apple’.

Name ‘ ‘ APPLE

dpts (# of data points) 1204
K (Order of NURBS) 4
npts (# of control points) 70

a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 16.518
Execution time (secs) 1207.1

96

(@) (b)
(c) (d)
(e))

Figure (6.5) Weight optimization for ‘Apple’

97

Figure 6.6(a) shows the original scanned image given as an input to the algorithm.
Figures 6.6(b) & 6.6(c) depict the intermediate fittings of the ‘Open Curve’ at iterations (
Time + i) = 51 & 126 respectively and figure 6.6(d) shows the fitting for the actual

iteration of 250 (Maxtime), where %’ iterates over Annealing time ‘M’. Figure 6.6(e)

depicts the actual reduction in the costs (error) as the number of iterations increase.

Table 6.7 shows the various parameters used and generated in the weight optimization of
the ‘Open Curve’. The BestCost (Least Error) is found to be 0.418 units and the execution

time is found to be 917.031seconds.

Table (6.7) Weight optimization parameters for ‘Open Curve’.

Name Open Curve

dpts (# of data points) 1001
K (Order of NURBS) 4
npts (# of control points) 70

a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.418
Execution time (secs) 917.031

98

(@) (b)

(c) (d)

Ermr

Cumulative Errar for 'Opan Curea’

(e)

Figure (6.6) Weight optimization for ‘Open Curve’

99

6.2.2 Surface fitting results.

Figure 6.7 show the GUI developed for optimizing the weights for surfaces. Figure 6.8(a)
shows the original image given as an input to the algorithm.. Figures 6.8(b) & 6.8(c)
depict the intermediate fittings of the ‘Surface I’ at iterations (Time + i) =51 & 126
respectively and figure 6.8(d) shows the fitting for the actual iteration of 250 (Maxtime),
where %’ iterates over Annealing time ‘M. Figure 6.8(e) depicts the actual reduction in

the costs (error) as the number of iterations increase.

Optimization of NURBS weights using Simulated Annealing{S.A).

NURBS Initializations - i
Select the order of the 09t
NURBS |4 vl
in both directions : 08
Select the number of control 07
points to be generated in both |5 "'I
directions: OG-
5.A_ Initializations 05¢
Select alpha value 0.80 | o4l
{Cooling Rate) : '
0Oar
Select total allowed time
for the Annealing : ISD :" ozl
01F
Generate Fit |
D 1 1 1 1 1
] 0z 0.4 0k& na 1

Figure (6.7) GUI for surfaces.

100

[Fitted Surface
Time =51

[Filled Surbace [Fitted Sudace
Time = 126 Time = 250

Cumulative Error for 'Surfacel”
0.2 T T T T T T T T

18 —

0.16 —

o.14

Ermor

0.1z

0.08

(e)

Figure (6.8) Weight optimization for ‘Surface 1’

101

Table (6.8) Weight optimization parameters for ‘Surface 1°.

Name SURFACEI ‘

dpts (# of data points) 1089
k (Order in ‘u’ direction) 4

/ (Order in ‘w’ direction) 4
npts (control points in ‘u 'direction) 8
mpts (control points in ‘w’ direction) 8

a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.085
Execution time (secs) 442

Table 6.8 shows the various parameters used and generated in the weight optimization of
‘Surface 1’. The BestCost (Least Error) is found to be 0.085 units and the execution time

1s found to be 442 seconds.

Figure 6.9(a) shows the original image given as an input to the algorithm.. Figures 6.9(b)
& 6.9(c) depict the intermediate fittings of the ‘Surface 2’ at iterations (7Time +i)=51 &
126 respectively and figure 6.9(d) shows the fitting for the actual iteration of 250
(Maxtime), where G’ iterates over Annealing time ‘M’. Figure 6.9(e) depicts the actual

reduction in the costs (error) as the number of iterations increase.

102

09 -
0g i
07—

. [Fitted Surface
B Time = 51

- [Fitted Surface Qg
Time = 126

27 I/
AR Y Ty S A
0.8] ,
“‘“
07 4

[Fitted Surface
Time = 250

Ermar

024

0.235

o.23

0225

0.22

o215

a.z21

0.205

[=

0195

o119

Curmulative Error for ‘Surface 2°

(e)

350 400 450

Figure (6.9) Weight optimization for ‘Surface 2’

103

Table (6.9) Weight optimization parameters for ‘Surface 2°.

Name SURFACE2 ‘

dpts (# of data points) 441

k (Order in ‘u’ direction) 4

[(Order in ‘w’ direction) 4
npts (control points in ‘u’direction) 8
mpts (control points in ‘w’ direction) 8

a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.1925
Execution time (secs) 117.016

Table 6.9 shows the various parameters used and generated in the weight optimization of
‘Surface 2. The BestCost (Least Error) is found to be 0.1925 units and the execution time

1s found to be 117.016 seconds.

Figure 6.10(a) shows the original image given as an input to the algorithm. Figures
6.10(b) & 6.10(c) depict the intermediate fittings of the ‘Surface 3’ at iterations (7ime + i
) =51 & 126 respectively and figure 6.10(d) shows the fitting for the actual iteration of
250 (Maxtime), where G’ iterates over Annealing time ‘M. Figure 6.10(e) depicts the

actual reduction in the costs (error) as the number of iterations increase.

104

Cumulative Errar for 'Surface 3

0.045 T
=

=]

0.04 -

0.035

0.03

0.025

Enmar

é,@ e T 01

0.0z

o015 -

o.01 -

0.005 —

L | 1 1
[u} S0 100 150 200 250 300 350

(e)

|
400

450

Figure (6.10) Weight optimization for ‘Surface 3'.

105

Table (6.10) Weight optimization parameters for ‘Surface 3°.

Name SURFACE3 ‘
dpts (# of data points) 1024
k (Order in ‘u’ direction) 4
[(Order in ‘w’ direction) 4
npts (control points in ‘u’direction) 8
mpts (control points in ‘w’ direction) 8
a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.005
Execution time (secs) 664.406

Table 6.10 shows the various parameters used and generated in the weight optimization of
‘Surface 3°. The BestCost (Least Error) is found to be .005 units and the execution time is

found to be 664.406 seconds.

Figure 6.11(a) shows the original image given as an input to the algorithm. Figures
6.11(b) & 6.11(c) depict the intermediate fittings of the Jar’ at iterations (Time + i) =
51 & 126 respectively and figure 6.11(d) shows the fitting for the actual iteration of 250
(Maxtime), where i’ iterates over Annealing time ‘M’. Figure 6.11(e) depicts the actual

reduction in the costs (error) as the number of iterations increase.

106

(@)

I "‘"c"o '

| ll | 0 ll
o \\ i 0 i

22 :I*’ . ‘.\ \“\\ :“:"“ "‘l‘ .Ill

. 04 \\\\\Vl‘h“"'t\“\qllll ” ////

407 0 -

0.22

ozt |

Eror

o.13 > I ‘ | |

Time + i

(e)

Figure (6.11) Weight optimization for ‘Jar’.

107

Table (6.11) Weight optimization parameters for ‘Jar’.

Name Jar
dpts (# of data points) 1089
k (Order in ‘u’ direction) 4
[(Order in ‘w’ direction) 4
npts (control points in ‘u 'direction) 8
mpts (control points in ‘w’ direction) 8
a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.132
Execution time (secs) 781.2650

Table 6.11 shows the various parameters used and generated in the weight optimization of
Jar’. The BestCost (Least Error) is found to be 0.132 units and the execution time is

found to be 781.2650 seconds.

108

6.3 Knot optimization

6.3.1 Curve fitting results

Figure 6.12(a) shows the original scanned image given as an input to the algorithm.
Figure 6.12(b) shows the outline of the image obtained after applying the boundary
detection algorithm. Figures 6.12(c) & 6.12(d) depict the intermediate fittings of the
‘pound’ symbol at iterations (Time + i) = 51 & 126 respectively and figure 6.12(e)
shows the fitting for the actual iteration of 250 (Maxtime), where %’ iterates over

Annealing time ‘M’. Figure 6.12(f) depicts the actual reduction in the costs (error) as the

number of iterations increase.

Table (6.12) Knot optimization parameters for ‘Pound’.

Name POUND

dpts (# of data points) 688
K (Order of NURBS) 4
npts (# of control points) 70

o. (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 3.3775
Execution time (secs) 517.781

109

Table 6.9 shows the various parameters used and generated in the knot optimization of
the ‘Pound’ symbol. The BestCost (Least Error) is found to be 3.3775 units and the

execution time 1s found to be 517.781 seconds.

Figure 6.13(a) shows the original scanned image given as an input to the algorithm.
Figure 6.13(b) shows the outline of the image obtained after applying the boundary
detection algorithm. Figures 6.13(c) & 6.13(d) depict the intermediate fittings of the
‘Aich’ symbol at iterations (Time + i) =51 & 126 respectively and figure 6.13(e) shows
the fitting for the actual iteration of 250 (Maxtime), where %’ iterates over Annealing time
‘M’. Figure 6.13(f) depicts the actual reduction in the costs (error) as the number of

iterations increase.

Table (6.13) Knot optimization parameters for ‘Adich’.

Name AICH

dpts (# of data points) 787
K (Order of NURBS) 4
npts (# of control points) 70

a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 14.3
Execution time (secs) 595.703

110

150 - T———————T — — Frtvd Cure
—— -. —_— ; Time = 126
/ / / N : II
| (-
1wk 4 ol
/
54 1 Sor A
L=) B
[. ' -) 0 | L .
] x 0 [] 100] o b] & " i
il Esror for Pound
180 . . — — e 2379 T T T
T Time = 250
: 33
4 /! !
/ { \
! =4 1378
| \
i > EE-]
)
TR T Jamaf
.I.
J R
al A}
e
—_— e b e
. . TS o g™ g
L — -
o L L L L L L 13 L L L L L L L
] 0 40 E0 o 100 120 140] 1o 150 ki Ll 450

(e)

)

Figure (6.12) Knot optimization for ‘Pound’ .

111

Table 6.13 shows the various parameters used and generated in the knot optimization of
the ‘Aich’ symbol. The BestCost (Least Error) is found to be 14.3 units and the execution

time is found to be 595.703 seconds.

Figure 6.14(a) shows the original scanned image given as an input to the algorithm.
Figure 6.14(b) shows the outline of the image obtained after applying the boundary
detection algorithm. Figures 6.14(c) & 6.14(d) depict the intermediate fittings of the ‘Ali’
symbol at iterations (Time + i) = 51 & 126 respectively and figure 6.14(e) shows the
fitting for the actual iteration of 250 (Maxtime), where i’ iterates over Annealing time
‘M’. Figure 6.14(f) depicts the actual reduction in the costs (error) as the number of

iterations increase.

Table (6.14) Knot optimization parameters for ‘Ali’.

Name ALI
dpts (# of data points) 1644
K (Order of NURBS) 4
npts (# of control points) 70
a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 12.036
Execution time (secs) 2048.3

112

(@

(b)

0 il Ex1]
113 £ 4 ot J
b1 e 4 b1 e 4
=0t 3 o \ 4 =0t - 4
(- = !
Hor / 4 Ho- 4
af 4 af 4
b J / 4 mE 4
G | il
164 '- 1 1 1 1 T 1 1
m] =0] m m M0 =) E e
Cumulative Enor for Aich’
0 — Fitted Curve » ! !
Time = 250

2WE E| Esls q
Euls E zr 7

HilS g
280 g

pulS g
0 g

ST Bl
I

240+ E

181 g
pzils g

7r E
0+ E 5L]
180 g 51]
160 L L L L I 1 14 L L L L L L L ‘---

20 240 260 260 Im Ez] 30 0 0 E] 10 180 20 20 30 =0 400 150

Time +i

()

Figure (6.13) Knot optimization for ‘Aich’.

113

Table 6.14 shows the various parameters used and generated in the knot optimization of
the ‘Ali’ symbol. The BestCost (Least Error) is found to be 12.036 units and the execution

time is found to be 2048.3 seconds.

Figure 6.15(a) shows the original scanned image given as an input to the algorithm.
Figure 6.15(b) shows the outline of the image obtained after applying the boundary
detection algorithm. Figures 6.15(c) & 6.15(d) depict the intermediate fittings of the
‘Apple’ symbol at iterations (7ime + i) =51 & 126 respectively and figure 6.15(e) shows
the fitting for the actual iteration of 250 (Maxtime), where i’ iterates over Annealing time
‘M’. Figure 6.15(f) depicts the actual reduction in the costs (error) as the number of

iterations increase.

Table (6.15) Knot optimization parameters for ‘Apple’.

Name Apple

dpts (# of data points) 1204
K (Order of NURBS) 4
npts (# of control points) 70

a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 16.553

Execution time (secs) 1219.6

114

x
o
=t
xw
40y o m 5 = w I
o T i I J o J Fitted Curve | ! ! Fitted Curve
{ "t Time =51 Tirne = 120
0 E:)
ki
V] s —
1 - Y ™
m { i — m / —_—
11 f !
i 1
\ l!. \] LA =
20 Y B T S A 20t = 4 —
2 m / o |
\ N P
i —_—
1k 4 w0t — 4
1 L L L L L 'l L J m L L L L Il L
i &0 1m 1861 an 0 am 0 am 0 &) i 101 m £l 1] am
Comutatres Eror for A
- T 1204 - r
b 12035 «
03 4
w
12035 4
m
20% 4
xat fiiks
\ 120075 4
1E0 ——— 4
1207 4
10 L L L L s L | 12088 L 1 L L |]
] s 00 120 00 =0 00 0 400 [} 2 150 k. =0 *0 4 40
Tima i

Figure (6.14) Knot optimization for ‘Ali’ .

115

Table 6.15 shows the various parameters used and generated in the knot optimization of
the ‘Apple’ symbol. The BestCost (Least Error) is found to be 16.553 units and the

execution time is found to be 1219.6 seconds.

Figure 6.16(a) shows the original scanned image given as an input to the algorithm.
Figures 6.16(b) & 6.16(c) depict the intermediate fittings of the ‘Open Curve’ at iterations
(Time + i) =51 & 126 respectively and figure 6.16(d) shows the fitting for the actual
iteration of 250 (Maxtime), where 7’ iterates over Annealing time ‘M’. Figure 6.16(¢)

depicts the actual reduction in the costs (error) as the number of iterations increase.

Table (6.16) Knot optimization parameters for ‘Open Curve’.

dpts (# of data points) 1001
K (Order of NURBS) 4
npts (# of control points) 70

o. (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.1275
Execution time (secs) 920.131

116

(a) (b)
() (d)
(e ®

Figure (6.15) Knot optimization for ‘Apple’.

117

(@

(b)

(©)

(d)

Emr

0.1278

0.1z70

0.1278

0.1278

01278

0.1278

[EIR P S

0.1278

Curnulative Errar far 'Open Cure’

L L L L L L L
a0 U0 T80 200 P En =)

Figure (6.16) Knot optimization for ‘Open Curve’.

118

Table 6.16 shows the various parameters used and generated in the knot optimization of
the ‘Open Curve’ symbol. The BestCost (Least Error) is found to be 0.1275 units and the

execution time 1s found to be 920.131 seconds.

6.3.2 Surface fitting results.

Figure 6.17(a) shows the original image given as an input to the algorithm. Figures
6.17(b) & 6.17(c) depict the intermediate fittings of the ‘Surface 1’ at iterations (Time + i
) =51 & 126 respectively and figure 6.17(d) shows the fitting for the actual iteration of
250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.17(e) depicts the
actual reduction in the costs (error) as the number of iterations increase.

Table (6.17) Knot optimization parameters for ‘Surface 1°.

Name SURFACEI ‘
dpts (# of data points) 1089
k (Order in ‘u’ direction) 4
/ (Order in ‘w’ direction) 4
npts (control points in ‘u ’direction) 8
mpts (control points in ‘w’ direction) 8
a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.082
Execution time 434.828

119

Table 6.17 shows the various parameters used and generated in the knot optimization of
‘Surface 1’. The BestCost (Least Error) is found to be 0.082 units and the execution time

1s found to be 434.828 seconds.

Figure 6.18(a) shows the original image given as an input to the algorithm. Figures
6.18(b) & 6.18(c) depict the intermediate fittings of the ‘Surface 2 at iterations (Time + i
) =51 & 126 respectively and figure 6.18(d) shows the fitting for the actual iteration of
250 (Maxtime), where G’ iterates over Annealing time ‘M. Figure 6.18(¢) depicts the

actual reduction in the costs (error) as the number of iterations increase.

Table (6.18) Knot optimization parameters for ‘Surface 2°.

Name SURFACE2

dpts (# of data points) 441
k (Order in ‘u’ direction) 4

/ (Order in ‘w’ direction) 4
npts (control points in ‘u’direction) 8
mpts (control points in ‘w’direction) 8

a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.19052
Execution time 110.89

120

[Fitted Surface
Time = 51

Curnulative Error for Surface 1
0.8 T T T T T T T T

Emor
a
]
T
I

D e .
250 300 350 A00 A50
Tirme + i

(e)

Figure (6.17) Knot optimization for ‘Surface 1'.

121

Table 6.18 shows the various parameters used and generated in the knot optimization of
‘Surface 2’. The BestCost (Least Error) is found to be 0.19052 units and the execution

time is found to be 110.89 seconds.

Figure 6.19(a) shows the original image given as an input to the algorithm. Figures
6.19(b) & 6.19(c) depict the intermediate fittings of the ‘Surface 3’ at iterations (Time + i
) =51 & 126 respectively and figure 6.19(d) shows the fitting for the actual iteration of
250 (Maxtime), where G’ iterates over Annealing time ‘M. Figure 6.19(¢) depicts the

actual reduction in the costs (error) as the number of iterations increase.

Table (6.19) Knot optimization parameters for ‘Surface 3°.

Name SURFACE3 ‘
dpts (# of data points) 1024
k (Order in ‘u’ direction) 4
[(Order in ‘w’ direction) 4
npts (control points in ‘u ‘direction) 8
mpts (control points in ‘w’ direction) 8
a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.0032
Execution time 705.485

122

[Fitted Surface
Time = 51

[Fitted Surfa
Tirme = 126

Cumulative Error for Surface 2
0.1945 T T T T T T T T

0.194 _
01935 —

0.193 —

Ermor

01525 - - . —
0.192 - . L L N

OADTE [it o e o T s e B

o 1=

01905 L
[u]

1 1 1 1 1
S0 100 150 200 250 300 350 A00 A50

Tirme + i

(e)

Figure (6.18) Knot optimization for ‘Surface 2'.

123

Table 6.19 shows the various parameters used and generated in the knot optimization of
‘Surface 3°. The BestCost (Least Error) is found to be 0.0032 units and the execution time

1s found to be 705.485 seconds.

Figure 6.20(a) shows the original image given as an input to the algorithm. Figures
6.20(b) & 6.20(c) depict the intermediate fittings of the Jar’ at iterations (Time + i) =
51 & 126 respectively and figure 6.20(d) shows the fitting for the actual iteration of 250
(Maxtime), where i’ iterates over Annealing time ‘M’. Figure 6.20(¢) depicts the actual

reduction in the costs (error) as the number of iterations increase.

Table (6.20) Knot optimization parameters for ‘Jar’.

Name Jar ‘
dpts (# of data points) 1089
k (Order in ‘u’ direction) 4
[(Order in ‘w’ direction) 4
npts (control points in ‘u ‘direction) 8
mpts (control points in ‘w’ direction) 8
a (Cooling rate) 0.99
[(constant) 1.5
M (Annealing time) 50
MaxTime 250
BestCost (Least Error) 0.129
Execution time 797.109

124

[Fized Surfate
Time = 126

e Sutace

Cumulative Error for Surface 3
0.018 T T T T T T T T

0.016 - —

a.o14 - _

o012 - —

Emar
]
9
T
I

0.008 |- —
0006 |~ —
0.004 - e T I e e —
o002 . | . | . | . |
o =0 100 180 200 =50 =00 =50 400 450
Tirme + i

Figure (6.19) Knot optimization for ‘Surface 3'.

125

Table 6.20 shows the various parameters used and generated in the knot optimization of
Jar’. The BestCost (Least Error) is found to be 0.129 units and the execution time is

found to be 797.109 seconds.

Table 6.21 summarizes the results obtained for both curves (Pound, Aich & Ali) and

surfaces (Surface 1, Surface 2, Surface 3) for weight optimization and knot optimization.

Table (6.21) Weight & Knot optimization results summary.

6.3.2.1 Weight

optimizati 6.3.2.2 Knot
on optimization

Time Least error Time Least error Points
Pound 530.859 3.378 517.781 3.3775 688
Aich 625.406 14.332 595.703 14.3 787
Ali 2029.8 12.03 2048.3 12.03655 1644
Surface 1 442 0.085 434.828 0.082 1089
Surface 2 117.016 0.1925 110.89 0.19052 441
Surface 3 664.406 0.005 705.485 0.0032 1024

126

[

] Fitted Susdace
T = 126

W ; ““““ .
\ I ,s‘.;“‘:"’ ."c,

\l
4‘4 '

N
"“0:!1% -

[Fitted Surace
Time = 250

Eror

rrrrrrrrrrrrrrrrrrrrrrr

I
150

, L ,
=50 =00 =50
Time + i

(e)

Figure (6.20) Knot optimization for ‘Jar’.

127

Finally, Figure 6.21 picturizes the data shown in Table 6.21. It is observed that there is
little difference between weight and knot optimization for both curves and surfaces. But,
knot optimization requires a good initial location of knots. A random initial location of

knots does not give good results within the specified Maxtime of 250.

Since, knot optimization requires a good initial location of knots, weight optimization of

NURBS curve and surfaces is a better option giving comparable results.

Results Comparison - Logarithmic Table

10000

1000 ~

100 ~

10 +

Pound Aich Ali Surface 1 Surface 2 Surface 3

0.1

0.01 -

0.001

—e— weight optimization Time ---B - - weight optimization least error

---I - -- knot optimization Time —— knot optimization least error

Figure (6.21) Weight — Knot Comparison.

7. CONCLUSION

The objective of the research presented in this thesis was to develop an algorithm for the
global optimization of the fitting error between a set of scanned points and a fitted
curve/surface. To achieve this objective, the Simulated Annealing optimization heuristic
was tailored to solve the problem. We also had the objective of finding out the best

NURB optimization parameter among weights and knots.

For weight optimization, a uniform knot vector and a fixed number of control points are
calculated using the least squares technique, while the sum of squared errors is taken as
the objective function. In knot optimization, the weight vector is set to unity. The number
of elements of the weight vector is taken the same as the number of control points. A
good initial solution of knot vector is taken. New knot vectors are calculated using the

neighborhood function of the Simulated Annealing Algorithm.
Results obtained from optimization of weights and knots of NURBS for both curves and
surfaces indicate that weight optimization is a better option than knot optimization

because knot optimization requires a good initial location of knot vector.

From our work, we conclude that the use of a global optimization method such as

Simulated Annealing is essential for the problem at hand. The S.A. algorithm uses an

128

129

efficient local optimization method, which ensures it’s accurate arrival at the global
optimum. We also conclude that weight optimization is a better alternative than knot

optimization.

One of the shortcomings of our algorithm is that it works for images with a single
segment. Images such as O’ with double segments do not work with this algorithm. Also
we see very low errors in case of surfaces compared to curves. The reason behind these
results is that input surfaces are created using mathematical functions, while curves are

actually scanned.

In future, this work can be extended to simultaneous optimization of two or more NURBS
parameters like control point-weight, knot vector-weight, etc. Other global optimization
techniques like the Ant Algorithm can also be applied to optimize NURBS parameters to
solve the problem. Also, this work can be incorporated in the reverse engineering

component of the CAD/CAM modeling softwares.

BIBLIOGRAPHY

[1] Chou J.J. & Piegl L.A. Data Reduction Using Cubic Rational B-Splines. 1992. IEEE

Computer Graphics & Applications.

[2] Chivate, P.N., and Jablokow, A.G., Review of Surface Representations and Fitting for

Reverse Engineering, Computer Integrated Manufacturing System, Vol. 8, 1995, pp. 193-

204.

[3] P. Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, 1993.

[4] Floater, M.S., and Reimers, M., “Meshless parameterization and Surface

Reconstruction”, Computer Aided Geometric Design, Vol. 18, 2001, pp.77-92.

[5] Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning,

Addisson-Wesley, 1989.

[6] J.A. Gregory, M. Sarfraz, and P.K. Yuen. Interactive Curve Design using C2 Rational

Splines. Computers and Graphics, 18(2):153-159,1994.

[7] Hoffmann M. & Juhasz I. Shape Control of Cubic B-spline and NURBS Curves by

Knot Modifications. 2001 IEEE.

131

[8] Hoschek. J., and Lasser, D., Fundamentals of Computer Aided Geometric Design, AK

Peters, Wellesley, 1994.

[9] Huang D. & Yan H., NURBS Curve Controlled Modelling for Facial Animation. 27,

373-385, 2003 Computers & Graphics.

[10] Kirkpatrick S., Gelatt Jr. C. & Vecchi M. Optimization by Simulated Annealing,

Science, 220(4598):498-516, May 1983.

[11] Kitson.F.L. (1989). An Algorithm for Curve and Surface Fitting using B-Splines.

CH2673-2/89/0000-1207. 1989 IEEE.

[12] Limaiem A., Nassef A. & Elmaghraby H.A. Data Fitting using Dual Krigging and

Genetic Algorithms. CIRP Annals, Vol. 45, 1996, pp. 129-134.

[13] G. Renner Markus, A. and J. Vancza. Spline interpolation with genetic algorithms.
Proc. Int. Conf. on shape, Modeling and applications, IEEE Computer Society Press,

pages 47-54, 1997.

132

[14] Metropolis N., Roshenbluth A., Rosenbluth M., Teller A. & Teller E. Equation of
State Calculations by Fast Computing machines. J. Chem. Phys., Vol.21, No. 6, pp. 1087-

1092, 1953.

[15] Nassef, A.O., Ashraf, A.M., and Metwalli, S.M., “Accuracy and Fitting-Time
Minimization in the Reverse Engineering of Prismatic Features”, Proceedings of the

ASME Computers in Engineering Conference, Las Vegas, 1999.

[16] Piegl L. On NURBS: A Survey. IEEE computer graphics & applications. 11(1): 55-

71, Jan 1991.

[17] Piegl L., & Tiller W., The NURBS Book, Springer-Verlag, Berlin, 1995.

[18] Pontrandolfo F., Monno G. & Uva A.E. Simulated Annealing Vs Genetic Algorithms

for Linear Spline Approximation of 2D Scattered Data. XII International Conference,

Rimini, Italy, 2001.

[19] Prahasto T. & Bedi S. Optimization of Knots for the Multi Curve B-Spline

Approximation. IEEE conference 2000.

[20] Quddus A. Curvature Analysis Using Multi-resolution Techniques. PhD Thesis.

KFUPM 1998.

133

[21] Rao S.S., Engineering Optimization, Theory and Practice, John-Wiley and Sons,

New York, 1999.

[22] Raza S.A. Visualization with Spline using a Genetic Algorithm, Master Thesis 2001

King Fahd University of Petroleum & Minerals. Dhahran, Saudi Arabia.

[23] John R. Rice. Numerical Methods, Software and Analysis. Academic Press, New

York, second edition, 1993.

[24] Rogers D.F. An introduction to NURBS-with historical perspective, Morgan

Kaufmann publishers, 2001.

[25] Sarfraz, M., A C? Rational Cubic alternative to the NURBS, Computers and

Graphics Vol. 16(1), 69-77, 1992.

[26] Sarkar B., and Menq C.H., Smooth Surface Approximation and Reverse

Engineering, Computer Aided Design, Vol. 23, 1991a, pp. 623-628.

[27] Sarkar B. & Menq C.H. Parameter Optimization in Approximating Curves and
Surfaces to Measurment Data. Computer Aided Geometric Design, Vol. 8, 1991, pp.267-

290.

134

[28] Shalaby M.M., Nassef A.O., & Metwalli S.M., On the Classification of Fitting
Problems for Single Patch Free-Form Surfaces in Reverse Engineering, Proceedings of

the ASME Design Automation Conference, Pittsburgh, 2001.

[29] Varady,T., Martin, R.R., and Cox, J., Reverse Engineering of Geometric Models- an

introduction”, Computer Aided Design, Vol. 29, 1997, pp.255-268.

[30] Werghi, N., Fisher, R., Rogertson, C., and Ashbrook, A., Object Reconstruction by
Incorporating Geometric Constraints in Reverse Engineering, Computer Aided Design,

Vol. 31, 1999, pp. 363-399.

[31] Xie H. & Qin H. Automatic Knot Determination of NURBS for Interactive

Geometric Design. 2001 IEEE.

[32] Yau H.T., & Chen J.S., Reverse Engineering of Complex Geometry Using Rational
B-Splines, International Journal of Advanced Manufacturing Technology, Vol. 13, 1997,

pp. 548-555.

[33] Yoshimoto Y., Moriyama M. and Harada T. Automatic Knot Replacement by a

Genetic Algorithm for Data Fitting with a Spline. Shape Modeling and Applications,

135

1999. Proceedings. Shape Modeling International '99. International Conference on , 1-4

March 1999 Page(s): 162 —169.

[34] W.S. Yoo, Choi and C.S Lee. Matrix representation of NURBS Curves and Surface.

Computer Aided desing, 22(4), 1990.

[35] Youssef A.M'. Reverse Engineering of Geometric Surfaces using Tabu Search

Optimization Technique, Master Thesis 2001. Cairo University. Egypt.

[36] Ueng, W.D., Lai, J.Y., and Doong, J.L., “Sweep Surface Reconstruction from Three

Dimensional Data”, Computer Aided Design, Vol. 30, 1998, pp. 791-805.

[37] Herrera, F., Lozano, M., and Verdegay, J.L., “Tackling Real-Coded Genetic
Algorithms: Operators and Tools for Behavioral Analysis”, Artificial Intelligence

Review, Vol. 12, 1998, pp. 265-319.

[38] Pham, D.T., and Karaboga, D., Intelligent Optimization Techniques, Genetic
Algorithms, Tabu Search, Simulated Annealing and Neural Networks, Springer-Verlag,

Berlin, 2000.

! The authors would like to express their sincere thanks to Mr. Youssef A. M [35] for permitting us to use
his figures in chapter 3 of this thesis.

VITA

Mohammed Riyazuddin

Received B.E. (Bachelor of Engineering) degree in Computer Science from the
Deccan College of Engineering affiliated to the Osmania University, Hyderabad,
India, in 2001.

Joined Information and Computer Science Department at KFUPM, Saudi Arabia
in January 2002.

Completed M.S. (Master of Science) degree requirements in Computer Science in

2004.

	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	THESIS ABSTRACT (ENGLISH)
	THESIS ABSTRACT (ARABIC)
	INTRODUCTION
	Review of visualization by curve and surface fitting.
	Motivation
	Objectives and Approach
	Contributions
	Thesis Overview

	LITERATURE REVIEW
	Introduction
	Parameterization
	Curve and surface fitting
	Curve and Surface Representations
	Choice of Independent Parameters
	Optimization Methods Used in Curve and Surface Fitting

	FITTING OF FREE-FORM SURFACES
	Introduction
	Curve and Surface Basics
	Implicit and Parametric Forms
	Bezier Curves
	Rational Bezier Curves
	Tensor Product Surfaces

	B-Spline Curves and Surfaces
	Definition and Properties of B-Spline Basis Functions
	Definition and Properties of B-Spline Curves
	Definition and Properties of B-Spline Surfaces

	Rational B-Spline Curves and Surfaces
	Definition and Properties of Non-Uniform Rational B-Spline C
	Definition and Properties of NURBS Surfaces

	Curve and Surface Fitting
	Optimization of NURBS Parameters

	SIMULATED ANNEALING
	Introduction
	Simulated Annealing Algorithm
	Parameters of the S.A. algorithm
	S.A. Requirements

	THE PROPOSED METHOD
	Introduction
	Obtaining a digitized image/surface
	Contour extraction
	Parameter extraction
	Control point generation
	Generation of knot values.
	Weight optimization
	Weight optimization using Simulated Annealing

	Knot optimization

	RESULTS
	Introduction
	Weight optimization
	Curve Fitting results
	Surface fitting results.

	Knot optimization
	Curve fitting results
	Surface fitting results.
	Weight optimization
	Knot optimization

	CONCLUSION
	BIBLIOGRAPHY
	VITA

