

VISUALIZATION WITH NURBS USING SIMULATED ANNEALING
OPTIMIZATION TECHNIQUE

By

MOHAMMED RIYAZUDDIN

A Thesis Presented to the

DEANSHIP OF GRADUATE STUDIES

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS,

Dhahran, Saudi Arabia

January 2004

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis written by MOHAMMED RIYAZUDDIN under the direction of his thesis

advisor and approved by his thesis committee has been presented to and accepted by the

Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

Dr. Muhammad Sarfraz (Advisor)

Dr. Wasfi Ghassan Al-Khatib (Member)

Dr. Onur Toker (Member)

Department Chairman
Dr. Faisal A. Kanaan.

Dean of Graduate Studies
Prof. Osama A. Jannadi

 Date

 iii

This is dedicated to my

Grandmother and

Parents.

 iv

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful

All praise and glory to Almighty Allah (Subhanahu Wa Taalaa) who gave me courage

and patience to carry out this work. Peace and blessing of Allah be upon last Prophet

Muhammad (Peace Be Upon Him). Acknowledgment is due to King Fahd University of

Petroleum & Minerals for supporting this research.

My unrestrained appreciation goes to my advisor, Dr. Muhammad Sarfraz, for all the help

and support he has given me throughout the course of this work and on several other

occasions. I simply cannot begin to imagine how things would have proceeded without

his help, his support, and his patience. I also wish to thank my thesis committee members

Dr. Wasfi Ghassan Al-Khatib and Dr. Onur Toker for their help, support, and

contributions.

I also acknowledge my colleagues and friends as I had a pleasant, enjoyable and fruitful

company with them. Finally, I wish to express my gratitude to my family members for

being patient with me and offering words of encouragements to spur my spirits, at

moments of depression.

 v

CONTENTS

ACKNOWLEDGEMENTS...iv

CONTENTS...v

LIST OF TABLES..viii

LIST OF FIGURES..ix

THESIS ABSTRACT (ENGLISH)...xiii

THESIS ABSTRACT (ARABIC) ...xiv

1 INTRODUCTION...1

1.1 Review of visualization by curve and surface fitting. ... 1

1.2 Motivation ... 3

1.3 Objectives and Approach .. 3

1.4 Contributions ... 4

1.5 Thesis Overview.. 4

2 LITERATURE REVIEW...6

2.1 Introduction ... 6

2.2 Parameterization.. 7

2.3 Curve and surface fitting ... 8

2.3.1 Curve and Surface Representations... 9

2.3.2 Choice of Independent Parameters.. 11

2.3.3 Optimization Methods Used in Curve and Surface Fitting 14

3 FITTING OF FREE-FORM SURFACES ..18

3.1 Introduction ... 18

3.2 Curve and Surface Basics.. 18

 vi

3.2.1 Implicit and Parametric Forms .. 18

3.2.2 Bezier Curves .. 21

3.2.3 Rational Bezier Curves.. 22

3.2.4 Tensor Product Surfaces.. 23

3.3 B-Spline Curves and Surfaces... 24

3.3.1 Definition and Properties of B-Spline Basis Functions..................................... 24

3.3.2 Definition and Properties of B-Spline Curves... 27

3.3.3 Definition and Properties of B-Spline Surfaces .. 33

3.4 Rational B-Spline Curves and Surfaces .. 41

3.4.1 Definition and Properties of Non-Uniform Rational B-Spline Curves 41

3.4.2 Definition and Properties of NURBS Surfaces ... 47

3.5 Curve and Surface Fitting.. 51

3.6 Optimization of NURBS Parameters .. 53

4 SIMULATED ANNEALING ...56

4.1 Introduction ... 56

4.2 Simulated Annealing Algorithm ... 58

4.3 Parameters of the S.A. algorithm .. 61

4.4 S.A. Requirements... 63

5 THE PROPOSED METHOD...65

5.1 Introduction ... 65

5.2 Obtaining a digitized image/surface.. 66

5.3 Contour extraction... 68

5.4 Parameter extraction.. 74

5.5 Control point generation.. 77

5.6 Generation of knot values.. 78

5.7 Weight optimization .. 78

5.7.1 Weight optimization using Simulated Annealing ... 79

5.8 Knot optimization.. 81

 vii

6 RESULTS...86

6.1 Introduction ... 86

6.2 Weight optimization .. 87

6.2.1 Curve Fitting results .. 87

6.2.2 Surface fitting results... 99

6.3 Knot optimization.. 108

6.3.1 Curve fitting results ... 108

6.3.2 Surface fitting results... 118

7. CONCLUSION..128

BIBLIOGRAPHY ...130

VITA...136

 viii

LIST OF TABLES

Table (5.1) Surface generating functions .. 66

Table (5.2) Scanned data points .. 68

Table(5.3) Sample data points for Surface 1 ... 70

Table(5.4) Sample data points for Surface 2 ... 71

Table(5.5) Sample data points for Surface 3 ... 72

Table(5.6) Sample data points for Jar... 73

Table (6.1) S.A. parameters for curves. .. 87

Table (6.2) Metropol function execution time. ... 90

Table (6.3) Weight optimization parameters for ‘Pound’. .. 90

Table (6.4) Weight optimization parameters for ‘Aich’. ... 91

Table (6.5) Weight optimization parameters for ‘Ali’... 93

Table (6.6) Weight optimization parameters for ‘Apple’. ... 95

Table (6.7) Weight optimization parameters for ‘Open Curve’. 97

Table (6.8) Weight optimization parameters for ‘Surface 1’. ... 101

Table (6.9) Weight optimization parameters for ‘Surface 2’. ... 103

Table (6.10) Weight optimization parameters for ‘Surface 3’. 105

Table (6.11) Weight optimization parameters for ‘Jar’. ... 107

Table (6.12) Knot optimization parameters for ‘Pound’... 108

Table (6.13) Knot optimization parameters for ‘Aich’.. 109

Table (6.14) Knot optimization parameters for ‘Ali’. ... 111

Table (6.15) Knot optimization parameters for ‘Apple’.. 113

Table (6.16) Knot optimization parameters for ‘Open Curve’.. 115

Table (6.17) Knot optimization parameters for ‘Surface 1’. ... 118

Table (6.18) Knot optimization parameters for ‘Surface 2’. ... 119

Table (6.19) Knot optimization parameters for ‘Surface 3’. ... 121

Table (6.20) Knot optimization parameters for ‘Jar’.. 123

Table (6.21) Weight & Knot optimization results summary... 125

 ix

LIST OF FIGURES

Figure (2.1) Control polygon of free form curve .. 10

Figure (3.1). A circle of radius 1, centered at the origin. .. 19

Figure (3.2). A sphere of radius 1, centered at the origin.. 20

Figure (3.3) The Non-Zero Zeroth-Degree Basis Functions, }5,5,5,4,4,3,2,1,0,0,0{=U .. 27

Figure (3.4) The nonzero first-degree basis functions, }5,5,5,4,4,3,2,1,0,0,0{=U .(Youssef

[35]) ... 27

Figure (3.5).The nonzero second-degree basis functions,

}5,5,5,4,4,3,2,1,0,0,0{=U .(Youssef [35]) ... 27

Figure (3.6) A cubic B-Spline curve on }1,1,1,1,0,0,0,0{=U , i.e., a cubic Bezier curve.

(Youssef [35]).. 28

Figure (3.7a) Cubic basis functions on }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U .(Youssef [35]).. 30

Figure (3.7b) A cubic curve using the basis functions of figure 3.7a. (Youssef [35]) 30

Figure (3.8a) Quadratic basis functions on }1,1,1,5/4,5/3,5/2,5/1,0,0,0{=U .(Youssef

[35]) ... 30

Figure (3.8b) A quadratic curve using the basis functions of figure 3.8a. (Youssef [35]) 30

Figure (3.9) The strong convex hull property for a quadratic B-Spline curve; for

),[1+∈ ii uuu ,)(uC is in the triangle iii PPP 12 −− .(Youssef [35]) .. 31

Figure (3.10) The strong convex hull property for a cubic B-Spline curve; for

),[1+∈ ii uuu ,)(uC is in the quadrilateral iiii PPPP 123 −−− .(Youssef [35])............................ 31

Figure (3.11) A quadratic B-Spline curve on }1,1,1,5/4,5/3,5/2,5/1,0,0,0{=U . The curve

is a straight line between)/(52C and)/(53C .(Youssef [35]) 31

Figure (3.12) A cubic curve on }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U ; moving 4P (to /
4P)

changes the curve in the interval)1,4/1[.(Youssef [35]) .. 32

Figure (3.13) B-Spline curves (a) A ninth-degree Bezier curve on the knot vector

}1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0{=U .(Youssef [35])... 33

 x

Figure (3.13) B-Spline curves (b) A quadratic curve using the same control polygon

defined on }1,1,1,8/7,8/6,8/5,8/4,8/3,8/2,8/1,0,0,0{=U .(Youssef [35]) 34

Figure (3.14) B-Spline curves of different degrees, using the same control polygon.

(Youssef [35]).. 34

Figure (3.15) Product of a cubic and a quadratic basis function (a) () ()vNuN 2434 ,, ;

}1,1,1,1,4/3,4/2,4/1,0,0,0,0{=U and }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V (Youssef

[35]). .. 35

Figure (3.15) Product of a cubic and a quadratic basis function (b) () ()vNuN 2234 ,, ;

}1,1,1,1,4/3,4/2,4/1,0,0,0,0{=U and }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V (Youssef [35]).

... 35

Figure (3.16a) A B-Spline surface-control net (Youssef [35]). .. 37

Figure (3.16b) A B-Spline surface (Youssef [35]).. 37

Figure (3.17a) Product of a cubic and a quadratic B-Spline surface (Youssef [35]). 38

Figure (3.17b) The strong convex hull property (Youssef [35]). 38

Figure (3.18a) A biquadratic surface (Youssef [35]). ... 39

Figure (3.18b) A biquadratic surface ()4qp == using figure 3.18a control points

(Youssef [35]).. 39

Figure (3.19a) A product of a planar quadratic and a cubic surface,

}1,1,1,4/3,2/1,4/1,0,0,0{=U and }1,1,1,1,5/4,5/3,5/2,5/1,0,0,0,0{=V (Youssef [35]). ... 40

Figure (3.19b) 5,3P is moved, affecting surface shape only in the rectangle

)1,5/2[)1,4/1[× (Youssef [35]). .. 40

Figure (3.20a) }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U and }1,1,1,13,1,1{},...,{ 60 =ww A cubic

NURBS curve. (Youssef [35]) .. 43

Figure (3.20b) }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U and }1,1,1,13,1,1{},...,{ 60 =ww Associated

basis functions. (Youssef [35]).. 43

Figure (3.21) Rational cubic B-Spline curves, with 3w varying. (Youssef [35]) 44

Figure (3.22a) The cubic basis functions for the curves of figure 3.21 (Youssef [35]) 44

Figure (3.22b) The cubic basis functions for the curves of figure 3.21(Youssef [35])..... 44

 xi

Figure (3.22c) The cubic basis functions for the curves of figure 3.21 (c) 03 =w .(Youssef

[35]) ... 45

Figure (3.23) Rational quadratic curves, with 1w varying. (Youssef [35])....................... 45

Figure (3.24a) The quadratic basis functions for the curves of figure 3.23 41 =w .(Youssef

[35]) ... 45

Figure (3.24b) The quadratic basis functions for the curves of figure 3.23

10/31 =w .(Youssef [35]) .. 46

Figure (3.24c) The quadratic basis functions for the curves of figure 3.23 01 =w .(Youssef

[35]) ... 46

Figure (3.25) Modification of the weight 3w .(Youssef [35]) ... 46

Figure (3.26a) Control net and biquadratic NURBS surface, 102,21,22,11,1 ==== wwww

with the rest of the weights 1. }1,1,1,3/2,3/1,0,0,0{== VU Control net (Youssef [35]). 48

Figure (3.26b) Control net and biquadratic NURBS surface, 102,21,22,11,1 ==== wwww

with the rest of the weights 1. }1,1,1,3/2,3/1,0,0,0{== VU Biquadratic NURBS surface

(Youssef [35]).. 48

Figure (3.27) Bicubic NURBS surface defined by the control net in figure 3.26a, with

}1,1,1,1,2/1,0,0,0,0{== VU and with the same weights (Youssef [35]). 49

Figure (3.28a) The basis function),(, vuR 24 , with }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U and

}1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V , 1, =jiw for all)2,4()j,i(≠ (Youssef [35])........... 50

Figure (3.28b) The basis function),(, vuR 24 , with }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U and

}1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V , 1, =jiw for all)2,4()j,i(≠ (Youssef [35])........... 51

Figure (3.29) A curve interpolating five points and two end derivatives.......................... 51

Figure (3.30) A curve approximating m+1 points; the curve is constrained to pass through

the end points, Q0 and Qm. ... 52

Figure (4.1a) The Simulated Annealing Algorithm. ... 58

Figure (4.1b) The Metropolis procedure. .. 59

Figure (5.1a) Curve – weight optimization. .. 67

 xii

Figure (5.1b) Surface – weight optimization... 67

Figure (5.2) Input Curves and Surfaces... 69

Figure (5.3a) Detailed Curve weight optimization.. 75

Figure (5.3b) Detailed Surface weight optimization. .. 76

Figure (5.4a) Detailed Curve knot optimization. .. 84

Figure (5.4b) Detailed Surface knot optimization... 85

Figure (6.1) GUI for curves... 88

Figure (6.2) Weight optimization for ‘Pound’. ... 89

Figure (6.3) Weight optimization for ‘Aich’. .. 92

Figure (6.4) Weight optimization for ‘Ali’ .. 94

Figure (6.5) Weight optimization for ‘Apple’ ... 96

Figure (6.6) Weight optimization for ‘Open Curve’ ... 98

Figure (6.7) GUI for surfaces. ... 99

Figure (6.8) Weight optimization for ‘Surface 1’ ... 100

Figure (6.9) Weight optimization for ‘Surface 2’ ... 102

Figure (6.10) Weight optimization for ‘Surface 3’. .. 104

Figure (6.11) Weight optimization for ‘Jar’. .. 106

Figure (6.12) Knot optimization for ‘Pound’ . .. 110

Figure (6.13) Knot optimization for ‘Aich’. .. 112

Figure (6.14) Knot optimization for ‘Ali’ ... 114

Figure (6.15) Knot optimization for ‘Apple’... 116

Figure (6.16) Knot optimization for ‘Open Curve’. .. 117

Figure (6.17) Knot optimization for ‘Surface 1’. .. 120

Figure (6.18) Knot optimization for ‘Surface 2’. .. 122

Figure (6.19) Knot optimization for ‘Surface 3’. .. 124

Figure (6.20) Knot optimization for ‘Jar’. .. 126

Figure (6.21) Weight – Knot Comparison... 127

 xiii

THESIS ABSTRACT (ENGLISH)

NAME: MOHAMMED RIYAZUDDIN

TITLE: VISUALIZATION WITH NURBS USING SIMULATED

 ANNEALING OPTIMIZATION TECHNIQUE.

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: JANUARY 2004

The global optimization strategy of Simulated Annealing is applied to the optimization of

weight and knot parameters of NURBS for curve fitting and surface fitting; the objective

being the reduction of fitting error to obtain smooth curves and surfaces with the least

cumulative error possible.

For weight optimization, a uniform knot vector and a fixed number of control points are

calculated using the least squares technique, while the sum of squared errors is taken as

the objective function. In knot optimization, the weight vector is set to unity. The number

of elements of the weight vector is taken the same as the number of control points. A good

initial solution of knot vector is taken. New knot vectors are calculated using the

neighborhood function of the Simulated Annealing Algorithm.

Finally, results obtained from optimization of weights and knots of NURBS for both

curves and surfaces indicate that weight optimization is a better option than knot

optimization because knot optimization requires a good initial location of knot vector.

Keywords: NURBS, Simulated Annealing, Weight Optimization, Knot Optimization,

Control Polygon, Control Points, B-Splines.

MASTER OF SCIENCE DEGREE

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, DHAHRAN, KSA

January 2004

 xiv

)

)
)

)

THESIS ABSTRACT (ARABIC)
 الرسالة

 محمد رياض الدين :الاسم

 باستخدام أساليب التردد التمثيلي) NURBS(تحسين تمثيل البيانات عن طريق منحنيات :عنوان الرسالة

) Simulated Annealing(

 علوم الحاسب الآلي :التخصص

 2004 :تاريخ التخرج

) NURBSلتحسين القيم المختارة لنقاط التحكم بمنحنيات) Simulated Annealing(يطبق أسلوب التردد التمثيلي
وأوزانها والتي تستخدم في تمثيل البيانات وتصويرها بشكل مرئي، وتهدف هذه العملية إلى تقليل الأخطاء في تمثيل

 .البيانات مما يؤدي إلى الحصول على منحنيات انسيابية بأدنى مجموع أخطاء ممكن

باختيار قيم أولية لهذه المعاملات باستخدام أسلوب) NURBSة تحسين القيم المختارة لمعاملات منحنيات تبدأ عملي
آما يتم . ويمثل مقياس الخطأ الناتج من هذا الاختيار هدفا لعملية التحسين). least squaresالمربعات الصغرى

بعد ذلك يستعمل هذا الحل الأولي . لقيم المثلى للنقاط اختيار نقاط التحكم بالمنحنى من خلال تثبيت الأوزان وحساب ا
 .لحساب حلول أفضل وذات مقياس خطأ أقل باستخدام الدوال المعرفة بأسلوب التردد التمثيلي

على أن هذه الطريقة أفضل) NURBSتدل نتائج عملية التحسين لنقاط التحكم والأوزان لكل من منحنيات وسطوح

 . وذلك لأن عملية تحسين النقاط تعتمد على جودة الاختيار الأولي لنقاط التحكم بالمنحنىمن تحسين النقاط لوحدها

 ، محاآاة التصلب، أمثلية الأوزان، أمثلية العقد، المضلع المتحكم، النقاط NURBS: مفردات
 .B-Splinesالمتحكمة،

 درجة الماجستير في العلوم

 جامعة الملك فهد للبترول والمعادن

 المملكة العربية السعودية- الظهران

 1

1 INTRODUCTION

This chapter gives a brief review of the visualization of data by curve and surface fitting,

the motivations behind the presented research, the approach followed during the research,

the scientific contributions and an overview of the thesis.

1.1 Review of visualization by curve and surface fitting.

Visualization has long been a powerful tool for the analysis of data sets, either as a means

of communicating results of data gathering/processing or as a precursor to focused

quantitative analysis. Familiar examples include histograms, plots, graphs, maps, images,

surfaces, and volumes. By harnessing the perceptual abilities of the human vision system

we are often able to rapidly obtain insights into the data characteristics (e.g. relationships,

patterns, anomalies, trends, clusters and models).

There are many well-known applications in data visualization, in which it is desirable to

create geometric models of existing images and objects, for which no such models exist.

This is exactly what reverse engineering aims at. The existence of a computer model

provides a multitude of gain in improving the quality and efficiency of design, analysis

and manufacturing. Thus reverse engineering involves establishing a CAD model from

prototypes or manufactured parts such as spare parts of different machines.

 2

Researches in the past have spent considerable time, figuring out how best to fit curves

and surfaces to a set of data points. Curve fitting plays an essential part in many

applications. Scientists use curve fitting in application such as data reduction,

approximating noisy data, curve and surface fairing and image processing application like

generating smooth curves to digitized data [1].

There are several hardware and software tools used in the area of reverse engineering of

geometric curves and surfaces. Hardware tools include: (1) laser scanners, (2) tactile

sensing co-ordinate measuring machines and (3) tactile sensing robotic arms. The tools

sample clouds of points from the prototype. The measured points need further processing

in several steps. These steps include: (1) curve and surface identification from the

scanned points, (2) parameterization of the scanned points and (3) curve and surface

fitting. Research trends in reverse engineering cover the three sub-areas. The third area is

of a crucial importance in the data visualization and reverse engineering research.

Accurate fits give better representation of the actual curve and surface. In addition, there

are several applications where accurate fits are a must (e.g. aircraft components with tight

tolerances). There are several commercial packages that perform the various reverse

engineering tasks. These packages are either stand-alone or embedded within famous

commercial CAD packages. The fits used in these packages depend heavily on least

squares approximations, which give crude fits. The use of optimization in curve and

surface fitting is still an open area of research, although it witnessed a proliferating

 3

number of applications in the last decade. The presented thesis focuses on the area of

minimizing the error between the fitted curve and surface and the laser-scanned points.

1.2 Motivation

The available literature in data visualization and reverse engineering focuses on using

traditional optimization techniques for the curve and surface-fitting problem. These

methods usually linger in local minima and therefore might miss better fits. On the other

hand, the few available publications that used global optimization methods used Genetic

Algorithms (GA's), which needs a large number of function evaluations. These

computationally exhaustive algorithms are not practical in use for reverse engineering

applications even when fast computers are used, due to the large number of sampled

points involved in the fitting process. Therefore, there is a need for either finding,

modifying or devising a global optimization technique that utilize a relatively small

number of function evaluations to be used in curve and surface fitting.

1.3 Objectives and Approach

The objective of the research reported in this thesis is to develop a procedure for fitting

free form curves/surfaces to measured points. The fit should have the lowest possible

fitting error. This goal is achieved in this thesis using the following approach:

1. Free form surfaces are modeled using Non-Uniform Rational B-Splines (NURBS) to

achieve the maximum possible geometric flexibility.

 4

2. The approximate shape of the fitted curve and surface is evaluated using a least

squares estimation of the NURBS control points.

3. Further refinement of the fitted curve and surface is obtained by optimizing the values

of the NURBS weights and knots separately.

4. The Simulated Annealing (SA) optimization heuristic is used for the global

optimization of the fitting error, which has a promising performance and small

cumulative error values.

1.4 Contributions

The reported research makes the following contributions in the fields of surface fitting

and SA:

1. SA is used for the first time in the fitting of free form curves and surfaces to scanned

data, leading to better fitting accuracy and lower fitting time as well.

2. The applied SA algorithm utilizes a relatively low execution time than Tabu Search

and GA’s and is thus useful for practical reverse engineering applications.

1.5 Thesis Overview

The thesis is divided into six chapters and three appendices:

1. Chapter 1 includes the motivation, research objectives, approach and scientific

contributions.

2. Chapter 2 surveys the literature related to the optimization of NURBS parameters and

application of optimization heuristics to the problem. It also presents a review of

 5

related research topics covering areas of reverse engineering, geometric modeling and

global optimization. It concludes by pointing out several key issues directly related to

the research topic.

3. Chapter 3 describes a procedure for the least squares fitting of NURBS surfaces to

scanned data. The chapter starts with an overview of the NURBS theory, the fitting

procedure and concludes with the formulation of the optimization problem.

4. Chapter 4 provides a detailed description of the Simulated Annealing optimization

heuristic

5. Chapter 5 presents several fitted curves and surfaces to show the merits of the

developed algorithm. The chapter concludes with the comparison with curves and

surfaces fitted by optimizing the NURBS weights and knots separately.

6. Chapter 6 concludes the thesis and provides suggestions for future research.

7. All procedures and algorithms were developed using MATLAB software.

6

2 LITERATURE REVIEW

2.1 Introduction

Reverse Engineering can be defined as the process of deduction of design criteria and

parameters from an existing prototype. It is an increasingly growing discipline that can be

divided into several branches [29]. These include: (1) functional analysis where the

overall/detailed design function is guessed, (2) material analysis where the possible

material composition of the prototype is estimated, and (3) geometric analysis where the

prototype's geometry is evaluated. It is desirable, in many areas of industry, to create

computerized geometric models of existing objects for which no such model is available.

The existence of a geometric model provides a multitude of gain in improving the quality

and efficiency of design, manufacturing, and analysis. A main advantage of such process

is the re-manufacturing of spare parts of different machines whose blueprints are

unavailable or whose vendors are out of business. Another application that depends

heavily on reverse engineering is the die and mold industry where modifications of

existing geometric models is a necessity after the die manufacture for subsequent analysis

[12]. Further analysis may include finite element analysis, NC path generation and

process planning.

 7

The process of reverse engineering of geometric curves and shapes can be divided into

four main consecutive tasks [29]. These are: (1) Data acquisition, (2) Segmentation, (3)

Parameterization and (4) Surface Fitting. Since, the presented thesis is concerned with the

last task, a brief review of the third task is provided, and then a comprehensive review of

the last task is presented.

2.2 Parameterization

When free-form curves or surfaces are reverse engineered, a parametric curve or surface

is fitted to the measured points. These curves/surfaces are function of a pair of

independent parameters. Each measured point needs approximate values of the

independent parameters to be associated with it. The estimation of such approximate

values is known as parameterization. Piegl [16] proposed three parameterization methods

for line-by-line parameterization, and recommended a parameterization method known as

the centripetal method. Line by line parameterization, may be plausible for tactile sensing

methods and some laser scanning setups, but may not be applicable to some laser

scanning methods which produce non-uniform distribution of the sampled points.

Methods for parameterizing unorganized points are given by Hoscheck et. al. [8], which

include projection of the data points to planes and the development of approximate

parametric patches on which the data points are projected. However, none of their

proposed methods can be considered a robust method working for all free-form surfaces

 8

and hence they state that all of those methods are to a certain extent ad hoc. A recent

publication by Floater et. al. [4] demonstrates a method using iterative projection to balls.

Their method is shown to be successful on highly irregular surfaces (a human face was

used as an example). However, they state that the method needs further trials and

elaborations.

2.3 Curve and surface fitting

Fitting of curves and surfaces to the measured points is the last step in the reverse

engineering process. In case the exponent r is equal to 2, Equation (2.1) reduces to the

least squares function and in case r is equal to infinity, Equation (2.1) reduces to the

maximum error. Low values of r are recommended for high measurement or sampling

errors, otherwise the minimization of the maximum error gives the best fit.

A study on the exponent r was conducted by Nassef et. al. [15] showing that for laser

scanning applications, the sampling error is low due to the large number of sampled

points, but the high measurement errors inherent to laser scanners necessitate the use of

lower values for r. Generally the fitting problem can be divided into three sub-tasks.

These are: (1) the choice of the fitting surface representation, (2) the choice of the

independent parameters within the fitting surface, and (3) the choice of the optimization

method for error minimization. The following sub-sections review each sub-task.

 9

2.3.1 Curve and Surface Representations

Fitting curve/surface representations fall into two major categories. These are: (1) implicit

curves/surfaces that relate the x, y and z coordinates of a curve/surface implicitly, and (2)

parametric curves/surfaces, which relate the coordinates of any given point on a

curve/surface to a pair of independent variables. Chivate et. al. provide an excellent

review of curve/surface representations in both categories and shows that implicit surface

representations are more suitable to the fitting of standard shapes such as planes,

cylinders, spheres and tori, while parametric representations yield themselves better to the

fitting of free-form surfaces [2].

While implicit algebraic representations are easy to formulate, parametric surface

representations are more complex and saw continuous evolution since the early seventies.

Initially they were formed using power basis functions, which were not easy for CAD

representations. Later, Bezier curves and surfaces [16] were introduced with the concept

of having an approximating polygon that gives the rough shape of the free form curve.

The actual curve is then formed by multiplying the control points on the polygon, which

is better known as the control polygon, by some basis functions based on Bernstein

polynomials (Figure 2.1).

Bezier curves and surfaces have two major drawbacks:

 10

1. They do not offer some form of local control on curve segments (or surface patches)

and hence do not provide the maximum flexibility, and

2. The degree of the curves increases with the increase in the number of control points,

and hence cannot be used to approximate semi-quadratic surfaces with a large number of

control points.

The drawbacks of Bezier surfaces were taken care of when B-Spline curves and surfaces

were used for curve and surface fitting in the early nineties [26] [27]. Similar to Bezier

curves/surfaces, B-Spline curves/surfaces depend on control polygons/nets to represent

the approximate shape of the free form curves/surfaces. Their basis functions are piece-

wise polynomials defined between breakpoints (known as knot values) along the span of

the independent parameters. Such definition over local spans of the independent

parameters gives B-Splines a local modification property. In addition, the curve/surface

degree is controllable.
Control
Polygon

-6 -4 -2 0 2 4 6
-1

0

1

2

3

Figure (2.1) Control polygon of free form curve

 11

The advantages of B-Spline surfaces led to the fitting of surfaces that were too complex

for previous representations such as swept surfaces [36]]. The problem of curve and

surface fitting using B-Splines was addressed by Kitson [11].

A more general form of B-Spline curve/surfaces known as Non-Uniform Rational B-

Splines (NURBS) were used later for representing free form shapes [17]. Although

NURBS are more general than mere B-Splines and give the maximum possible flexibility

to the fitted curve/surface, their complex equations were not easy to use for surface

fitting. Some recent publications [31] [32] and [28] use B-Splines in their initial fit then

revert to NURBS for subsequent re-fitting.

2.3.2 Choice of Independent Parameters

The fitting curves/surfaces have a multitude of independent parameters that can be used

as independent variables for the minimization of the error function (Equation 2.1).

Although the best solution to the error minimization problem would involve all

independent variables, such choice might yield a large search space for the optimization

algorithm. Therefore, reverse engineering researchers resort to the selection of some

specific parameters as independent variables.

In the case of fitting implicit algebraic curves/surfaces, the curve/surface coefficients

become the independent variables. Such curves/surfaces do not need any reduction in the

number of independent variables since they are not as complex as free-form

 12

representations. The estimation of such coefficients for different standard shapes is given

thoroughly by Werghi et. al. [30].

B-Spline (or NURBS) curves/surfaces have the following parameters that need to be

estimated either by some rough approximation or by their inclusion within the

independent variables of the error minimization problem.

1. Control Points

2. Knot values

3. Weights (in case of NURBS surfaces)

Piegl [17] made some approximate estimation of the knot values and optimized the values

of the points. Huang et. al. [9] have Simulated various facial expression in animation by

fixing the control points and changing weights, while Prahasto et. al. [19] optimized the

knot vector for mult-curve B-Spline approximation.

The key to using a spline is the determination of good knots [23] [3]. In order to obtain a

good curve or surface approximation, knots have to be placed as precisely as possible. A

new alternative is presented by Yoo et. al. [34], which computes control points for

approximation using object-oriented paradigm. This paradigm requires a central

constructor evaluator, for generating the control points and derivatives for a given

mapping. Computing control points is a classical approximation. Following the object

oriented design principles of data hiding, the defining curves (private) control points are

only accessed by their homogeneous evaluators and the approximation procedures does

 13

not know about the ruling curves. A theoretically optimal solution for this is produced by

meta-algorithm[18].

However, almost all of the more recent publications use a subset of the above parameters

as independent variables. By adjusting the positions of control points and manipulating

associated weights, one can design a large variety of shapes using NURBS. A matrix

representation for NURBS curves and surfaces has been described by Gregory et. al. [6].

They represent the matrix form for NURBS by straightforward algebraic manipulation by

using Bohem’s knot insertion algorithm instead of Deboor. For a NURB curve of degree

‘d’, the basic handles are control points, weights and knots. The method first performs a

linear transformation between t (knots) and u[0,1] by using a normalized parameter.

Usually subsets of the NURBS parameters are used as independent variables for

optimization. The optimization of the control points and then the subsequent knot values

was explored by Limeaiem et.al. [12] and Sarkar et. al. [26]. Raza [22] optimized both the

knots and the weights corresponding to the control points for curve and surface fitting.

Yau et. al. [32], then Shalaby et. al. [28] demonstrated that better flexibility of the fitted

curve, and hence lower fitting errors, can be obtained by optimizing over the control

points and then the weights of a NURBS curve/surface.

 In [25], a simple tool addresses the problem of selecting the parameters of NURBS. It

consists of a perspective functional transformation of arbitrary origin O. The extra

 14

freedom provided by the weights in rational form is controlled in a geometric way

without any numerical input. The displacement of several control points, keeping a

common center O, can manipulate NURBS in ways that are simply impossible to achieve

in integral form. This tool effectively employs the added flexibility provided by weights.

By varying weights, a push/pull in the curve towards/away from the control points is

created. Cases involving several control points in perspective functional transformations

are also considered.

However, all of the previous fitting research resorted to a two-step approach, where the

control points are estimated using least-squares approximation (which is the simplest

form of quadratic programming) and then knots or weights are optimized using non-linear

programming. The combination of subsets of the above parameters in the optimization

problem has always been avoided on grounds of narrowing down the optimization search

space, but in fact such combination still has to be explored.

2.3.3 Optimization Methods Used in Curve and Surface Fitting

As mentioned in the above sub-section, the control points of a B-Spline/NURBS

representation of a fitted curve/surface have been traditionally estimated using least

squares. The knot values are either taken to be uniform or approximated according to the

distribution of the measured points [17] and the weights are set to unity. After the

estimation of the control points, optimizing over either the knot values or the weights

further enhances the fitting. This enhancement is usually solved as a non-linear

 15

programming problem. Gradient-based methods, such as Levenberg-Marquardt method

[21], have been used for knot value optimization [26]. Direct search methods, such as

Powell method, have also been used for the weights optimization [32]. Both approaches

have the advantage of rapid convergence, but on the other hand may linger in local

minima.

Yoshimoto et al.[33] proposed a new method that determines the number of knots and

their locations simultaneously and automatically by using a G.A. This has the same

problem of enlarged searched space. Raza [22] optimized both the knots and the weights

corresponding to the control points using G.A's. The chromosomes have been constructed

by considering the candidates of the locations of knots as genes.

Limeaiem et.al. [12] showed that the error minimization of parametric curves/surfaces is a

global optimization problem, and used binary-coded GA’s [5] for knot values

optimization. Although the binary-coded GA’s arrive to near global optimum solutions,

the binary representation of the independent variables tend to enlarge the search space.

Shalaby et. al. [28] used real-coded GA’s for the optimization of the NURBS weights.

Real-coded GA’s [37] have been proven to be better suited for continuous domain

optimization. The same method has also been used by Nassef et. al. [15] for the fitting of

prismatic features. However, both types of GA’s need a large number of objective

 16

function evaluations and hence can be used only for fitting small curve/surface patches or

prismatic features.

In [13], a general framework is setup for the application of genetic algorithms in curve

design. Then, within this scheme, the problem of spline interpolation- a frequently used

method for representing complex geometrical shapes in CAD/CAM system- is dealt with.

While the method is simple and robust, it suffers from the drawback that some parameters

must be given that are needed for the mathematical description but are not closely related

to the geometrical input data of the object.

There are two other possible candidate global optimization methods that have not been

used yet in surface fitting. These are: (1) Simulated Annealing (SA) and Tabu Search

(TS). A good review of these methods is given by Pham et. al. [38]. Regarding the

number of objective function evaluations, TS has the same drawback as GA’s, since it

needs an excessive amount of objective function evaluations. This leaves SA as the

candidate method to be explored for achieving globally minimum fitting errors with lower

objective function evaluations.

A modified Tabu Search (T.S) global optimization technique has been used by Youssef

[35], to optimize NURBS’ weights to minimize the fitting error in surface fitting, but a

clear stopping criterion has not been used for this modified Tabu Search algorithm. To

 17

our knowledge, the S.A. global optimization heuristic has not been applied to optimize

NURBS parameters.

 18

3 FITTING OF FREE-FORM SURFACES

3.1 Introduction

As previously discussed in Chapter 2, the measured points obtained by the measuring

devices are to be fitted into a surface in order to obtain the geometric model of the

required object. The error function between the measured points and the fitted surface is

given in equation 2.1. Minimization of this error function is the main problem to be

solved. This chapter describes the surface representation used for the fitting operation and

the steps performed in order to obtain the initial fit. In addition, the choice of the

parameters that can be used as independent variables for the minimization of the error

function is discussed in details.

3.2 Curve and Surface Basics

3.2.1 Implicit and Parametric Forms

There are two main methods of representing curves and surfaces in geometric modeling.

These methods are implicit equations and parametric functions.The implicit equation of a

curve lying in the xy plane has the form 0yxf =),(. Figure 3.1 shows an example of the

circle with unit radius centered at the origin, specified by the equation

01yxyxf 22 =−+=),(.

18

 19

In parametric form, each of the coordinates of a point on the curve is represented

separately as an explicit function of an independent parameter:

))(),(()(uyuxuC = bua ≤≤ (3.1)

Therefore, is a vector-valued function of the independent variable, . Although the

interval [is arbitrary, it is usually normalized to

)u(C u

]ba, []1,0 . The circle shown in

figure 3.1 is defined by the parametric functions:

)sin()(
)cos()(

uuy
uux

=
=

2

0 π
≤≤ u (3.2)

Figure (3.1). A circle of radius 1, centered at the origin.

Surfaces can be defined by implicit equations of the form . For example the

sphere of unit radius centered at the origin, shown in figure 3.2, can be specified by the

equation . A parametric representation of the same sphere is given by

, where

0zyxf =),,(

01zyx 222 =−++

)),(),,(),,((vuzvuyvuxS

)cos(),(
)sin()sin(),(
)cos()sin(),(

uvuz
vuvuy
vuvux

=
=
=

π

π
2v0

u0
≤≤
≤≤

, (3.3)

 20

Both implicit and parametric forms have their advantages and disadvantages. Successful

geometric modeling is done using both techniques. Piegl [17] gives a comparison

between both representations as follows:

• By adding a coordinate, the parametric method is easily extended to represent

arbitrary curves in three-dimensional space,

z

))(),(),(()(uzuyuxuC = ; the implicit

form only specifies curves in the xy (or xz or) plane. yz

Figure (3.2). A sphere of radius 1, centered at the origin.

• It is difficult to represent bounded curve segments (or surface patches) with the

implicit form. However, boundedness is built into the parametric form through the

bounds on the parameter interval. On the other hand, unbounded geometry (e.g., a

simple straight line given by 0cbyaxyxf =++=),() is difficult to implement using

parametric geometry.

• Parametric curves possess a natural direction of traversal (from to if

); implicit curves do not. Hence, it is easy to generate ordered sequences of

)(aC)(bC

bua ≤≤

 21

points along a parametric curve. A similar statement holds for generating meshes of

points on surfaces.

• The complexity of many geometric operations and manipulations depends greatly on

the method of representation.

Two classic examples are:

• Computing a point on a curve or surface, which is difficult in the implicit form and

• Determining if a given point is on the curve or surface, which is difficult in the

parametric form.

Parametric representations are the most suitable forms for representing free-form

surfaces. Since the main concern of the presented thesis is the fitting of free-form surfaces

to a set of measured points, the rest of this chapter concentrates on free-form

representations.

3.2.2 Bezier Curves

One of the early parametric curve and surface representations that became widely used is

the Bezier representation. An nth-degree Bezier curve is defined by:

∑=
=

n

0i
ini PuBuC)()(, 10 ≤≤ u (3.4)

The basis (blending) functions, { }, are the classical nth-degree Bernstein

polynomials given by:

)(, uB ni

ini
ni u1u

ini
nuB −−
−

=)(
)!(!

!)(, (3.5)

 22

The geometric coefficients of this form, { }, are called control points. The control

points form a linear approximation of the free-form curve as shown in figure 2.5. The

polynomial given by equation 3.5 covers the whole range of the independent parameter

.

iP

u

3.2.3 Rational Bezier Curves

It is known from classical geometry that all conic curves, including circles, can be

represented using rational functions, which are defined as the ratio of two polynomials. In

fact, they are represented with rational functions of the form:

)(
)()(

uW
uXux =

)(
)()(

uW
uYuy = (3.6)

where , and are polynomials, that is, each of the coordinate functions

has the same denominator.

)(),(uYuX)(uW

Thus an nth-degree rational Bezier curve is defined by:

∑=
=

n

0i
ini PuRuC)()(, 10 ≤≤ u (3.7)

where

∑
=

=

n

0j
jnj

ini
ni

wuB

wuB
uR

)(

)(
)(

,

,
,

 23

The Pi = (xi, yi, zi) represents control points and represents basis functions; the

are scalars, called the weights. Thus, is the common denominator

function. It is assumed that for all i. This ensures that for all

(u)B ni, iw

∑=
=

n

0j
inj wuBuW)()(,

0wi > 0uW >)([]1,0∈u .

3.2.4 Tensor Product Surfaces

While a curve is a vector-valued function of one parameter, a surface is a vector-

valued function of two parameters, u and v. Thus it has the form

,

)(uC

)),(),,(),,((vuzvuyvuxS Rvu ∈),(. There are many schemes for representing surfaces.

Probably the simplest method, and the one most widely used in geometric modeling

applications, is the tensor product scheme.

The tensor product method is basically a bi-directional curve scheme. It uses basis

functions and geometric coefficients. The basis functions are bivariate functions of u and

v. Nonrational Bezier surfaces are obtained by taking a bi-directional net of control points

and products of the univariate Bernstein polynomials:

()∑ ∑=
= =

n

0i

m

oj
jimjni PvBuBvuS ,,,)(),(1,0 ≤≤ vu (3.8)

A rational Bezier surface is defined as follows:

∑ ∑=
= =

n

0i

m

oj
jiji PvuRvuS ,,),(),(1,0 ≤≤ vu (3.9)

where

 24

()
()∑ ∑

=

= =

n

0r

m

0s
srmsnr

jimjni
ji

wvBuB

wvBuB
vuR

,,,

,,,
,

)(

)(
),(

Bezier curves and surfaces are considered to be a prelude to the more flexible B-Spline

curves and surfaces.

3.3 B-Spline Curves and Surfaces

3.3.1 Definition and Properties of B-Spline Basis Functions

Curves consisting of just one polynomial or rational segment (as in the case of Bezier

curves) are often inadequate. Their shortcomings are:

• A high degree is required in order to satisfy a large number of constraints; e.g.,

()-degree is needed to pass a polynomial Bezier curve through n data points.

However, high degree curves are inefficient to process and are numerically unstable.

1−n

• A high degree is required to accurately fit some complex shapes.

• A change in one control point changes the whole curve and hence, there is no local

control on segments of the curve.

The solution is to use curves (surfaces) which are piecewise polynomial, or piecewise

rational of which the most common type is the B-Spline curves (surfaces). B-Spline

curves use the same structure of Bezier curves, but the Bernstein polynomial (equation

3.5) is replaced with B-Spline basis function.

 25

The following paragraph describes how a B-Spline curve is defined.

Let be a non-decreasing sequence of real numbers, i.e., },...,{ 0 muuU = 1+≤ ii uu ,

. The are called knots, and U is the knot vector. The i1,...,0 −= mi iu th B-Spline basis

function of p-degree (order k), denoted by , is defined as follows: (u)N pi,

1uN 0i =)(, if 1+<≤ ii uuu

0uN 0i =)(, otherwise

)()()(,,, uN
uu
uu

uN
uu

uu
uN 1p1i

1i1pi

1pi
1pi

ipi

i
pi −+

+++

++
−

+ −

−
+

−
−

= (3.10)

Note that:

• is a step function, equal to zero everywhere except on the half-open interval

.

)(, uN 0i

),[1+∈ ii uuu

• For , is a linear combination of two (p-1) -degree basis functions. 0>p)(, uN pi

• Computation of a set of basis functions requires specification of a knot vector, U, and

the degree, p.

• The is a piecewise polynomial, defined on the entire real line. Generally the

interval [is of interest.

piN ,

]mi uu ,

• The half-open interval, , is called the i),[1ii uu +
th knot span. It can have zero length,

since knots need not be distinct.

 26

Ex 3.1: Let ,4,3,2,1,0,0,0{ 6543210 ======== uuuuuuuU

}5,5,5,4,5,4 1098787 ====== uuuuuu and 2=p . The zeroth-, first-, and second-

degree basis functions, which are not identically zero, are shown in figures 3.3, 3.4, and

3.5, respectively.

B-Spline basis functions possess the following important properties :

• if u is outside the interval (local support property).)(, uN pi),[1++ pii uu

• In any given knot span, , at most),[1+jj uu 1+p i.e. k of the are nonzero,

namely the functions .

)(, uN pi

pjppj NN ,, ,...,−

• for all)(, uN pi pi, , and u (nonnegativity).

• For an arbitrary knot span, , for all (partition of

unity).

),[1+ii uu ∑ =
−=

i

pij
pj 1uN)(,),[1+∈ ii uuu

Except for the case , attains exactly one maximum value. 0=p)(, uN pi

Once the degree is fixed the knot vector completely determines the functions .

There are several types of knot vectors. In this thesis, only nonperiodic (or clamped or

open) knot vectors are considered. These have the form:

)(, uN pi

},...,,,...,,,...,{ 11 bbuuaaU pmp −−+= (3.11)

where there are a’s and 1+p 1+p b’s. That is the first and last knots have multiplicity

. The knots are called interior knots. A knot vector 1+p },...,{ 11 −−+ pmp uu },...,{ 0 muuU =

 27

is defined to be uniform if all the interior knots are equally spaced; otherwise it is non-

uniform.

Figure (3.3) The Non-Zero Zeroth-Degree Basis Functions, }5,5,5,4,4,3,2,1,0,0,0{=U .

Figure (3.4) The nonzero first-degree basis functions, }5,5,5,4,4,3,2,1,0,0,0{=U .(Youssef

[35])

Figure (3.5).The nonzero second-degree basis functions,
.(Youssef [35]) }5,5,5,4,4,3,2,1,0,0,0{=U

3.3.2 Definition and Properties of B-Spline Curves

A pth-degree B-Spline curve is defined by:

 28

∑=
=

n

0i
ipi PuNuC)()(, (3.12)

where the are the control points, and the are the pth-degree B-Spline basis

functions defined on the nonperiodic (and nonuniform) knot vector:

}{ iP)}({ , uN pi

},...,,,...,,,...,{ 11 bbuuaaU pmp −−+= . Generally, it is assumed that and 0=a 1=b . The

polygon formed by the is called the control polygon. Three steps are required to

compute a point on a B-Spline curve at a fixed u value:

}{ iP

1. Find the knot span in which u lies.

2. Compute the nonzero basis functions.

3. Multiply the values of the nonzero basis functions with the corresponding control

points.

Examples of B-Spline curves (in some cases together with their basis functions) are

shown in figures 3.6 through 3.14). B-Spline curves have the following properties:

• If pn = and , where there are p+1 number of 0’s and p+1 number

of 1’s, then is a Bezier curve as shown in figure 3.6.

},...,,,...,{ 1100U =

)(uC

Figure (3.6) A cubic B-Spline curve on }1,1,1,1,0,0,0,0{=U , i.e., a cubic Bezier curve.
(Youssef [35])

 29

• is a piecewise polynomial curve (since the (u) are piecewise polynomials);

the degree, p, number of control points,

)(uC piN ,

1+n , and number of knots, , are related

by:

1+m

1++= pnm (3.13)

Figures 3.7 and 3.8 show basis functions and sections of the B-Spline curves

corresponding to the individual knot span; in both figures the alternating solid/dashed

segments corresponds to the different polynomials (knot spans) defining the curve.

• End point interpolation: 0P0C =)(and nP1C =)(.

• Affine invariance: an affine transformation is applied to the curve by applying it to the

control points. Affine transformations include translations, rotations, scaling, and

shears.

• Strong convex hull property: the curve is contained in the convex hull of its control

polygon; in fact, if ,),[1+∈ ii uuu 1−−≤≤ pmip , then is in the convex hull of

the control points (figures 3.9, 3.10, and 3.11). This follows from the

nonnegativity and partition of unity properties of the , and the property that

 for . Figure 3.11 shows how to construct a quadratic curve

containing a straight line segment. Since , , and are colinear, the strong

convex hull property forces the curve to be a straight line segment from to

.

)(uC

ipi PP ,...,−

)(, uN pi

0uN pi =)(,),[1++∉ pii uuu

2P 3P 4P

)/(52C

)/(53C

 30

Figure (3.7a) Cubic basis functions on }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U .(Youssef [35])

Figure (3.7b) A cubic curve using the basis functions of figure 3.7a. (Youssef [35])

Figure (3.8a) Quadratic basis functions on }1,1,1,5/4,5/3,5/2,5/1,0,0,0{=U .(Youssef [35])

Figure (3.8b) A quadratic curve using the basis functions of figure 3.8a. (Youssef [35])

 31

Figure (3.9) The strong convex hull property for a quadratic B-Spline curve; for

, is in the triangle .(Youssef [35])),[1+∈ ii uuu)(uC iii PPP 12 −−

Figure (3.10) The strong convex hull property for a cubic B-Spline curve; for ,

 is in the quadrilateral .(Youssef [35])

),[1+∈ ii uuu
)(uC iiii PPPP 123 −−−

Figure (3.11) A quadratic B-Spline curve on }1,1,1,5/4,5/3,5/2,5/1,0,0,0{=U . The curve is

a straight line between and .(Youssef [35]))/(52C)/(53C

 32

• Local modification scheme: moving changes only in the interval

(figure 3.12). This follows from the fact that

iP)(uC),[1++ pii uu

0uN pi =)(, for),[1++∉ pii uuu .

• As a general rule, the lower the degree, the closer a B-Spline curve follows its control

polygon (figures 3.13 and 3.14). The curves of figure 3.14 are defined using the same

six control points, and the knot vectors:

1=p : }1,1,5/4,5/3,5/2,5/1,0,0{=U

2=p : }1,1,1,4/3,2/1,4/1,0,0,0{=U

3=p : }1,1,1,1,3/2,3/1,0,0,0,0{=U

4=p : }1,1,1,1,1,2/1,0,0,0,0,0{=U

5=p : }1,1,1,1,1,1,0,0,0,0,0,0{=U

The reason for this phenomenon is intuitive: the lower the degree, the fewer the control

points that are contributing to the computation of for any given . The extreme

case is for which every point is just a linear interpolation between two

control points. In this case, the curve is the control polygon.

)(0uC 0u

1=p)(uC

Figure (3.12) A cubic curve on }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U ; moving (to)
changes the curve in the interval .(Youssef [35])

4P /
4P

)1,4/1[

 33

• Moving along the curve from 0=u to 1=u , the functions act like switches;

as u moves past a knot, one (and hence the corresponding) switches off,

and the next one switches on (Figure 3.7 and 3.8).

)(, uN pi

)(, uN pi iP

3.3.3 Definition and Properties of B-Spline Surfaces

A B-Spline surface is obtained by taking a bi-directional net of control points, two set of

knot vectors, and the products of the univariate B-Spline functions:

∑ ∑=
= =

n

0i

m

0j
jiqjpi PvNuNvuS ,,,)()(),((3.14)

with

}1,...,1,,...,,0,...,0{ 11 −−+= prp uuU

}1,...,1,,...,,0,...,0{ 11 −−+= qsq vvV

where we have of 0’s and 1+p 1+p of 1’s in both U and V.

U has 1+r knots, and V has 1+s , where

1++= pnr and (3.15) 1++= qms

igure (3.13) B-Spline curves (a) A ninth-degree Bezier curve on the knot vector

.(Youssef [35]) }1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0{=U

 34

Figure (3.13) B-Spline curves (b) A quadratic curve using the same control polygon defined

on .(Youssef [35]) }1,1,1,8/7,8/6,8/5,8/4,8/3,8/2,8/1,0,0,0{=U

Figure (3.14) B-Spline curves of different degrees, using the same control polygon.
(Youssef [35])

Five steps are required to compute a point on a B-Spline surface at fixed parameter

values:

),(vu

1. Find the knot span in which u lies, say),[1+∈ ii uuu .

2. Compute the nonzero basis functions .)(),...,(,, uNuN pippi−

3. Find the knot span in which v lies, say),[1+∈ jj vvv .

4. Compute the nonzero basis functions .)(),...,(,, vNvN qjqqj−

 35

5. Multiply the values of the nonzero basis functions with the corresponding control

points.

Figures (3.15a and 3.15b) show the tensor product basis functions and

 respectively. Figures 3.16 to 3.19 show examples of B-Spline surfaces.

)()(,, vNuN 2434

)()(,, vNuN 2234

Figure (3.15) Product of a cubic and a quadratic basis function (a) () ()vNuN 2434 ,, ;

 and }1,1,1,1,4/3,4/2,4/1,0,0,0,0{=U }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V (Youssef [35]).

Figure (3.15) Product of a cubic and a quadratic basis function (b) () ()vNuN 2234 ,, ;

 and }1,1,1,1,4/3,4/2,4/1,0,0,0,0{=U }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V (Youssef [35]).

 36

The properties of the tensor product basis functions follow from the corresponding

properties of the univariate basis functions as follows:

• Nonnegativity: for all 0vNuN qjpi ≥)()(,, vuqpji ,,,,, .

• Partition of unity: for all ∑ ∑ =
= =

n

0i

m

0j
qjpi 1vNuN)()(,, [] []1010vu ,,),(×∈ .

• If pn = , , qm = }1,...,1,0,...,0{=U , and }1,...,1,0,...,0{=V , then

 for all)()()()(,,,, vBuBvNuN mjniqjpi = ji, ; that is, products of B-Spline functions

degenerate to products of Bernstein polynomials.

• if is outside the rectangle (Figures

3.15a and 3.15b).

0vNuN qjpi =)()(,,),(vu),[),[11 ++++ × qjjpii vvuu

• In any given rectangle,),[),[11 0000 ++ × jjii vvuu , at most ()()11 ++ qp basis functions are

nonzero, in particular the for)()(,, vNuN qjpi 00 iipi ≤≤− and . 00 jjqj ≤≤−

• If and , then attains exactly one maximum value (figures

3.15a and 3.15b).

0>p 0>q)()(,, vNuN qjpi

B-Spline surfaces have the following properties:

• If pn = , , , and qm = }1,...,1,0,...,0{=U }1,...,1,0,...,0{=V , then is a Bezier

surface.

),(vuS

• The surface interpolates the four corner control points: , 00P00S ,),(= 0nP01S ,),(= ,

, and m0P10S ,),(= mnP11S ,),,(= (figures 3.16 through 3.19).

 37

Figure (3.16a) A B-Spline surface-control net (Youssef [35]).

Figure (3.16b) A B-Spline surface (Youssef [35]).

• Affine invariance: an affine transformation is applied to the surface by applying it to

the control points.

• Strong convex hull property: if),[),[),(1jj1ii 0000
vvuuvu ++ ×∈ , then S is in the

convex hull of the control points ,

),(vu

jiP , 00 iipi ≤≤− and 00 jjqj ≤≤− (figure 3.17).

 38

Figure (3.17a) Product of a cubic and a quadratic B-Spline surface (Youssef [35]).

Figure (3.17b) The strong convex hull property (Youssef [35]).

 39

• If triangulated, the control net forms a piecewise planar approximation to the surface;

as is the case for curves, the lower the degree the better the approximation (figures

3.18a and 3.18b).

Figure (3.18a) A biquadratic surface (Youssef [35]).

Figure (3.18b) A biquadratic surface ()4qp == using figure 3.18a control points (Youssef
[35]).

 40

• Local modification scheme: if is moved, it affects the surface only in the

rectangle . Now consider figures 3.19a and 3.19b: the initial

surface is flat because all the control points lie in a common plane; the control net is

offset from the surface only for better visualization. When is moved, it affects the

surface shape only in the rectangle

jiP ,

),[),[11 ++++ × qjjpii vvuu

5,3P

)1,5/2[)1,4/1[× .

Figure (3.19a) A product of a planar quadratic and a cubic surface,
 and }1,1,1,4/3,2/1,4/1,0,0,0{=U }1,1,1,1,5/4,5/3,5/2,5/1,0,0,0,0{=V (Youssef [35]).

Figure (3.19b) is moved, affecting surface shape only in the rectangle 5,3P)1,5/2[)1,4/1[×
(Youssef [35]).

 41

3.4 Rational B-Spline Curves and Surfaces

3.4.1 Definition and Properties of Non-Uniform Rational B-Spline
Curves

A Non-Uniform Rational B-Spline Curve, denoted by NURBS, of degree p is defined by:

∑=
=

n

0i
ipi PuRuC)()(, bua ≤≤ (3.16)

where

∑
=

=

n

0j
jpj

ipi
pi

wuN

wuN
uR

)(

)(
)(

,

,
, (3.17)

where are the control points (forming a control polygon), is the set of weights,

the is the set of pth-degree B-Spline basis functions defined on the nonperiodic

(and nonuniform) knot vector:

}{ iP }{ iw

)}({ , uN pi

},...,,,...,,,...,{ 11 bbuuaaU pmp −−+=

)}({ , uR pi is the set of rational basis functions; they are piecewise rational functions on

 where we assume that [10u ,∈] 0=a , 1=b , and for all i. 0>iw

)(, uR pi have the following properties:

• Nonnegativity: for all 0uR pi ≥)(, pi, , and []1,0∈u .

• Partition of unity: for all ∑ =
=

n

0i
pi 1uR)(, []1,0∈u .

 42

• . 11R0R pnp0 ==)()(,,

• For , all attain exactly one maximum value on the interval 0>p)(, uR pi []10u ,∈ .

• Local support: for 0uR pi =)(,),[1++∉ pii uuu . Furthermore, in any given knot span, at

most i.e. k (order of the curve) of the are nonzero (in general,

 are nonzero in).

1+p)(, uR pi

)(),...,(,, uRuR pippi−),[1+ii uu

• If for all i , then 0=iw)()(,, uNuR pipi = for all ; i.e., is a special case of

. In fact, for any

i)(, uN pi

)(, uR pi 0≠a , if awi = for all i then)()(,, uNuR pipi = for all . i

• The previous properties yield the following important geometric characteristics of

NURBS curves:

• Affine invariance: an affine transformation is applied to the curve by applying it to the

control points; NURBS curves are also invariant under perspective projections, which

is very important in computer graphics.

• Strong convex hull property: if),[1+∈ ii uuu , then lies within the convex hull of

the control points (figure 3.20, where for (dashed

segment) is contained in the convex hull of , the dashed area).

)(uC

ipi PP ,...,−)(uC)2/1,4/1[∈u

},,,{ 4321 PPPP

• A NURBS curve with no interior knots is a rational Bezier curve, since the

reduce to the . This implies that NURBS curves contain nonrational B-Spline

and rational and nonrational Bezier curves as special cases.

)(, uN pi

)(, uB ni

 43

• Local approximation: if the control point is moved, or the weight is changed, it

affects only that portion of the curve on the interval

iP iw

),[1++∈ pii uuu .

Figure (3.20a) and }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U }1,1,1,13,1,1{},...,{ 60 =ww A cubic
NURBS curve. (Youssef [35])

Figure (3.20b) and }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U }1,1,1,13,1,1{},...,{ 60 =ww Associated
basis functions. (Youssef [35])

The last property is very important for refining surface fits to measured points. Using

NURBS curves, both control point movement and weight modification can be utilized to

attain local shape control. Figures 3.21 to 3.25 show the effects of modifying a single

weight. (eg: Assuming , the effect is that if increases (decreases), the

point moves closer to (farther from) , and hence the curve is pulled toward (pushed

),[1++∈ pii uuu iw

uC iP

 44

away from) . Furthermore, the movement of for fixed u is along a straight line

(figure 3.25)). In figure 3.25, u is fixed and is changing. Let

iP uC

3w);(0wuCB 3 == and

. Then the straight line defined by B and N passes through , and for

arbitrary , lies on this line segment between B and .

);(1wuCN 3 == 3P

∞<< 30 w);(33 wuCB = 3P

Figure (3.21) Rational cubic B-Spline curves, with varying. (Youssef [35]) 3w

Figure (3.22a) The cubic basis functions for the curves of figure 3.21 (Youssef [35])

Figure (3.22b) The cubic basis functions for the curves of figure 3.21(Youssef [35])
(b) 10/33 =w .

 45

Figure (3.22c) The cubic basis functions for the curves of figure 3.21 (c) .(Youssef 03 =w

[35])

Figure (3.23) Rational quadratic curves, with varying. (Youssef [35]) 1w

Figure (3.24a) The quadratic basis functions for the curves of figure 3.23 .(Youssef
[35])

41 =w

 46

Figure (3.24b) The quadratic basis functions for the curves of figure 3.23
10/31 =w .(Youssef [35])

Figure (3.24c) The quadratic basis functions for the curves of figure 3.23 .(Youssef
[35])

01 =w

Figure (3.25) Modification of the weight .(Youssef [35]) 3w

 47

3.4.2 Definition and Properties of NURBS Surfaces

A NURBS surface of degree p in the u direction and degree q in the v direction is a

bivariate vector-valued piecewise rational function of the form:

∑ ∑=
= =

n

0i

m

oj
jiji PuRvuS ,,)(),(1vu0 ≤≤ , (3.18)

where

∑ ∑
=

= =

n

0k

m

0l
lkplpk

jiqjpi
ji

wvNuN

wvNuN
vuR

,,,

,,,
,

)()(

)()(
),((3.19)

}{ , jiP forms a bi-directional control net, is the set of weights, are the

piecewise rational basis functions for 0

}{ , jiw),(, vuR ji

≤ i ≤ n and 0 ≤ j ≤ m , and and

are the nonrational B-Spline basis functions defined on the knot vectors:

)}({ , uN pi)}({ , vN qj

}1,...,1,,...,,0,...,0{ 11 −−+= prp uuU

}1,...,1,,...,,0,...,0{ 11 −−+= qsq vvV

where there are 0’s and 1+p 1+p 1’s and 1++= pnr and 1++= qms

Figures 3.26 and 3.27 show examples of NURBS surfaces.

 48

Figure (3.26a) Control net and biquadratic NURBS surface, 102,21,22,11,1 ==== wwww

with the rest of the weights 1. }1,1,1,3/2,3/1,0,0,0{== VU Control net (Youssef [35]).

Figure (3.26b) Control net and biquadratic NURBS surface, 102,21,22,11,1 ==== wwww

with the rest of the weights 1. }1,1,1,3/2,3/1,0,0,0{== VU Biquadratic NURBS surface
(Youssef [35]).

 49

Figure (3.27) Bicubic NURBS surface defined by the control net in figure 3.26a, with
 and with the same weights (Youssef [35]). }1,1,1,1,2/1,0,0,0,0{== VU

The important properties of the functions are the same as those given in Section

3.3 for the nonrational basis functions,

),(, vuR ji

)()(,, vNuN qjpi

The following are the main properties of NURBS surfaces:

• Corner points interpolation: 00P00S ,),(= , 0nP01S ,),(= , m0P10S ,),(= , . mnP11S ,),(=

• Affine invariance: an affine transformation is applied to the surface by applying it to the

control points.

• Strong convex hull property: assume for all 0, ≥jiw ji, . If

, then is in the convex hull of the control points

, and

)v,v[)u,u[)v,u(1jj1ii 0000 ++ ×∈),(vuS

jiP , 00 iipi ≤≤− 00 jjqj ≤≤− .

• Local modification: if is moved, or is changed, it affects the surface shape only

in the rectangle .

jiP , jiw ,

),[),[11 ++++ × qjipii vvuu

 50

• Nonrational B-Spline and Bezier and rational Bezier surfaces are special cases of NURBS

surfaces.

It is obvious that both control point movement and weight modification to locally change

the shape of NURBS surfaces. Figures 3.28a and 3.28b show the effects on the basis

function and the surface shape when a single weight, , is modified.),(, vuR ji jiw ,

(eg: Assuming),[),[),(1qjj1pii vvuuvu ++++ ×∈ , then the effect on the surface if

increases (decreases), the point moves closer to (farther from) and hence the

surface is pulled toward (pushed away from)).

jiw ,

),(vuS jiP ,

jiP ,

Figure (3.28a) The basis function , with),(, vuR 24 }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U and

, }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V 1, =jiw for all)2,4()j,i(≠ (Youssef [35]).

 51

Figure (3.28b) The basis function , with),(, vuR 24 }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U and

, }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V 1, =jiw for all)2,4()j,i(≠ (Youssef [35]).

3.5 Curve and Surface Fitting

This section describes the fitting of free-form curves and surfaces to an arbitrary set of

geometric data, such as points and derivative vectors. Two types of fitting are

distinguished : interpolation and approximation. In interpolation, the constructed curve or

surface satisfies the given points precisely, e.g., the curve passes through the given points

and assumes the given derivatives at the prescribed points. Figure 3.29 shows a curve

interpolating five points and the first derivative vectors at the endpoints.

Fi

gure (3.29) A curve interpolating five points and two end derivatives.

 52

In approximation, the constructed curves and surfaces do not necessarily satisfy the given

data precisely, but only approximately. In some applications, an example is generation of

point data by use of coordinate measuring devices or digitizing tablets. In this case it is

important for the curve or surface or surface to capture the “shape” of the data, but not to

“wiggle” its way through every point. In approximation, it is often desirable to specify a

maximum bound on the derivation of the curve or surface from the given data, and to

specify certain constraints.

Figure 3.30 shows a curve approximating a set of m+1 points. A maximum deviation

bound, E, was specified, and the perpendicular distance, ei, is the approximation error

obtained by projecting Qi on the curve. The ei of each point, Qi, is less than E. The end

point Qo and Qm were specified as constraints, with the result that eo = em = 0. Input to a

fitting problem generally consists of geometric data, such as points or derivatives. Output

is a curve or surface, after the calculation of control points and knots. Furthermore, either

the degree p (or (p, q) for surfaces) must be input.

Figure (3.30) A curve approximating m+1 points; the curve is constrained to pass through

the end points, Q0 and Qm.

 53

3.6 Optimization of NURBS Parameters

The evaluation of the control points by least squares approximation can be viewed as an

initial estimation of the fitted surface. Further refinement can be obtained by optimizing

the different NURBS parameters, such as the knot values and the weights in order to

achieve better fitting accuracy. The error function between the measured points and the

fitted surface is generally given by equation (2.1). This equation has been specified to suit

the NURBS representation of the fitted surface as follows:

rs

k

r
ekk sQQE

/1

0
⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

 (3.41)

where:

1. is the kkQ th-measured point.

2. is the equivalent point on the surface to the kekQ th-measured point. Accurately, this

point would be found by orthogonally projecting the measured point on the fitted

surface. Such evaluation would lead to cumbersome computations and hence in

Dierckx [3], this point is approximated by),(lk vuP , where ku and lv are the

independent parameters associated with measured point . kQ

3. r is the exponent. If the average deviation is to be minimized, then r is set to either 1

or 2 (least-squares deviation function). Setting r to infinity leads to the minimization

of the maximum deviation. The selection of such exponent depends on the

measurement device and its accuracy [15]. For the problem in hand the measurement

device is a laser scanner so the value used for r is 2.

 54

4. is the number of measured points. s

Shalaby et.al. [28] showed that better results could be obtained by optimizing the weights

while keeping the knot values uniformly distributed. The fitting task can be viewed

mathematically as an approximation problem between an unknown function, represented

by a set of measured points {Q}, and an approximating function, represented by the

geometric model of the fitted curve/surface S(α1,, αn), where {α1,, αn} are the

parameters of the fitted curve/surface. The general formulation of the objective function

of the optimization problem is represented by the following equation:

()
rs

i

r
ni sSQE

/1

0
1 ,..., ⎟

⎠

⎞
⎜
⎝

⎛
−= ∑

=

αα (3.42)

where s is the number of measured points, and r is an exponent, ranging from 1 to

infinity. The fitting task can then be viewed as the optimization of the curve/surface

parameters { }nαα ,...,1 to minimize the error E

However the weights present a large number of independent variables (equaling the

number of control points) to the optimization problem, which may lead to a large search

space. In addition, the fitting of free-form surfaces to the measured points has been shown

by Shalaby et. al. [28] as well as by Limeaiem et.al. [12] to be a multi-modal

optimization problem. Therefore, global optimization techniques are needed for

optimizing such problems. Other researchers have used different variants of Genetic

Algorithms (GA’s), but all came to the conclusion that GA’s need a large number of

 55

objective function evaluations. Since reverse engineering of free-form surfaces processes

a large number of measured points, the single evaluation of the objective function is

computationally exhaustive. The above findings inspired the research of the presented

thesis to be focused on Simulated Annealing (SA). SA is one of the global optimization

methods like GA’s and Tabu Search (TS). The next chapter presents an approach to the

global optimization of continuous functions based on Simulated Annealing.

 56

4 SIMULATED ANNEALING

4.1 Introduction

Simulated Annealing (S.A.) exploits analogy between the way in which a metal cools and

freezes into a minimum energy crystalline structure (the Annealing process) and the

search for a minimum in a general system. If a physical system is melted and then cooled

slowly, the entire system can be made to produce the most stable (crystalline)

arrangement, and not get trapped in a local minimum.

The S.A. algorithm was first proposed by Metropolis et. al. [14] as a means to find

equilibrium configuration of a collection of atoms at a given temperature. Kirkpatrick et.

al. [10] were the first to use the connection between this algorithm and mathematical

minimization as the basis of an optimization technique for combinatorial (as well as

other) problems.

S.A’s major advantage over other methods is its ability to avoid being trapped in local

minima. The algorithm employs a random search, which not only accepts changes that

decrease the objective function E, but also some changes that would increase it. The latter

are accepted with a probability

 Prob(accept) = exp(-∆E/T)

57

where ∆E is the increase in E and T is a control parameter, which by analogy with the

original application is known as the system “temperature” irrespective of the objective

function involved.

Briefly S.A. works in the following way. Given a function to optimize, and some initial

values for the variables, Simulated Annealing starts at a high, artificial, temperature.

While cooling the temperature slowly, it repeatedly chooses a subset of the variables, and

changes them randomly in a certain neighborhood of the current point. If the objective

function has a lower function value at the new iterate, the new values are chosen to be the

initial values for the next iteration. If the objective function has a higher function value at

the new iterate, then the new values are chosen to be the initial values for the next

iteration with a certain probability, depending on the change in the value of the objective

function and the temperature.

The higher the temperature and the lower the change, the more probable that the new

values are chosen to be the initial variables for the next iteration. Throughout this process,

the temperature is decreased gradually, until eventually the values do not change

anymore. Then, the function is presumably at its global minimum. The global minimum is

obtained by choosing an appropriate “cooling schedule” which includes the temperature

and its cooling rate. A cooling schedule describes the temperature parameter T, and gives

rules for lowering it as the search progresses.

58

4.2 Simulated Annealing Algorithm

The Simulated Annealing algorithm is shown in Figure 4.1(a) and the Metropolis

procedure used by the algorithm is shown in figure 4.1(b).

Algorithm Simulated_Annealing (So, To, α, β, M, Maxtime);

 (*So is the initial solution *)

 (*BestS is the best solution*)

 (*To is the initial temperature*)

 (*α is the cooling rate*)

 (*β a constant*)

(*Maxtime is the total allowed time for the Annealing process*)

(*M represents the time until the next parameter update*)

Begin

 T = To;

 CurS = So;

 BestS = CurS; /*BestS is the best solution seen so far */

 CurCost = Cost(CurS);

 BestCost = Cost(BestS);

 Time = 0;

 Repeat

 Call Metropolis(CurS, CurCost, BestS, BestCost, T, M);

 Time = Time + M;

 T = α T;

 M = β M;

 Until (Time ≥ MaxTime);

 Return (BestS)

End (* of Simulated Annealing *)
Figure (4.1a) The Simulated Annealing Algorithm.

59

Algorithm Metropolis(CurS, CurCost, BestS, BestCost, T, M);

Begin

 Repeat

 NewS = Neighbor(CurS);

 NewCost = Cost(NewS);

 ∆Cost = (NewCost – CurCost);

 If (∆Cost < 0) Then

 CurS = NewS;

 If NewCost < BestCost Then

 BestS = NewS

 EndIf

 Else

 If (RANDOM < e-∆Cost/T) Then

 CurS = NewS;

 EndIf

 EndIf

 M = M – 1

 Until (M = 0)

End (*of Metropolis*)
Figure (4.1b) The Metropolis procedure.

The Metropolis procedure, which simulates the Annealing process at a given temperature

T, is the core of the S.A algorithm. The Metropolis procedure receives as input the current

temperature T, and the current solution CurS, which it improves through local search.

Finally, Metropolis must also be provided with the value M, which is the amount of time

for which Annealing must be applied for a temperature T.

60

The procedure Simulated_Annealing simply invokes Metropolis at decreasing

temperatures. Temperature is initialized to a value To at the beginning of the procedure,

and is reduced in a controlled manner (typically in a geometric progression); the

parameter α is used to achieve this cooling. The amount of time spent in Annealing at a

temperature is gradually increased as temperature is lowered. This is done using the

parameter β > 1.The variable Time keeps track of the time being expended in each call to

the Metropolis. The Annealing procedure halts when Time exceeds the allowed time.

The Metropolis procedure uses the procedure Neighbor to generate a local neighbor NewS

of any given solution S. The function Cost returns the cost of a given solution S. If the

cost of the new solution NewS is better than the cost of the current solution CurS, then the

new solution is accepted, and we do so by setting CurS = NewS. If the cost of the new

solution is better than the best solution (BestS) seen thus far, we replace BestS by NewS. If

the new solution has a higher cost in comparison to the original solution CurS, Metropolis

will accept the new solution on a probabilistic basis. A random number (RANDOM) is

generated in the range 0 to 1. If this random number is smaller than e-∆Cost/T , where ∆Cost

is the difference in costs, and T is the current temperature, the uphill solution is accepted.

This criterion for accepting the new solution is known as the Metropolis criterion. The

Metropolis procedure generates and examines M solutions.

The probability that an inferior solution is accepted by the Metropolis, is given by

61

P(RANDOM < e-∆Cost/T). The random number generation is assumed to follow a uniform

distribution. Remember that ∆Cost > 0 since we have assumed that NewS is uphill from

CurS. At very high temperatures, (when T → ∞), e-∆Cost/T ≈ 1. and hence the above

probability approaches 1. On the contrary, when T → 0, the probability e-∆Cost/T falls to 0.

In order to implement Simulated Annealing, we need to formulate a suitable cost function

for the problem being solved. In addition, as in the case of local search techniques, we

assume the existence of a neighborhood structure, and need Neighbor function to generate

new states (neighborhood states) from current states. And finally we need a cooling

schedule that describes the temperature parameter T and gives rules for lowering it.

4.3 Parameters of the S.A. algorithm

If S.A is allowed to run for an infinitely long time, starting with a high value of T, and

allowing T 0, then it will find a desired optimal configuration. In practice, however,

Simulated Annealing is only run for a finite amount of time. A finite time implementation

can be realized by generating homogeneous Markov chains of finite lengths for a

sequence of decreasing values of temperature. T0 achieve this, a set of parameters that

govern the convergence of the algorithm must be specified. This set of parameters is

commonly referred to as the “cooling schedule”.

62

The Metropolis procedure receives as input the current temperature T, the current solution

CurS, and a value M, which is the amount of time for which Annealing must be applied at

temperature T. Temperature is initialized to a value T0 at the beginning of the procedure,

and is slowly reduced in a geometric progression; the parameter α is used to achieve this

cooling. The amount of time spent in Annealing at a given temperature is gradually

increased as temperature is lowered. This is done using the parameter β ≥ 1. The variable

Time keeps track of the time being expended in each call to the Metropolis. The

Annealing procedure halts when Time exceeds the allowed time. The cooling schedule

specifies the following:

A finite sequence of values of temperature, which are given by the initial value , a

decrement factor (α), and the final value, which is specified by the stopping criterion.

0T

A finite number of transitions (denoted by βM) at each value of the temperature, which

corresponds to the finite length of each homogeneous Markov chain.

Therefore, a cooling schedule is completely specified by setting the values of parameters

α, β, M, and Time. It is customary to determine the schedule by trial and error.

However, some researches have proposed cooling schedules that rely on some

mathematical rigor. In our work, we have used the cooling schedule presented by

Kirkpatrick et al [Kirkpatrick 83].

0T

63

4.4 S.A. Requirements

In order to use Simulated Annealing to solve a particular problem, a sequence of Markov

chains is to be generated at descending values of temperature. As seen earlier, the inner

loop of the Annealing algorithm is a homogeneous Markov chain, and T does not change

within the loop. Such Markov chains are generated by transforming a current solution to

another one by applying a generation mechanism (perturbance or neighbor function) and

using an acceptance function which is usually the Metropolis function. Application of the

Annealing algorithm therefore requires the following.

1. A concise representation of the state space, where each state represents a

configuration, and a cost function that represents the cost effectiveness of the

solutions with respect to the optimization objectives. It is important that the solution

representation be easy to manipulate. Furthermore, the cost function should be given

by a simple expression that is easy to evaluate. This requirement is important because

the manipulation of current configurations to generate new neighborhood states and

the evaluation of the cost of that solution are done a large number of times.

2. A mechanism for transforming the current solution into a subsequent one to which the

search should move. This will involve two steps.

a. First, the neighbor function is applied to generate a new solution.

guarantees asymptotic convergence to the set of optimal solutions, the

0T

64

neighborhood structure must be properly chosen so that the corresponding

generation mechanism induces an irreducible and aperiodic Markov chain.

b. Second, the cost of this new solution, and hence the difference in cost ∆Cost is

computed. Then, a decision is made whether to accept or reject this newly

generated solution.

These two steps are the most time consuming and should be executed in a time efficient

manner. Therefore, in practice, the neighbor functions are generally simple.

3. Finally, the success of a S.A algorithm depends on the choice of a proper cooling

schedule, that is, on the initial value of temperature, the decrement function, the

length of the Markov chain and a suitable stopping criterion.

65

5 THE PROPOSED METHOD

5.1 Introduction

Figures 5.1a and 5.1b shows the basic building blocks of our implemented system for

curves and surfaces respectively for weight optimization. We discuss Figure 5.1 briefly

below.

Initially a character/surface is scanned to get a digitized image. In case of curves, its

contour is extracted using boundary detection algorithms, to obtain a number of data

points. We assume that the curves are continuous, i.e. they possess single segments. The

parametric value ‘u’ for each data point is then calculated using chord length

parameterization [24]. In the case of a surface, the parameter calculation is bi-directional.

The least squares technique is used to calculate the control points. A uniform knot vector

is calculated in the case of a curve and two uniform knot vectors are calculated in the case

of a surface, in ‘u’ and ‘w’ directions. Then, Simulated Annealing is used to optimize

weights. Once the values of all three space parameters – control points, knot vector and

weights are received, the NURBS curve is fitted to obtain a geometric model of the curve.

66

5.2 Obtaining a digitized image/surface

Figure 5.3 discusses in detail our proposed approach. A digitized image is obtained from

an electronic device or by scanning an image. The quality of digitized scanned image

depends of various factors such as the image on paper, scanner type and the attributes set

during scanning. The quality of digitized image obtained directly from an electronic

device depends on the resolution device, source of image, type of image, etc. Some of the

digitized images/surfaces are shown in Figure 5.2. The surfaces are generated using

mathematical functions. The Table 5.1shows the surfaces, with their respective generator

functions.

Table (5.1) Surface generating functions

Surfaces Functions

Surface 1 22(yxR += ; RRSinz)(=

Surface 2 [X,Y,Z] = Cylinder(2 + cos(t))

Surface 3 [X,Y,Z] = Sphere(N)

67

Figure (5.1a) Curve – weight optimization.

Figure (5.1b) Surface – weight optimization.

In Table 5.1, cylinder and sphere are the matlab functions which generate a cylinder and a

sphere respectively, where ‘t’ is a parameter in surface 2 and N produces (N+1) by (N+1)

matrices of X,Y & Z for surface 3.

68

5.3 Contour extraction

The contour of the digitized image is extracted using the boundary detection algorithms.

There are numerous algorithms for detecting boundary. We used the algorithm proposed

by Quddus [20]. The input to this algorithm is a bitmap file. The algorithm returns a

number of segments and for each segment, a number of boundary points and their values.

Table 5.1 gives the number of boundary points detected by the boundary detection

algorithm for the word ‘Ali’, the symbol ‘Pound’ and the letter ‘Aich’ and the number of

points scanned for surfaces.

Table (5.2) Scanned data points

S.No Name of the Figure # of data points

1 Ali 1640

2 Pound 689

3 Aich 320

4 Apple 1204

5 Open Curve 1001

4 Surface 1 1089

5 Surface 2 441

6 Surface 3 1024

7 Jar 1089

69

In case of surfaces, Table 5.1 shows their generating functions. Using these generating

functions, input data points are generated for the surfaces. The Tables 5.3 to 5.6 show the

data points generated for Surface1, Surface 2, Surface 3 & Jar respectively.

 Aich Ali Pound

 Apple Open Curve Surface1

 Surface 2 Surface3 Jar

Figure (5.2) Input Curves and Surfaces.

70

Table(5.3) Sample data points for Surface 1

2.5 -7.5 0.126322
3 -7.5 0.12071
3.5 -7.5 0.1102
4 -7.5 0.0939397
4.5 -7.5 0.0717446
5 -7.5 0.0443133
5.5 -7.5 0.0133241
6 -7.5 -0.0186304
6.5 -7.5 -0.0483008
7 -7.5 -0.0722156
7.5 -7.5 -0.087238
8 -7.5 -0.0911519
-8 -7 -0.0878606
-7.5 -7 -0.0722156
-7 -7 -0.0461727
-6.5 -7 -0.0133328
-6 -7 0.0221048
-5.5 -7 0.0560617
-5 -7 0.0851882
-4.5 -7 0.107264
-4 -7 0.121354
-3.5 -7 0.127726
-3 -7 0.127599
-2.5 -7 0.12279
-2 -7 0.115356
-1.5 -7 0.10728
-1 -7 0.100248
-0.5 -7 0.0955176
0 -7 0.0938552
0.5 -7 0.0955176
1 -7 0.100248
1.5 -7 0.10728
2 -7 0.115356
2.5 -7 0.12279
3 -7 0.127599
3.5 -7 0.127726
4 -7 0.121354
4.5 -7 0.107264
5 -7 0.0851882
5.5 -7 0.0560617
6 -7 0.0221048
6.5 -7 -0.0133328
7 -7 -0.0461727
7.5 -7 -0.0722156
8 -7 -0.0878606
-8 -6.5 -0.0749569
-7.5 -6.5 -0.0483008
-7 -6.5 -0.0133328
-6.5 -6.5 0.0250537
-6 -6.5 0.0618459

-2 -6.5 0.0727498
-1.5 -6.5 0.0566662
-1 -6.5 0.0439599
-0.5 -6.5 0.0358682
0 -6.5 0.0330954
0.5 -6.5 0.0358682
1 -6.5 0.0439599
1.5 -6.5 0.0566662
2 -6.5 0.0727498
2.5 -6.5 0.090402
3 -6.5 0.10728
3.5 -6.5 0.120673
4 -6.5 0.127814
4.5 -6.5 0.126322
5 -6.5 0.114689
5.5 -6.5 0.0927286
6 -6.5 0.0618459
6.5 -6.5 0.0250537
7 -6.5 -0.0133328
7.5 -6.5 -0.0483008
8 -6.5 -0.0749569
-8 -6 -0.0544021
-7.5 -6 -0.0186304
-7 -6 0.0221048
-6.5 -6 0.0618459
-6 -6 0.0951366
-5.5 -6 0.117888
-5 -6 0.127914
-4.5 -6 0.125067
-4 -6 0.110992
-3.5 -6 0.0886112
-3 -6 0.0614677
-2.5 -6 0.0330954
-2 -6 0.00653931
-1.5 -6 -0.0159051
-1 -6 -0.0327292
-0.5 -6 -0.0430819
0 -6 -0.0465692
0.5 -6 -0.0430819
1 -6 -0.0327292
1.5 -6 -0.0159051
2 -6 0.00653931
2.5 -6 0.0330954
3 -6 0.0614677
3.5 -6 0.0886112
4 -6 0.110992
4.5 -6 0.125067
5 -6 0.127914
5.5 -6 0.117888
6 -6 0.0951366

5.5 -5 0.12279
6 -5 0.127914
6.5 -5 0.114689
7 -5 0.0851882
7.5 -5 0.0443133
8 -5 -0.00097552
-8 -4.5 0.0265312
-7.5 -4.5 0.0717446
-7 -4.5 0.107264
-6.5 -4.5 0.126322
-6 -4.5 0.125067
-5.5 -4.5 0.103188
-5 -4.5 0.063807
-4.5 -4.5 0.0126789
-4 -4.5 -0.0430819
-3.5 -4.5 -0.0964682
-3 -4.5 -0.141902
-2.5 -4.5 -0.176131
-2 -4.5 -0.198521
-1.5 -4.5 -0.210717
-1 -4.5 -0.215789
-0.5 -4.5 -0.217107
0 -4.5 -0.217229
0.5 -4.5 -0.217107
1 -4.5 -0.215789
1.5 -4.5 -0.210717
2 -4.5 -0.198521
2.5 -4.5 -0.176131
3 -4.5 -0.141902
3.5 -4.5 -0.0964682
4 -4.5 -0.0430819
4.5 -4.5 0.0126789
5 -4.5 0.063807
5.5 -4.5 0.103188
6 -4.5 0.125067
6.5 -4.5 0.126322
7 -4.5 0.107264
7.5 -4.5 0.0717446
8 -4.5 0.0265312
-8 -4 0.0516787
-7.5 -4 0.0939397
-7 -4 0.121354
-6.5 -4 0.127814
-6 -4 0.110992
-5.5 -4 0.0727498
-5 -4 0.0186864
-4.5 -4 -0.0430819
-4 -4 -0.103622
-3.5 -4 -0.154996
-3 -4 -0.191785

71

Table(5.4) Sample data points for Surface 2

3 0 0
2.85317 0.927051 0
2.42705 1.76336 0
1.76336 2.42705 0
0.927051 2.85317 0
1.83697e-016 3 0
-0.927051 2.85317 0
-1.76336 2.42705 0
-2.42705 1.76336 0
-2.85317 0.927051 0
-3 3.67394e-016 0
-2.85317 -0.927051 0
-2.42705 -1.76336 0
-1.76336 -2.42705 0
-0.927051 -2.85317 0
-5.51091e-016 -3 0
0.927051 -2.85317 0
1.76336 -2.42705 0
2.42705 -1.76336 0
2.85317 -0.927051 0
3 0 0
2.95106 0 0.05
2.80662 0.911927 0.05
2.38745 1.73459 0.05
1.73459 2.38745 0.05
0.911927 2.80662 0.05
1.807e-016 2.95106 0.05
-0.911927 2.80662 0.05
-1.73459 2.38745 0.05
-2.38745 1.73459 0.05
-2.80662 0.911927 0.05
-2.95106 3.614e-016 0.05
-2.80662 -0.911927 0.05
-2.38745 -1.73459 0.05
-1.73459 -2.38745 0.05
-0.911927 -2.80662 0.05
-5.421e-016 -2.95106 0.05
0.911927 -2.80662 0.05
1.73459 -2.38745 0.05
2.38745 -1.73459 0.05
2.80662 -0.911927 0.05
2.95106 0 0.05
2.80902 0 0.1
2.67153 0.868034 0.1
2.27254 1.6511 0.1
1.6511 2.27254 0.1
0.868034 2.67153 0.1
1.72003e-016 2.80902 0.1
-0.868034 2.67153 0.1
-1.6511 2.27254 0.1

0.868034 -2.67153 0.1
1.6511 -2.27254 0.1
2.27254 -1.6511 0.1
2.67153 -0.868034 0.1
2.80902 0 0.1
2.58779 0 0.15
2.46113 0.79967 0.15
2.09356 1.52106 0.15
1.52106 2.09356 0.15
0.79967 2.46113 0.15
1.58456e-016 2.58779 0.15
-0.79967 2.46113 0.15
-1.52106 2.09356 0.15
-2.09356 1.52106 0.15
-2.46113 0.79967 0.15
-2.58779 3.16912e-016 0.15
-2.46113 -0.79967 0.15
-2.09356 -1.52106 0.15
-1.52106 -2.09356 0.15
-0.79967 -2.46113 0.15
-4.75368e-016 -2.58779 0.15
0.79967 -2.46113 0.15
1.52106 -2.09356 0.15
2.09356 -1.52106 0.15
2.46113 -0.79967 0.15
2.58779 0 0.15
2.30902 0 0.2
2.19601 0.713525 0.2
1.86803 1.35721 0.2
1.35721 1.86803 0.2
0.713525 2.19601 0.2
1.41387e-016 2.30902 0.2
-0.713525 2.19601 0.2
-1.35721 1.86803 0.2
-1.86803 1.35721 0.2
-2.19601 0.713525 0.2
-2.30902 2.82773e-016 0.2
-2.19601 -0.713525 0.2
-1.86803 -1.35721 0.2
-1.35721 -1.86803 0.2
-0.713525 -2.19601 0.2
-4.2416e-016 -2.30902 0.2
0.713525 -2.19601 0.2
1.35721 -1.86803 0.2
1.86803 -1.35721 0.2
2.19601 -0.713525 0.2
2.30902 0 0.2
2 0 0.25
1.90211 0.618034 0.25
1.61803 1.17557 0.25

72

Table(5.5) Sample data points for Surface 3

-6.12323e-017 -7.4988e-033 -1
-5.99789e-017 -1.2326e-017 -1
-5.62699e-017 -2.41473e-017 -1
-5.02573e-017 -3.49801e-017 -1
-4.21871e-017 -4.43808e-017 -1
-3.23897e-017 -5.19645e-017 -1
-2.12663e-017 -5.74208e-017 -1
-9.27228e-018 -6.05262e-017 -1
3.10137e-018 -6.11537e-017 -1
1.5348e-017 -5.92776e-017 -1
2.69664e-017 -5.49747e-017 -1
3.74807e-017 -4.8421e-017 -1
4.64605e-017 -3.98851e-017 -1
5.35383e-017 -2.97162e-017 -1
5.84242e-017 -1.83307e-017 -1
6.09182e-017 -6.19477e-018 -1
6.09182e-017 6.19477e-018 -1
5.84242e-017 1.83307e-017 -1
5.35383e-017 2.97162e-017 -1
4.64605e-017 3.98851e-017 -1
3.74807e-017 4.8421e-017 -1
2.69664e-017 5.49747e-017 -1
1.5348e-017 5.92776e-017 -1
3.10137e-018 6.11537e-017 -1
-9.27228e-018 6.05262e-017 -1
-2.12663e-017 5.74208e-017 -1
-3.23897e-017 5.19645e-017 -1
-4.21871e-017 4.43808e-017 -1
-5.02573e-017 3.49801e-017 -1
-5.62699e-017 2.41473e-017 -1
-5.99789e-017 1.2326e-017 -1
-6.12323e-017 7.4988e-033 -1
-0.101168 -1.23895e-017 -0.994869
-0.0990974 -0.020365 -0.994869
-0.0929694 -0.0398963 -0.994869
-0.0830353 -0.0577942 -0.994869
-0.0697016 -0.0733261 -0.994869
-0.0535144 -0.0858559 -0.994869
-0.0351363 -0.0948708 -0.994869
-0.0153197 -0.100002 -0.994869
0.00512409 -0.101038 -0.994869
0.0253581 -0.0979387 -0.994869
0.0445539 -0.0908294 -0.994869
0.0619257 -0.0800015 -0.994869
0.0767623 -0.0658983 -0.994869
0.0884562 -0.0490972 -0.994869
0.0965287 -0.0302861 -0.994869
0.100649 -0.010235 -0.994869
0.100649 0.010235 -0.994869

-0.0535144 0.0858559 -0.994869
-0.0697016 0.0733261 -0.994869
-0.0830353 0.0577942 -0.994869
-0.0929694 0.0398963 -0.994869
-0.0990974 0.020365 -0.994869
-0.101168 1.23895e-017 -0.994869
-0.201299 -2.4652e-017 -0.97953
-0.197178 -0.0405211 -0.97953
-0.184985 -0.0793833 -0.97953
-0.165218 -0.114995 -0.97953
-0.138688 -0.1459 -0.97953
-0.10648 -0.170831 -0.97953
-0.069912 -0.188768 -0.97953
-0.0304822 -0.198977 -0.97953
0.0101956 -0.20104 -0.97953
0.050456 -0.194872 -0.97953
0.0886507 -0.180727 -0.97953
0.123216 -0.159182 -0.97953
0.152737 -0.13112 -0.97953
0.176005 -0.0976906 -0.97953
0.192067 -0.0602614 -0.97953
0.200266 -0.020365 -0.97953
0.200266 0.020365 -0.97953
0.192067 0.0602614 -0.97953
0.176005 0.0976906 -0.97953
0.152737 0.13112 -0.97953
0.123216 0.159182 -0.97953
0.0886507 0.180727 -0.97953
0.050456 0.194872 -0.97953
0.0101956 0.20104 -0.97953
-0.0304822 0.198977 -0.97953
-0.069912 0.188768 -0.97953
-0.10648 0.170831 -0.97953
-0.138688 0.1459 -0.97953
-0.165218 0.114995 -0.97953
-0.184985 0.0793833 -0.97953
-0.197178 0.0405211 -0.97953
-0.201299 2.4652e-017 -0.97953
-0.299363 -3.66614e-017 -0.954139
-0.293235 -0.0602614 -0.954139
-0.275102 -0.118056 -0.954139
-0.245706 -0.171017 -0.954139
-0.206251 -0.216976 -0.954139
-0.158352 -0.254053 -0.954139
-0.10397 -0.280728 -0.954139
-0.0453319 -0.295911 -0.954139
0.0151625 -0.298979 -0.954139
0.0750361 -0.289807 -0.954139
0.131838 -0.26877 -0.954139

73

Table(5.6) Sample data points for Jar

-8 -8 0.999999
-7.5 -8 0.999997
-7 -8 0.999992
-6.5 -8 0.99998
-6 -8 0.99995
-5.5 -8 0.99988
-5 -8 0.999726
-4.5 -8 0.999411
-4 -8 0.998811
-3.5 -8 0.997757
-3 -8 0.996065
-2.5 -8 0.993617
-2 -8 0.990467
-1.5 -8 0.986937
-1 -8 0.983618
-0.5 -8 0.981226
0 -8 0.980353
0.5 -8 0.981226
1 -8 0.983618
1.5 -8 0.986937
2 -8 0.990467
2.5 -8 0.993617
3 -8 0.996065
3.5 -8 0.997757
4 -8 0.998811
4.5 -8 0.999411
5 -8 0.999726
5.5 -8 0.99988
6 -8 0.99995
6.5 -8 0.99998
7 -8 0.999992
7.5 -8 0.999997
8 -8 0.999999
-8 -7.5 0.999997
-7.5 -7.5 0.999992
-7 -7.5 0.999977
-6.5 -7.5 0.999937
-6 -7.5 0.999836
-5.5 -7.5 0.999591
-5 -7.5 0.999035
-4.5 -7.5 0.99785
-4 -7.5 0.995514
-3.5 -7.5 0.991284
-3 -7.5 0.984345
-2.5 -7.5 0.974175
-2 -7.5 0.961071
-1.5 -7.5 0.946518
-1 -7.5 0.933041
-0.5 -7.5 0.923476
0 -7.5 0.920015

3.5 -7.5 0.991284
4 -7.5 0.995514
4.5 -7.5 0.99785
5 -7.5 0.999035
5.5 -7.5 0.999591
6 -7.5 0.999836
6.5 -7.5 0.999937
7 -7.5 0.999977
7.5 -7.5 0.999992
8 -7.5 0.999997
-8 -7 0.999992
-7.5 -7 0.999977
-7 -7 0.999932
-6.5 -7 0.999808
-6 -7 0.999479
-5.5 -7 0.998652
-5 -7 0.996694
-4.5 -7 0.992376
-4 -7 0.983618
-3.5 -7 0.967559
-3 -7 0.941471
-2.5 -7 0.904688
-2 -7 0.860368
-1.5 -7 0.815192
-1 -7 0.776851
-0.5 -7 0.751481
0 -7 0.74265
0.5 -7 0.751481
1 -7 0.776851
1.5 -7 0.815192
2 -7 0.860368
2.5 -7 0.904688
3 -7 0.941471
3.5 -7 0.967559
4 -7 0.983618
4.5 -7 0.992376
5 -7 0.996694
5.5 -7 0.998652
6 -7 0.999479
6.5 -7 0.999808
7 -7 0.999932
7.5 -7 0.999977
8 -7 0.999992
-8 -6.5 0.99998
-7.5 -6.5 0.999937
-7 -6.5 0.999808
-6.5 -6.5 0.999435
-6 -6.5 0.998404
-5.5 -6.5 0.995706
-5 -6.5 0.989092

-1.5 -6.5 0.560517
-1 -6.5 0.506555
-0.5 -6.5 0.474566
0 -6.5 0.464027
0.5 -6.5 0.474566
1 -6.5 0.506555
1.5 -6.5 0.560517
2 -6.5 0.635209
2.5 -6.5 0.724457
3 -6.5 0.815192
3.5 -6.5 0.891514
4 -6.5 0.944049
4.5 -6.5 0.974175
5 -6.5 0.989092
5.5 -6.5 0.995706
6 -6.5 0.998404
6.5 -6.5 0.999435
7 -6.5 0.999808
7.5 -6.5 0.999937
8 -6.5 0.99998
-8 -6 0.99995
-7.5 -6 0.999836
-7 -6 0.999479
-6.5 -6 0.998404
-6 -6 0.995313
-5.5 -6 0.986937
-5 -6 0.966045
-4.5 -6 0.920015
-4 -6 0.835763
-3.5 -6 0.715107
-3 -6 0.582087
-2.5 -6 0.464027
-2 -6 0.373492
-1.5 -6 0.310302
-1 -6 0.269764
-0.5 -6 0.247351
0 -6 0.240199
0.5 -6 0.247351
1 -6 0.269764
1.5 -6 0.310302
2 -6 0.373492
2.5 -6 0.464027
3 -6 0.582087
3.5 -6 0.715107
4 -6 0.835763
4.5 -6 0.920015
5 -6 0.966045
5.5 -6 0.986937
6 -6 0.995313
6.5 -6 0.998404

74

5.4 Parameter extraction

The parameter value uj for each data point is a measure of the distance of the data point

along the curve. One useful approximation for this parameter value uses the chord length

between data points. Specifically, for j data points, the parameter value at the l th data

point is

 u1 = 0

maxu
ul =

∑ −

∑ −

=
−

=
−

j

2s
1ss

2s
1ss

DD

DD
l

 (5.1) 2≥l

The maximum parameter value, tmax, is usually taken as the maximum value of the knot

vector.

The expanded version of the system is shown in Figure 5.3a and 5.3b.

75

Figure (5.3a) Detailed Curve weight optimization.

76

Figure (5.3b) Detailed Surface weight optimization.

77

5.5 Control point generation

Before we discuss about control point generation, let us discuss some of the basics of

pseudo-inverse of a matrix. The inverse A-1 of a matrix A exists only if A is square and

has full rank. In this case, Ax = b has the solution x = A-1b.

The pseudoinverse A+ is a generalization of the inverse, and exists for any (m,n) matrix.

We assume m > n. If A has full rank (n) we define:

TT AAAA 1)(−+ = (5.2)

and the solution of Ax = b is x = A+b.

The control points are calculated using the least squares technique. A fairer or smoother

curve is obtained by specifying fewer control polygon points than data points, i.e.

nk2 ≤≤ < j. Recalling that a matrix times its transpose is always square, the control

polygon for a curve that fairs or smoothes the data is given by

[D] = [B] [P]

[B] T [D] = [B] T [B] [P]

[P] = [[B] T [B]] -1 [B] T [D] (5.3)

where [D] T = [D1(t1) D2(t2) . . . Dj(tj)] are data points, [P] T = [P1 P2 . . . Pn+1] are the

control points and [B] is the set of B-spline basis functions.

78

5.6 Generation of knot values.

Shalaby et. al. [28] showed that better results could be obtained by optimizing the

weights while keeping the knot values uniformly distributed. Simulated Annealing

optimization heuristic is used in this thesis, to optimize weights , using non-uniform knot

values.

A knot value xi belonging to the open knot vector X , is given by

xi = 0 1 ≤ i ≤ k

xi = i – k k + 1 ≤ i ≤ n + 1

xi = n – k + 2 n + 1 ≤ i ≤ n + k + 1 (5.4)

The parameter range is 0 ≤ t ≤ n – k + 2 i.e., from zero to the maximum knot value. The

number of knot values is n + k +1.

5.7 Weight optimization

The evaluation of the control points by least squares approximation can be viewed as an

initial estimation of the fitted curve. Further refinement can be obtained by optimizing the

different NURBS parameters, such as the knot values and the weights in order to achieve

better fitting accuracy. The error function (or cost function) between the measured points

and the fitted curve is generally given by the equation 3.41.

79

Better results could be obtained by optimizing the weights while keeping the knot values

uniformly distributed [28]. However, the weights present a large number of independent

variables (equaling the number of control points) to the optimization problem, which may

lead to a large search space. Therefore, global optimization techniques are needed for

optimizing such problems.

5.7.1 Weight optimization using Simulated Annealing

We have used the Simulated Annealing optimization heuristic to optimize weights of the

NURBS curve. Figures 5.3a and 5.3b describe in detail the algorithms used for curves and

surfaces respectively. The initial solution of weight vector is randomly selected from

the range [0,0.5]. The number of elements in the weight vector corresponds to the number

of control points. A uniform knot vector is calculated in the range of [0, npts+k-1] for

curves, where npts is the number of control points and k is the order of the curve. For

surfaces, two knot vectors are calculated in the range [0, npts+k-1] and [0, mpts+ℓ-1] in

the ‘u’ and ‘w’ directions respectively.

0S

The cooling schedule used here is presented in [10]. It is based on the idea that the initial

temperature must be large to virtually accept all transitions and that the changes in the

temperature at each invocation of the Metropolis loop are small. The scheme provides

guidelines to the choice of , the rate of decrements of T, the termination criterion and

the length of the markov chain (M).

0T

0T

80

Initial Temperature T0: The initial temperature must be chosen so that almost all

transitions are accepted initially. That is, the initial acceptance ratio χ() must be close

to unity where

0T

χ()= 0T
0

0

T at attempted moves of number Total
T at accepted moves of Number

 (5.6)

To determine , we start off with a small value of initial temperature given by 0T 0T ′ , in the

metropol function. Then χ(0T ′) is computed. If χ(0T ′) is not close to unity, then 0T ′ is

increased by multiplying it by a constant factor larger than one. The above procedure is

repeated until the value of χ(0T ′) approaches unity. The value of is then the required

value of .

0T ′

0T

Decrement of T: A decrement function is used to reduce the temperature in a geometric

progression, and is given by

Tk+1 = α Tk , k = 0,1, … , (5.7)

where α is a positive constant less than one, as successive temperatures are decreasing.

Further, since small changes are desired, the value of α is chosen very close to unity, e.g.

0.8 ≤ α ≤ 0.99.

Length of Markov chain M: This is equivalent to the number of times the Metropolis

loop is executed at a given temperature. If the optimization process begins with a high

value of , the distribution of relative frequencies of states will be very close to the 0T

81

stationary distribution. In such a case, the process is said to be in quasi equilibrium. The

number M is based on the requirement that at each value of Tk quasi equilibrium is

restored.

Since at decreasing temperatures, uphill transitions are accepted with decreasing

probabilities, one has to increase the number of iterations of the Metropolis loop with

decreasing T (so that the Markov chain at that particular temperature will remain

irreducible and with all states being non null). A factor β is used (β > 1) which, in a

geometric progression, increases the value of M. That is, each time the Metropolis loop is

called, T is reduced to αT and M is increased to βM.

The neighborhood of each element of the weight vector is randomly selected within a

range of [weight_element_value, weight_element_value + 1]. Since the number of

elements of the weight vector equals the number of control points, this range is selected in

order to optimize the locality of the search.

5.8 Knot optimization

Knots can also be used as a parameter for optimization, in order to achieve better fitting

accuracy. The error function (or cost function) between the measured points and the fitted

curve is generally given by the following equation

82

E =
r/1s

0i

r
n1i s/),...,(SQ ⎟

⎠

⎞
⎜
⎝

⎛
αα−∑

=

 (5.8)

where Q represents the set of measured points; S(α1, …, αn) is the geometric model of the

fitted curve, where (α1, …, αn) are the parameters of the fitted curve; s is the number of

measured points and r is an exponent, ranging from 1 to infinity. The fitting task can then

be viewed as the optimization of the curve parameters (α1, …, αn) to minimize the error

(or cost) E. In case the exponent r is equal to 2, the above equation reduces to the least

squares function.

We have used the Simulated Annealing heuristic to optimize knots of the NURBS curve.

Figures 5.4a and 5.4b shows the algorithm used for curves and surfaces respectively. In

Figure 5.4a, the weight vector is set to unity. The number of elements in the weight vector

corresponds to the number of control points. Knot optimization requires a good initial

solution of knot vector. The initial solution is a uniform knot vector, with a range of

[0,npts+k-1].

0S

For surfaces, the optimization of knot vectors is bidirectional i.e. a knot vector in the ‘u’

and another in the ‘w’ direction. The initial solution CurS1 and CurS2 are uniformly

generated knot vectors in the range [0,npts+k-1] and [0,mpts+ℓ-1] respectively. Figure

5.4b describes the optimization of the knots for surfaces in detail.

83

The cooling schedule used is the same as that described in section 5.7.1. Only the method

used to generate the neighbor of the current solution is different. The neighbor of the

current solution ‘CurS’ is generated in the neighborhood of [CurS - 0.001, CurS + 0.001].

The same neighborhood strategy is used for both curves and surfaces.

84

Figure (5.4a) Detailed Curve knot optimization.

85

Figure (5.4b) Detailed Surface knot optimization.

86

6 RESULTS

6.1 Introduction

We used the images and surfaces shown in Figure 5.2 as the input to our algorithm both

for weight optimization and knot optimization. Three curves and three surfaces have been

selected for testing our algorithm. In section 6.2, we show the results for weight

optimization for both curves and surfaces, while in section 6.3, knot optimization results

are shown.

The general parameters taken for both curves and surfaces are described below. While

cooling, since small changes in temperatures are desired, we have chosen the value of α

as 0.99, which is close to unity. Since the value of β should be greater than 1, a value of

1.5 is chosen. The algorithm executes the Metropol function, based on Maxtime, which is

set to 250. The order K, for the curves is chosen to be 4 and for surfaces, it is set to the

same value 4, in both the ‘u’ and ‘w’ directions. The number of control points in case of

curves is taken to be 70 and in case of surfaces, 8 each in both direction ‘u’ and ‘w’.

 87

6.2 Weight optimization

6.2.1 Curve Fitting results

The general parameters used for curve fitting are tabulated in Table 6.1. The GUI

developed for weight optimization of curves is shown in Figure 6.1.Figures 6.2 shows the

pound symbol, fitted with the Simulated Annealing heuristic for the parameters shown in

Table 6.1.

Figure 6.2(a) shows the original scanned image given as an input to the algorithm. Figure

6.2(b) shows the outline of the image obtained after applying the boundary detection

algorithm. Figures 6.2(c) & 6.2(d) depict the intermediate fittings of the ‘pound’ symbol

at iterations (Time + i) = 51 & 126 respectively and figure 6.2(e) shows the fitting for

the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure

6.2(f) depicts the actual reduction in the costs (error) as the number of iterations increase.

Table (6.1) S.A. parameters for curves.

Parameter Value

Number of control points 70

M 50

α 0.99

β 1.5

Maxtime 250

K (order) 4

 88

Figure (6.1) GUI for curves.

Figure 6.2(f) shows the calculation of the best cost by the S.A. heuristic. A gradual

decrease in the (current) cost function can be viewed. The figure also shows that (current)

costs are selected for the next iteration, even if previous (current) costs were better, to

avoid getting trapped in the local minimum. Table 6.2 shows the actual number of times

that the Metropolis function is executed. Table 6.2 shows that, the Metropol function

executes Time + M i.e. 238.5 + 168.75, which is equal to 407 number of times, which is

correctly shown in Figure 6.2(f).

 89

(a) (b)

(c) (d)

(e)
(f)

Figure (6.2) Weight optimization for ‘Pound’.

 90

Table (6.2) Metropol function execution time.

S.No Time=Time+M M=β*M

1 1 50

2 51 75

3 126 112.5

4 238.5 168.75

Table (6.3) Weight optimization parameters for ‘Pound’.

Name POUND

dpts (# of data points) 688

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 3.378

Execution time (secs) 530.859

Table 6.3 shows the various parameters used and generated in the weight optimization of

the ‘Pound’ symbol. The BestCost (Least Error) is found to be 3.378 units and the

execution time is found to be 530.859 seconds.

 91

Figure 6.3(a) shows the original scanned image given as an input to the algorithm. Figure

6.3(b) shows the outline of the image obtained after applying the boundary detection

algorithm. Figures 6.3(c) & 6.3(d) depict the intermediate fittings of the ‘Aich’ symbol at

iterations (Time + i) = 51 & 126 respectively and figure 6.3(e) shows the fitting for the

actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure

6.3(f) depicts the actual reduction in the costs (error) as the number of iterations increase.

Table 6.4 shows the various parameters used and generated in the weight optimization of

the ‘Aich’ symbol. The BestCost (Least Error) is found to be 14.332 units and the

execution time is found to be 625.406 seconds.

Table (6.4) Weight optimization parameters for ‘Aich’.

Name AICH

dpts (# of data points) 787

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 14.332

Execution time (secs) 625.406

 92

(a) (b)

(c) (d)

(e) (f)

Figure (6.3) Weight optimization for ‘Aich’.

 93

Figure 6.4(a) shows the original scanned image given as an input to the algorithm. Figure

6.4(b) shows the outline of the image obtained after applying the boundary detection

algorithm. Figures 6.4(c) & 6.4(d) depict the intermediate fittings of the ‘Ali’ symbol at

iterations (Time + i) = 51 & 126 respectively and figure 6.4(e) shows the fitting for the

actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure

6.4(f) depicts the actual reduction in the costs (error) as the number of iterations increase.

Table 6.5 shows the various parameters used and generated in the weight optimization of

the ‘Ali’ symbol. The BestCost (Least Error) is found to be 12.03 units and the execution

time is found to be 2029.8 seconds.

Table (6.5) Weight optimization parameters for ‘Ali’.

Name ALI

dpts (# of data points) 1644

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 12.03

Execution time (secs) 2029.8

 94

(a) (b)

(c) (d)

(e) (f)

Figure (6.4) Weight optimization for ‘Ali’

 95

Figure 6.5(a) shows the original scanned image given as an input to the algorithm. Figure

6.5(b) shows the outline of the image obtained after applying the boundary detection

algorithm. Figures 6.5(c) & 6.5(d) depict the intermediate fittings of the ‘Apple’ symbol

at iterations (Time + i) = 51 & 126 respectively and figure 6.5(e) shows the fitting for

the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure

6.5(f) depicts the actual reduction in the costs (error) as the number of iterations increase.

Table 6.6 shows the various parameters used and generated in the weight optimization of

the ‘Apple’ symbol. The BestCost (Least Error) is found to be 16.518 units and the

execution time is found to be 1207.1 seconds.

Table (6.6) Weight optimization parameters for ‘Apple’.

Name APPLE

dpts (# of data points) 1204

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 16.518

Execution time (secs) 1207.1

 96

(a) (b)

(c) (d)

(e) (f)

Figure (6.5) Weight optimization for ‘Apple’

 97

Figure 6.6(a) shows the original scanned image given as an input to the algorithm.

Figures 6.6(b) & 6.6(c) depict the intermediate fittings of the ‘Open Curve’ at iterations (

Time + i) = 51 & 126 respectively and figure 6.6(d) shows the fitting for the actual

iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.6(e)

depicts the actual reduction in the costs (error) as the number of iterations increase.

Table 6.7 shows the various parameters used and generated in the weight optimization of

the ‘Open Curve’. The BestCost (Least Error) is found to be 0.418 units and the execution

time is found to be 917.031seconds.

Table (6.7) Weight optimization parameters for ‘Open Curve’.

Name Open Curve

dpts (# of data points) 1001

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.418

Execution time (secs) 917.031

 98

(a) (b)

(c) (d)

(e)

Figure (6.6) Weight optimization for ‘Open Curve’

 99

6.2.2 Surface fitting results.

Figure 6.7 show the GUI developed for optimizing the weights for surfaces. Figure 6.8(a)

shows the original image given as an input to the algorithm.. Figures 6.8(b) & 6.8(c)

depict the intermediate fittings of the ‘Surface 1’ at iterations (Time + i) = 51 & 126

respectively and figure 6.8(d) shows the fitting for the actual iteration of 250 (Maxtime),

where ‘i’ iterates over Annealing time ‘M’. Figure 6.8(e) depicts the actual reduction in

the costs (error) as the number of iterations increase.

Figure (6.7) GUI for surfaces.

 100

(a)

(b)

(c) (d)

(e)
Figure (6.8) Weight optimization for ‘Surface 1’

 101

Table (6.8) Weight optimization parameters for ‘Surface 1’.

Name SURFACE1

dpts (# of data points) 1089

k (Order in ‘u’ direction) 4

l (Order in ‘w’ direction) 4

npts (control points in ‘u’direction) 8

mpts (control points in ‘w’ direction) 8

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.085

Execution time (secs) 442

Table 6.8 shows the various parameters used and generated in the weight optimization of

‘Surface 1’. The BestCost (Least Error) is found to be 0.085 units and the execution time

is found to be 442 seconds.

Figure 6.9(a) shows the original image given as an input to the algorithm.. Figures 6.9(b)

& 6.9(c) depict the intermediate fittings of the ‘Surface 2’ at iterations (Time + i) = 51 &

126 respectively and figure 6.9(d) shows the fitting for the actual iteration of 250

(Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.9(e) depicts the actual

reduction in the costs (error) as the number of iterations increase.

 102

(a) (b)

(c) (d)

(e)

Figure (6.9) Weight optimization for ‘Surface 2’

 103

Table (6.9) Weight optimization parameters for ‘Surface 2’.

Name SURFACE2

dpts (# of data points) 441

k (Order in ‘u’ direction) 4

l (Order in ‘w’ direction) 4

npts (control points in ‘u’direction) 8

mpts (control points in ‘w’ direction) 8

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.1925

Execution time (secs) 117.016

Table 6.9 shows the various parameters used and generated in the weight optimization of

‘Surface 2’.The BestCost (Least Error) is found to be 0.1925 units and the execution time

is found to be 117.016 seconds.

Figure 6.10(a) shows the original image given as an input to the algorithm. Figures

6.10(b) & 6.10(c) depict the intermediate fittings of the ‘Surface 3’ at iterations (Time + i

) = 51 & 126 respectively and figure 6.10(d) shows the fitting for the actual iteration of

250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.10(e) depicts the

actual reduction in the costs (error) as the number of iterations increase.

 104

 (a) (b)

(c) (d)

(e)
Figure (6.10) Weight optimization for ‘Surface 3’.

 105

Table (6.10) Weight optimization parameters for ‘Surface 3’.

Name SURFACE3

dpts (# of data points) 1024

k (Order in ‘u’ direction) 4

l (Order in ‘w’ direction) 4

npts (control points in ‘u’direction) 8

mpts (control points in ‘w’ direction) 8

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.005

Execution time (secs) 664.406

Table 6.10 shows the various parameters used and generated in the weight optimization of

’Surface 3’. The BestCost (Least Error) is found to be .005 units and the execution time is

found to be 664.406 seconds.

Figure 6.11(a) shows the original image given as an input to the algorithm. Figures

6.11(b) & 6.11(c) depict the intermediate fittings of the ‘Jar’ at iterations (Time + i) =

51 & 126 respectively and figure 6.11(d) shows the fitting for the actual iteration of 250

(Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.11(e) depicts the actual

reduction in the costs (error) as the number of iterations increase.

 106

(a)

(b)

(c) (d)

(e)
Figure (6.11) Weight optimization for ‘Jar’.

 107

Table (6.11) Weight optimization parameters for ‘Jar’.

Name Jar

dpts (# of data points) 1089

k (Order in ‘u’ direction) 4

l (Order in ‘w’ direction) 4

npts (control points in ‘u’direction) 8

mpts (control points in ‘w’ direction) 8

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.132

Execution time (secs) 781.2650

Table 6.11 shows the various parameters used and generated in the weight optimization of

’Jar’. The BestCost (Least Error) is found to be 0.132 units and the execution time is

found to be 781.2650 seconds.

 108

6.3 Knot optimization

6.3.1 Curve fitting results

Figure 6.12(a) shows the original scanned image given as an input to the algorithm.

Figure 6.12(b) shows the outline of the image obtained after applying the boundary

detection algorithm. Figures 6.12(c) & 6.12(d) depict the intermediate fittings of the

‘pound’ symbol at iterations (Time + i) = 51 & 126 respectively and figure 6.12(e)

shows the fitting for the actual iteration of 250 (Maxtime), where ‘i’ iterates over

Annealing time ‘M’. Figure 6.12(f) depicts the actual reduction in the costs (error) as the

number of iterations increase.

Table (6.12) Knot optimization parameters for ‘Pound’.

Name POUND

dpts (# of data points) 688

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 3.3775

Execution time (secs) 517.781

 109

Table 6.9 shows the various parameters used and generated in the knot optimization of

the ‘Pound’ symbol. The BestCost (Least Error) is found to be 3.3775 units and the

execution time is found to be 517.781 seconds.

Figure 6.13(a) shows the original scanned image given as an input to the algorithm.

Figure 6.13(b) shows the outline of the image obtained after applying the boundary

detection algorithm. Figures 6.13(c) & 6.13(d) depict the intermediate fittings of the

‘Aich’ symbol at iterations (Time + i) = 51 & 126 respectively and figure 6.13(e) shows

the fitting for the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time

‘M’. Figure 6.13(f) depicts the actual reduction in the costs (error) as the number of

iterations increase.

Table (6.13) Knot optimization parameters for ‘Aich’.

Name AICH

dpts (# of data points) 787

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 14.3

Execution time (secs) 595.703

 110

(a) (b)

(c) (d)

(e) (f)
Figure (6.12) Knot optimization for ‘Pound’ .

 111

Table 6.13 shows the various parameters used and generated in the knot optimization of

the ‘Aich’ symbol. The BestCost (Least Error) is found to be 14.3 units and the execution

time is found to be 595.703 seconds.

Figure 6.14(a) shows the original scanned image given as an input to the algorithm.

Figure 6.14(b) shows the outline of the image obtained after applying the boundary

detection algorithm. Figures 6.14(c) & 6.14(d) depict the intermediate fittings of the ‘Ali’

symbol at iterations (Time + i) = 51 & 126 respectively and figure 6.14(e) shows the

fitting for the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time

‘M’. Figure 6.14(f) depicts the actual reduction in the costs (error) as the number of

iterations increase.

Table (6.14) Knot optimization parameters for ‘Ali’.

Name ALI

dpts (# of data points) 1644

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 12.036

Execution time (secs) 2048.3

 112

(a) (b)

(c) (d)

(e) (f)

Figure (6.13) Knot optimization for ‘Aich’.

 113

Table 6.14 shows the various parameters used and generated in the knot optimization of

the ‘Ali’ symbol. The BestCost (Least Error) is found to be 12.036 units and the execution

time is found to be 2048.3 seconds.

Figure 6.15(a) shows the original scanned image given as an input to the algorithm.

Figure 6.15(b) shows the outline of the image obtained after applying the boundary

detection algorithm. Figures 6.15(c) & 6.15(d) depict the intermediate fittings of the

‘Apple’ symbol at iterations (Time + i) = 51 & 126 respectively and figure 6.15(e) shows

the fitting for the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time

‘M’. Figure 6.15(f) depicts the actual reduction in the costs (error) as the number of

iterations increase.

Table (6.15) Knot optimization parameters for ‘Apple’.

Name Apple

dpts (# of data points) 1204

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 16.553

Execution time (secs) 1219.6

 114

(a)

(b)

(c) (d)

(e)

(f)
Figure (6.14) Knot optimization for ‘Ali’ .

 115

Table 6.15 shows the various parameters used and generated in the knot optimization of

the ‘Apple’ symbol. The BestCost (Least Error) is found to be 16.553 units and the

execution time is found to be 1219.6 seconds.

Figure 6.16(a) shows the original scanned image given as an input to the algorithm.

Figures 6.16(b) & 6.16(c) depict the intermediate fittings of the ‘Open Curve’ at iterations

(Time + i) = 51 & 126 respectively and figure 6.16(d) shows the fitting for the actual

iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.16(e)

depicts the actual reduction in the costs (error) as the number of iterations increase.

Table (6.16) Knot optimization parameters for ‘Open Curve’.

Name Open

Curve

dpts (# of data points) 1001

K (Order of NURBS) 4

npts (# of control points) 70

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.1275

Execution time (secs) 920.131

 116

(a)

(b)

(c)

(d)

(e)

(f)

Figure (6.15) Knot optimization for ‘Apple’.

 117

(a)

(b)

(c)

(d)

(e)

Figure (6.16) Knot optimization for ‘Open Curve’.

 118

Table 6.16 shows the various parameters used and generated in the knot optimization of

the ‘Open Curve’ symbol. The BestCost (Least Error) is found to be 0.1275 units and the

execution time is found to be 920.131 seconds.

6.3.2 Surface fitting results.

Figure 6.17(a) shows the original image given as an input to the algorithm. Figures

6.17(b) & 6.17(c) depict the intermediate fittings of the ‘Surface 1’ at iterations (Time + i

) = 51 & 126 respectively and figure 6.17(d) shows the fitting for the actual iteration of

250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.17(e) depicts the

actual reduction in the costs (error) as the number of iterations increase.

Table (6.17) Knot optimization parameters for ‘Surface 1’.

Name SURFACE1

dpts (# of data points) 1089

k (Order in ‘u’ direction) 4

l (Order in ‘w’ direction) 4

npts (control points in ‘u’direction) 8

mpts (control points in ‘w’ direction) 8

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.082

Execution time 434.828

 119

Table 6.17 shows the various parameters used and generated in the knot optimization of

‘Surface 1’. The BestCost (Least Error) is found to be 0.082 units and the execution time

is found to be 434.828 seconds.

Figure 6.18(a) shows the original image given as an input to the algorithm. Figures

6.18(b) & 6.18(c) depict the intermediate fittings of the ‘Surface 2’ at iterations (Time + i

) = 51 & 126 respectively and figure 6.18(d) shows the fitting for the actual iteration of

250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.18(e) depicts the

actual reduction in the costs (error) as the number of iterations increase.

Table (6.18) Knot optimization parameters for ‘Surface 2’.

Name SURFACE2

dpts (# of data points) 441

k (Order in ‘u’ direction) 4

l (Order in ‘w’ direction) 4

npts (control points in ‘u’direction) 8

mpts (control points in ‘w’direction) 8

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.19052

Execution time 110.89

 120

(a)

(b)

(c)

(d)

(e)

Figure (6.17) Knot optimization for ‘Surface 1’.

 121

Table 6.18 shows the various parameters used and generated in the knot optimization of

’Surface 2’. The BestCost (Least Error) is found to be 0.19052 units and the execution

time is found to be 110.89 seconds.

Figure 6.19(a) shows the original image given as an input to the algorithm. Figures

6.19(b) & 6.19(c) depict the intermediate fittings of the ‘Surface 3’ at iterations (Time + i

) = 51 & 126 respectively and figure 6.19(d) shows the fitting for the actual iteration of

250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.19(e) depicts the

actual reduction in the costs (error) as the number of iterations increase.

Table (6.19) Knot optimization parameters for ‘Surface 3’.

Name SURFACE3

dpts (# of data points) 1024

k (Order in ‘u’ direction) 4

l (Order in ‘w’ direction) 4

npts (control points in ‘u’direction) 8

mpts (control points in ‘w’ direction) 8

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.0032

Execution time 705.485

 122

(a)

(b)

(c)

(d)

(e)

Figure (6.18) Knot optimization for ‘Surface 2’.

 123

Table 6.19 shows the various parameters used and generated in the knot optimization of

‘Surface 3’. The BestCost (Least Error) is found to be 0.0032 units and the execution time

is found to be 705.485 seconds.

Figure 6.20(a) shows the original image given as an input to the algorithm. Figures

6.20(b) & 6.20(c) depict the intermediate fittings of the ‘Jar’ at iterations (Time + i) =

51 & 126 respectively and figure 6.20(d) shows the fitting for the actual iteration of 250

(Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.20(e) depicts the actual

reduction in the costs (error) as the number of iterations increase.

Table (6.20) Knot optimization parameters for ‘Jar’.

Name Jar

dpts (# of data points) 1089

k (Order in ‘u’ direction) 4

l (Order in ‘w’ direction) 4

npts (control points in ‘u’direction) 8

mpts (control points in ‘w’ direction) 8

α (Cooling rate) 0.99

β (constant) 1.5

M (Annealing time) 50

MaxTime 250

BestCost (Least Error) 0.129

Execution time 797.109

 124

(a)

(b)

(c)

(d)

(e)

Figure (6.19) Knot optimization for ‘Surface 3’.

 125

Table 6.20 shows the various parameters used and generated in the knot optimization of

‘Jar’. The BestCost (Least Error) is found to be 0.129 units and the execution time is

found to be 797.109 seconds.

Table 6.21 summarizes the results obtained for both curves (Pound, Aich & Ali) and

surfaces (Surface 1, Surface 2, Surface 3) for weight optimization and knot optimization.

Table (6.21) Weight & Knot optimization results summary.

6.3.2.1 Weight
optimizati

on
6.3.2.2 Knot

optimization

 Time Least error Time Least error Points

Pound 530.859 3.378 517.781 3.3775 688

Aich 625.406 14.332 595.703 14.3 787

Ali 2029.8 12.03 2048.3 12.03655 1644

Surface 1 442 0.085 434.828 0.082 1089

Surface 2 117.016 0.1925 110.89 0.19052 441

Surface 3 664.406 0.005 705.485 0.0032 1024

 126

(a)

(b)

(c)

(d)

(e)

Figure (6.20) Knot optimization for ‘Jar’.

 127

Finally, Figure 6.21 picturizes the data shown in Table 6.21. It is observed that there is

little difference between weight and knot optimization for both curves and surfaces. But,

knot optimization requires a good initial location of knots. A random initial location of

knots does not give good results within the specified Maxtime of 250.

Since, knot optimization requires a good initial location of knots, weight optimization of

NURBS curve and surfaces is a better option giving comparable results.

Results Comparison - Logarithmic Table

0.001

0.01

0.1

1

10

100

1000

10000

Pound Aich Ali Surface 1 Surface 2 Surface 3

weight optimization Time weight optimization least error

knot optimization Time knot optimization least error

Figure (6.21) Weight – Knot Comparison.

128

7. CONCLUSION

The objective of the research presented in this thesis was to develop an algorithm for the

global optimization of the fitting error between a set of scanned points and a fitted

curve/surface. To achieve this objective, the Simulated Annealing optimization heuristic

was tailored to solve the problem. We also had the objective of finding out the best

NURB optimization parameter among weights and knots.

For weight optimization, a uniform knot vector and a fixed number of control points are

calculated using the least squares technique, while the sum of squared errors is taken as

the objective function. In knot optimization, the weight vector is set to unity. The number

of elements of the weight vector is taken the same as the number of control points. A

good initial solution of knot vector is taken. New knot vectors are calculated using the

neighborhood function of the Simulated Annealing Algorithm.

Results obtained from optimization of weights and knots of NURBS for both curves and

surfaces indicate that weight optimization is a better option than knot optimization

because knot optimization requires a good initial location of knot vector.

From our work, we conclude that the use of a global optimization method such as

Simulated Annealing is essential for the problem at hand. The S.A. algorithm uses an

 129

efficient local optimization method, which ensures it’s accurate arrival at the global

optimum. We also conclude that weight optimization is a better alternative than knot

optimization.

One of the shortcomings of our algorithm is that it works for images with a single

segment. Images such as ’O’ with double segments do not work with this algorithm. Also

we see very low errors in case of surfaces compared to curves. The reason behind these

results is that input surfaces are created using mathematical functions, while curves are

actually scanned.

In future, this work can be extended to simultaneous optimization of two or more NURBS

parameters like control point-weight, knot vector-weight, etc. Other global optimization

techniques like the Ant Algorithm can also be applied to optimize NURBS parameters to

solve the problem. Also, this work can be incorporated in the reverse engineering

component of the CAD/CAM modeling softwares.

BIBLIOGRAPHY

[1] Chou J.J. & Piegl L.A. Data Reduction Using Cubic Rational B-Splines. 1992. IEEE

Computer Graphics & Applications.

[2] Chivate, P.N., and Jablokow, A.G., Review of Surface Representations and Fitting for

Reverse Engineering, Computer Integrated Manufacturing System, Vol. 8, 1995, pp. 193-

204.

[3] P. Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, 1993.

[4] Floater, M.S., and Reimers, M., “Meshless parameterization and Surface

Reconstruction”, Computer Aided Geometric Design, Vol. 18, 2001, pp.77-92.

[5] Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning,

Addisson-Wesley, 1989.

[6] J.A. Gregory, M. Sarfraz, and P.K. Yuen. Interactive Curve Design using C2 Rational

Splines. Computers and Graphics, 18(2):153-159,1994.

[7] Hoffmann M. & Juhasz I. Shape Control of Cubic B-spline and NURBS Curves by

Knot Modifications. 2001 IEEE.

 131

[8] Hoschek. J., and Lasser, D., Fundamentals of Computer Aided Geometric Design, AK

Peters, Wellesley, 1994.

[9] Huang D. & Yan H., NURBS Curve Controlled Modelling for Facial Animation. 27,

373-385, 2003 Computers & Graphics.

[10] Kirkpatrick S., Gelatt Jr. C. & Vecchi M. Optimization by Simulated Annealing,

Science, 220(4598):498-516, May 1983.

[11] Kitson.F.L. (1989). An Algorithm for Curve and Surface Fitting using B-Splines.

CH2673-2/89/0000-1207. 1989 IEEE.

[12] Limaiem A., Nassef A. & Elmaghraby H.A. Data Fitting using Dual Krigging and

Genetic Algorithms. CIRP Annals, Vol. 45, 1996, pp. 129-134.

[13] G. Renner Markus, A. and J. Vancza. Spline interpolation with genetic algorithms.

Proc. Int. Conf. on shape, Modeling and applications, IEEE Computer Society Press,

pages 47-54, 1997.

 132

[14] Metropolis N., Roshenbluth A., Rosenbluth M., Teller A. & Teller E. Equation of

State Calculations by Fast Computing machines. J. Chem. Phys., Vol.21, No. 6, pp. 1087-

1092, 1953.

[15] Nassef, A.O., Ashraf, A.M., and Metwalli, S.M., “Accuracy and Fitting-Time

Minimization in the Reverse Engineering of Prismatic Features”, Proceedings of the

ASME Computers in Engineering Conference, Las Vegas, 1999.

[16] Piegl L. On NURBS: A Survey. IEEE computer graphics & applications. 11(1): 55-

71, Jan 1991.

[17] Piegl L., & Tiller W., The NURBS Book, Springer-Verlag, Berlin, 1995.

[18] Pontrandolfo F., Monno G. & Uva A.E. Simulated Annealing Vs Genetic Algorithms

for Linear Spline Approximation of 2D Scattered Data. XII International Conference,

Rimini, Italy, 2001.

[19] Prahasto T. & Bedi S. Optimization of Knots for the Multi Curve B-Spline

Approximation. IEEE conference 2000.

[20] Quddus A. Curvature Analysis Using Multi-resolution Techniques. PhD Thesis.

KFUPM 1998.

 133

[21] Rao S.S., Engineering Optimization, Theory and Practice, John-Wiley and Sons,

New York, 1999.

[22] Raza S.A. Visualization with Spline using a Genetic Algorithm, Master Thesis 2001

King Fahd University of Petroleum & Minerals. Dhahran, Saudi Arabia.

[23] John R. Rice. Numerical Methods, Software and Analysis. Academic Press, New

York, second edition, 1993.

[24] Rogers D.F. An introduction to NURBS-with historical perspective, Morgan

Kaufmann publishers, 2001.

[25] Sarfraz, M., A C2 Rational Cubic alternative to the NURBS, Computers and

Graphics Vol. 16(1), 69-77, 1992.

[26] Sarkar B., and Menq C.H., Smooth Surface Approximation and Reverse

Engineering, Computer Aided Design, Vol. 23, 1991a, pp. 623-628.

[27] Sarkar B. & Menq C.H. Parameter Optimization in Approximating Curves and

Surfaces to Measurment Data. Computer Aided Geometric Design, Vol. 8, 1991, pp.267-

290.

 134

[28] Shalaby M.M., Nassef A.O., & Metwalli S.M., On the Classification of Fitting

Problems for Single Patch Free-Form Surfaces in Reverse Engineering, Proceedings of

the ASME Design Automation Conference, Pittsburgh, 2001.

[29] Varady,T., Martin, R.R., and Cox, J., Reverse Engineering of Geometric Models- an

introduction”, Computer Aided Design, Vol. 29, 1997, pp.255-268.

[30] Werghi, N., Fisher, R., Rogertson, C., and Ashbrook, A., Object Reconstruction by

Incorporating Geometric Constraints in Reverse Engineering, Computer Aided Design,

Vol. 31, 1999, pp. 363-399.

[31] Xie H. & Qin H. Automatic Knot Determination of NURBS for Interactive

Geometric Design. 2001 IEEE.

[32] Yau H.T., & Chen J.S., Reverse Engineering of Complex Geometry Using Rational

B-Splines, International Journal of Advanced Manufacturing Technology, Vol. 13, 1997,

pp. 548-555.

[33] Yoshimoto Y., Moriyama M. and Harada T. Automatic Knot Replacement by a

Genetic Algorithm for Data Fitting with a Spline. Shape Modeling and Applications,

 135

1999. Proceedings. Shape Modeling International '99. International Conference on , 1-4

March 1999 Page(s): 162 –169.

[34] W.S. Yoo, Choi and C.S Lee. Matrix representation of NURBS Curves and Surface.

Computer Aided desing, 22(4), 1990.

[35] Youssef A.M1. Reverse Engineering of Geometric Surfaces using Tabu Search

Optimization Technique, Master Thesis 2001. Cairo University. Egypt.

[36] Ueng, W.D., Lai, J.Y., and Doong, J.L., “Sweep Surface Reconstruction from Three

Dimensional Data”, Computer Aided Design, Vol. 30, 1998, pp. 791-805.

[37] Herrera, F., Lozano, M., and Verdegay, J.L., “Tackling Real-Coded Genetic

Algorithms: Operators and Tools for Behavioral Analysis”, Artificial Intelligence

Review, Vol. 12, 1998, pp. 265-319.

[38] Pham, D.T., and Karaboga, D., Intelligent Optimization Techniques, Genetic

Algorithms, Tabu Search, Simulated Annealing and Neural Networks, Springer-Verlag,

Berlin, 2000.

1 The authors would like to express their sincere thanks to Mr. Youssef A. M [35] for permitting us to use
his figures in chapter 3 of this thesis.

VITA

• Mohammed Riyazuddin

• Received B.E. (Bachelor of Engineering) degree in Computer Science from the

Deccan College of Engineering affiliated to the Osmania University, Hyderabad,

India, in 2001.

• Joined Information and Computer Science Department at KFUPM, Saudi Arabia

in January 2002.

• Completed M.S. (Master of Science) degree requirements in Computer Science in

2004.

	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	THESIS ABSTRACT (ENGLISH)
	THESIS ABSTRACT (ARABIC)
	INTRODUCTION
	Review of visualization by curve and surface fitting.
	Motivation
	Objectives and Approach
	Contributions
	Thesis Overview

	LITERATURE REVIEW
	Introduction
	Parameterization
	Curve and surface fitting
	Curve and Surface Representations
	Choice of Independent Parameters
	Optimization Methods Used in Curve and Surface Fitting

	FITTING OF FREE-FORM SURFACES
	Introduction
	Curve and Surface Basics
	Implicit and Parametric Forms
	Bezier Curves
	Rational Bezier Curves
	Tensor Product Surfaces

	B-Spline Curves and Surfaces
	Definition and Properties of B-Spline Basis Functions
	Definition and Properties of B-Spline Curves
	Definition and Properties of B-Spline Surfaces

	Rational B-Spline Curves and Surfaces
	Definition and Properties of Non-Uniform Rational B-Spline C
	Definition and Properties of NURBS Surfaces

	Curve and Surface Fitting
	Optimization of NURBS Parameters

	SIMULATED ANNEALING
	Introduction
	Simulated Annealing Algorithm
	Parameters of the S.A. algorithm
	S.A. Requirements

	THE PROPOSED METHOD
	Introduction
	Obtaining a digitized image/surface
	Contour extraction
	Parameter extraction
	Control point generation
	Generation of knot values.
	Weight optimization
	Weight optimization using Simulated Annealing

	Knot optimization

	RESULTS
	Introduction
	Weight optimization
	Curve Fitting results
	Surface fitting results.

	Knot optimization
	Curve fitting results
	Surface fitting results.
	Weight optimization
	Knot optimization

	CONCLUSION
	BIBLIOGRAPHY
	VITA

