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1 INTRODUCTION 
 
 
This chapter gives a brief review of the visualization of data by curve and surface fitting, 

the motivations behind the presented research, the approach followed during the research, 

the scientific contributions and an overview of the thesis. 

 

1.1 Review of visualization by curve and surface fitting. 
 
 
Visualization has long been a powerful tool for the analysis of data sets, either as a means 

of communicating results of data gathering/processing or as a precursor to focused 

quantitative analysis. Familiar examples include histograms, plots, graphs, maps, images, 

surfaces, and volumes. By harnessing the perceptual abilities of the human vision system 

we are often able to rapidly obtain insights into the data characteristics (e.g. relationships, 

patterns, anomalies, trends, clusters and models).  

 

There are many well-known applications in data visualization, in which it is desirable to 

create geometric models of existing images and objects, for which no such models exist. 

This is exactly what reverse engineering aims at. The existence of a computer model 

provides a multitude of gain in improving the quality and efficiency of design, analysis 

and manufacturing. Thus reverse engineering involves establishing a CAD model from 

prototypes or manufactured parts such as spare parts of different machines.  
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Researches in the past have spent considerable time, figuring out how best to fit curves 

and surfaces to a set of data points. Curve fitting plays an essential part in many 

applications. Scientists use curve fitting in application such as data reduction, 

approximating noisy data, curve and surface fairing and image processing application like 

generating smooth curves to digitized data [1]. 

 

There are several hardware and software tools used in the area of reverse engineering of 

geometric curves and surfaces. Hardware tools include: (1) laser scanners, (2) tactile 

sensing co-ordinate measuring machines and (3) tactile sensing robotic arms. The tools 

sample clouds of points from the prototype. The measured points need further processing 

in several steps. These steps include: (1) curve and surface identification from the 

scanned points, (2) parameterization of the scanned points and (3) curve and surface 

fitting. Research trends in reverse engineering cover the three sub-areas. The third area is 

of a crucial importance in the data visualization and reverse engineering research. 

 

Accurate fits give better representation of the actual curve and surface. In addition, there 

are several applications where accurate fits are a must (e.g. aircraft components with tight 

tolerances). There are several commercial packages that perform the various reverse 

engineering tasks. These packages are either stand-alone or embedded within famous 

commercial CAD packages. The fits used in these packages depend heavily on least 

squares approximations, which give crude fits. The use of optimization in curve and 

surface fitting is still an open area of research, although it witnessed a proliferating 
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number of applications in the last decade. The presented thesis focuses on the area of 

minimizing the error between the fitted curve and surface and the laser-scanned points. 

 

1.2 Motivation 
 
The available literature in data visualization and reverse engineering focuses on using 

traditional optimization techniques for the curve and surface-fitting problem. These 

methods usually linger in local minima and therefore might miss better fits. On the other 

hand, the few available publications that used global optimization methods used Genetic 

Algorithms (GA's), which needs a large number of function evaluations. These 

computationally exhaustive algorithms are not practical in use for reverse engineering 

applications even when fast computers are used, due to the large number of sampled 

points involved in the fitting process. Therefore, there is a need for either finding, 

modifying or devising a global optimization technique that utilize a relatively small 

number of function evaluations to be used in curve and surface fitting. 

 

1.3 Objectives and Approach 
 
The objective of the research reported in this thesis is to develop a procedure for fitting 

free form curves/surfaces to measured points. The fit should have the lowest possible 

fitting error. This goal is achieved in this thesis using the following approach: 

1. Free form surfaces are modeled using Non-Uniform Rational B-Splines (NURBS) to 

achieve the maximum possible geometric flexibility. 
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2. The approximate shape of the fitted curve and surface is evaluated using a least 

squares estimation of the NURBS control points. 

3. Further refinement of the fitted curve and surface is obtained by optimizing the values 

of the NURBS weights and knots separately. 

4. The Simulated Annealing (SA) optimization heuristic is used for the global 

optimization of the fitting error, which has a promising performance and small 

cumulative error values. 

 

1.4 Contributions 
 
The reported research makes the following contributions in the fields of surface fitting 

and SA: 

1. SA is used for the first time in the fitting of free form curves and surfaces to scanned 

data, leading to better fitting accuracy and lower fitting time as well. 

2. The applied SA algorithm utilizes a relatively low execution time than Tabu Search 

and GA’s and is thus useful for practical reverse engineering applications.  

 

1.5 Thesis Overview 
 
The thesis is divided into six chapters and three appendices: 

1. Chapter 1 includes the motivation, research objectives, approach and scientific 

contributions. 

2. Chapter 2 surveys the literature related to the optimization of NURBS parameters and 

application of optimization heuristics to the problem. It also presents a review of 
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related research topics covering areas of reverse engineering, geometric modeling and 

global optimization. It concludes by pointing out several key issues directly related to 

the research topic. 

3. Chapter 3 describes a procedure for the least squares fitting of NURBS surfaces to 

scanned data. The chapter starts with an overview of the NURBS theory, the fitting 

procedure and concludes with the formulation of the optimization problem. 

4. Chapter 4 provides a detailed description of the Simulated Annealing optimization 

heuristic 

5. Chapter 5 presents several fitted curves and surfaces to show the merits of the 

developed algorithm. The chapter concludes with the comparison with curves and 

surfaces fitted by optimizing the NURBS weights and knots separately. 

6. Chapter 6 concludes the thesis and provides suggestions for future research. 

7. All procedures and algorithms were developed using MATLAB software. 
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2 LITERATURE REVIEW 
 
 
2.1 Introduction 
 
Reverse Engineering can be defined as the process of deduction of design criteria and 

parameters from an existing prototype. It is an increasingly growing discipline that can be 

divided into several branches [29]. These include: (1) functional analysis where the 

overall/detailed design function is guessed, (2) material analysis where the possible 

material composition of the prototype is estimated, and (3) geometric analysis where the 

prototype's geometry is evaluated. It is desirable, in many areas of industry, to create 

computerized geometric models of existing objects for which no such model is available. 

 

The existence of a geometric model provides a multitude of gain in improving the quality 

and efficiency of design, manufacturing, and analysis. A main advantage of such process 

is the re-manufacturing of spare parts of different machines whose blueprints are 

unavailable or whose vendors are out of business. Another application that depends 

heavily on reverse engineering is the die and mold industry where modifications of 

existing geometric models is a necessity after the die manufacture for subsequent analysis 

[12]. Further analysis may include finite element analysis, NC path generation and 

process planning. 
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The process of reverse engineering of geometric curves and shapes can be divided into 

four main consecutive tasks [29]. These are: (1) Data acquisition, (2) Segmentation, (3) 

Parameterization and (4) Surface Fitting. Since, the presented thesis is concerned with the 

last task, a brief review of the third task is provided, and then a comprehensive review of 

the last task is presented. 

 

2.2 Parameterization  

When free-form curves or surfaces are reverse engineered, a parametric curve or surface 

is fitted to the measured points. These curves/surfaces are function of a pair of 

independent parameters. Each measured point needs approximate values of the 

independent parameters to be associated with it. The estimation of such approximate 

values is known as parameterization. Piegl [16] proposed three parameterization methods 

for line-by-line parameterization, and recommended a parameterization method known as 

the centripetal method. Line by line parameterization, may be plausible for tactile sensing 

methods and some laser scanning setups, but may not be applicable to some laser 

scanning methods which produce non-uniform distribution of the sampled points.  

 

Methods for parameterizing unorganized points are given by Hoscheck et. al. [8], which 

include projection of the data points to planes and the development of approximate 

parametric patches on which the data points are projected. However, none of their 

proposed methods can be considered a robust method working for all free-form surfaces 
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and hence they state that all of those methods are to a certain extent ad hoc. A recent 

publication by Floater et. al. [4] demonstrates a method using iterative projection to balls. 

Their method is shown to be successful on highly irregular surfaces (a human face was 

used as an example). However, they state that the method needs further trials and 

elaborations. 

 

2.3 Curve and surface fitting 
 
Fitting of curves and surfaces to the measured points is the last step in the reverse 

engineering process.  In case the exponent r is equal to 2, Equation (2.1) reduces to the 

least squares function and in case r is equal to infinity, Equation (2.1) reduces to the 

maximum error. Low values of r are recommended for high measurement or sampling 

errors, otherwise the minimization of the maximum error gives the best fit.  

 

A study on the exponent r was conducted by Nassef et. al. [15] showing that for laser 

scanning applications, the sampling error is low due to the large number of sampled 

points, but the high measurement errors inherent to laser scanners necessitate the use of 

lower values for r. Generally the fitting problem can be divided into three sub-tasks. 

These are: (1) the choice of the fitting surface representation, (2) the choice of the 

independent parameters within the fitting surface, and (3) the choice of the optimization 

method for error minimization. The following sub-sections review each sub-task. 
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2.3.1 Curve and Surface Representations 
 

Fitting curve/surface representations fall into two major categories. These are: (1) implicit 

curves/surfaces that relate the x, y and z coordinates of a curve/surface implicitly, and (2) 

parametric curves/surfaces, which relate the coordinates of any given point on a 

curve/surface to a pair of independent variables. Chivate et. al. provide an excellent 

review of curve/surface representations in both categories and shows that implicit surface 

representations are more suitable to the fitting of standard shapes such as planes, 

cylinders, spheres and tori, while parametric representations yield themselves better to the 

fitting of free-form surfaces [2]. 

 

While implicit algebraic representations are easy to formulate, parametric surface 

representations are more complex and saw continuous evolution since the early seventies. 

Initially they were formed using power basis functions, which were not easy for CAD 

representations. Later, Bezier curves and surfaces [16] were introduced with the concept 

of having an approximating polygon that gives the rough shape of the free form curve. 

The actual curve is then formed by multiplying the control points on the polygon, which 

is better known as the control polygon, by some basis functions based on Bernstein 

polynomials (Figure 2.1). 

 

Bezier curves and surfaces have two major drawbacks:  
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1. They do not offer some form of local control on curve segments (or surface patches) 

and hence do not provide the maximum flexibility, and  

2. The degree of the curves increases with the increase in the number of control points, 

and hence cannot be used to approximate semi-quadratic surfaces with a large number of 

control points. 

 

The drawbacks of Bezier surfaces were taken care of when B-Spline curves and surfaces 

were used for curve and surface fitting in the early nineties [26] [27]. Similar to Bezier 

curves/surfaces, B-Spline curves/surfaces depend on control polygons/nets to represent 

the approximate shape of the free form curves/surfaces. Their basis functions are piece-

wise polynomials defined between breakpoints (known as knot values) along the span of 

the independent parameters. Such definition over local spans of the independent 

parameters gives B-Splines a local modification property. In addition, the curve/surface 

degree is controllable.  
Control 
Polygon  
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Figure (2.1) Control polygon of free form curve 
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The advantages of B-Spline surfaces led to the fitting of surfaces that were too complex 

for previous representations such as swept surfaces [36]]. The problem of curve and 

surface fitting using B-Splines was addressed by Kitson [11].  

 

A more general form of B-Spline curve/surfaces known as Non-Uniform Rational B-

Splines (NURBS) were used later for representing free form shapes [17]. Although 

NURBS are more general than mere B-Splines and give the maximum possible flexibility 

to the fitted curve/surface, their complex equations were not easy to use for surface 

fitting. Some recent publications [31] [32] and [28] use B-Splines in their initial fit then 

revert to NURBS for subsequent re-fitting. 

 

2.3.2 Choice of Independent Parameters 
 

The fitting curves/surfaces have a multitude of independent parameters that can be used 

as independent variables for the minimization of the error function (Equation 2.1). 

Although the best solution to the error minimization problem would involve all 

independent variables, such choice might yield a large search space for the optimization 

algorithm. Therefore, reverse engineering researchers resort to the selection of some 

specific parameters as independent variables. 

 

In the case of fitting implicit algebraic curves/surfaces, the curve/surface coefficients 

become the independent variables. Such curves/surfaces do not need any reduction in the 

number of independent variables since they are not as complex as free-form 
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representations. The estimation of such coefficients for different standard shapes is given 

thoroughly by Werghi et. al.  [30]. 

 

B-Spline (or NURBS) curves/surfaces have the following parameters that need to be 

estimated either by some rough approximation or by their inclusion within the 

independent variables of the error minimization problem. 

1. Control Points 

2. Knot values 

3. Weights (in case of NURBS surfaces) 

Piegl [17] made some approximate estimation of the knot values and optimized the values 

of the points. Huang et. al. [9] have Simulated various facial expression in animation by 

fixing the control points and changing weights, while Prahasto et. al. [19] optimized the 

knot vector for mult-curve B-Spline approximation. 

 

The key to using a spline is the determination of good knots [23] [3]. In order to obtain a 

good curve or surface approximation, knots have to be placed as precisely as possible. A 

new alternative is presented by Yoo et. al. [34], which computes control points for 

approximation using object-oriented paradigm. This paradigm requires a central 

constructor evaluator, for generating the control points and derivatives for a given 

mapping. Computing control points is a classical approximation. Following the object 

oriented design principles of data hiding, the defining curves (private) control points are 

only accessed by their homogeneous evaluators and the approximation procedures does 
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not know about the ruling curves. A theoretically optimal solution for this is produced by 

meta-algorithm[18]. 

 

However, almost all of the more recent publications use a subset of the above parameters 

as independent variables. By adjusting the positions of control points and manipulating 

associated weights, one can design a large variety of shapes using NURBS. A matrix 

representation for NURBS curves and surfaces has been described by Gregory et. al. [6]. 

They represent the matrix form for NURBS by straightforward algebraic manipulation by 

using Bohem’s knot insertion algorithm instead of Deboor. For a NURB curve of degree 

‘d’, the basic handles are control points, weights and knots. The method first performs a 

linear transformation between t (knots) and u[0,1] by using a normalized parameter. 

 

Usually subsets of the NURBS parameters are used as independent variables for 

optimization. The optimization of the control points and then the subsequent knot values 

was explored by Limeaiem et.al. [12] and Sarkar et. al. [26]. Raza [22] optimized both the 

knots and the weights corresponding to the control points for curve and surface fitting. 

Yau et. al. [32], then Shalaby et. al.  [28] demonstrated that better flexibility of the fitted 

curve, and hence lower fitting errors, can be obtained by optimizing over the control 

points and then the weights of a NURBS curve/surface. 

 

 In [25], a simple tool addresses the problem of selecting the parameters of NURBS. It 

consists of a perspective functional transformation of arbitrary origin O. The extra 
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freedom provided by the weights in rational form is controlled in a geometric way 

without any numerical input. The displacement of several control points, keeping a 

common center O, can manipulate NURBS in ways that are simply impossible to achieve 

in integral form. This tool effectively employs the added flexibility provided by weights. 

By varying weights, a push/pull in the curve towards/away from the control points is 

created. Cases involving several control points in perspective functional transformations 

are also considered. 

 

However, all of the previous fitting research resorted to a two-step approach, where the 

control points are estimated using least-squares approximation (which is the simplest 

form of quadratic programming) and then knots or weights are optimized using non-linear 

programming. The combination of subsets of the above parameters in the optimization 

problem has always been avoided on grounds of narrowing down the optimization search 

space, but in fact such combination still has to be explored. 

 

2.3.3 Optimization Methods Used in Curve and Surface Fitting 
 

As mentioned in the above sub-section, the control points of a B-Spline/NURBS 

representation of a fitted curve/surface have been traditionally estimated using least 

squares. The knot values are either taken to be uniform or approximated according to the 

distribution of the measured points [17] and the weights are set to unity. After the 

estimation of the control points, optimizing over either the knot values or the weights 

further enhances the fitting. This enhancement is usually solved as a non-linear 
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programming problem. Gradient-based methods, such as Levenberg-Marquardt method 

[21], have been used for knot value optimization [26]. Direct search methods, such as 

Powell method, have also been used for the weights optimization [32]. Both approaches 

have the advantage of rapid convergence, but on the other hand may linger in local 

minima. 

 

Yoshimoto et al.[33] proposed a new method that determines the number of knots and 

their locations simultaneously and automatically by using a G.A. This has the same 

problem of enlarged searched space. Raza [22] optimized both the knots and the weights 

corresponding to the control points using G.A's. The chromosomes have been constructed 

by considering the candidates of the locations of knots as genes.   

 

Limeaiem et.al. [12] showed that the error minimization of parametric curves/surfaces is a 

global optimization problem, and used binary-coded GA’s [5] for knot values 

optimization. Although the binary-coded GA’s arrive to near global optimum solutions, 

the binary representation of the independent variables tend to enlarge the search space.  

 

Shalaby et. al.  [28] used real-coded GA’s for the optimization of the NURBS weights. 

Real-coded GA’s [37] have been proven to be better suited for continuous domain 

optimization. The same method has also been used by Nassef et. al. [15] for the fitting of 

prismatic features. However, both types of GA’s need a large number of objective 
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function evaluations and hence can be used only for fitting small curve/surface patches or 

prismatic features.  

 

In [13], a general framework is setup for the application of genetic algorithms in curve 

design. Then, within this scheme, the problem of spline interpolation- a frequently used 

method for representing complex geometrical shapes in CAD/CAM system- is dealt with. 

While the method is simple and robust, it suffers from the drawback that some parameters 

must be given that are needed for the mathematical description but are not closely related 

to the geometrical input data of the object. 

 

There are two other possible candidate global optimization methods that have not been 

used yet in surface fitting. These are: (1) Simulated Annealing (SA) and Tabu Search 

(TS). A good review of these methods is given by Pham et. al. [38]. Regarding the 

number of objective function evaluations, TS has the same drawback as GA’s, since it 

needs an excessive amount of objective function evaluations. This leaves SA as the 

candidate method to be explored for achieving globally minimum fitting errors with lower 

objective function evaluations.  

 

A modified Tabu Search (T.S) global optimization technique has been used by Youssef 

[35], to optimize NURBS’ weights to minimize the fitting error in surface fitting, but a 

clear stopping criterion has not been used for this modified Tabu Search algorithm. To 
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our knowledge, the S.A. global optimization heuristic has not been applied to optimize 

NURBS parameters.  
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3 FITTING OF FREE-FORM SURFACES 
 
 
 
3.1 Introduction 
 

As previously discussed in Chapter 2, the measured points obtained by the measuring 

devices are to be fitted into a surface in order to obtain the geometric model of the 

required object. The error function between the measured points and the fitted surface is 

given in equation 2.1. Minimization of this error function is the main problem to be 

solved. This chapter describes the surface representation used for the fitting operation and 

the steps performed in order to obtain the initial fit. In addition, the choice of the 

parameters that can be used as independent variables for the minimization of the error 

function is discussed in details. 

 

3.2 Curve and Surface Basics 
 

3.2.1 Implicit and Parametric Forms 
 

There are two main methods of representing curves and surfaces in geometric modeling. 

These methods are implicit equations and parametric functions.The implicit equation of a 

curve lying in the xy  plane has the form 0yxf =),( . Figure 3.1 shows an example of the 

circle with unit radius centered at the origin, specified by the equation 

01yxyxf 22 =−+=),( .

18 
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In parametric form, each of the coordinates of a point on the curve is represented 

separately as an explicit function of an independent parameter: 

))(),(()( uyuxuC =   bua ≤≤       (3.1) 

Therefore,  is a vector-valued function of the independent variable, . Although the 

interval [  is arbitrary, it is usually normalized to 

)u(C u

]ba, [ ]1,0 . The circle shown in 

figure 3.1 is defined by the parametric functions: 

)sin()(
)cos()(

uuy
uux

=
=

  
2

0 π
≤≤ u        (3.2) 

 

 

 

 

 

 

 

 
Figure (3.1). A circle of radius 1, centered at the origin. 

 

Surfaces can be defined by implicit equations of the form . For example the 

sphere of unit radius centered at the origin, shown in figure 3.2, can be specified by the 

equation . A parametric representation of the same sphere is given by 

, where 

0zyxf =),,(

01zyx 222 =−++

)),(),,(),,(( vuzvuyvuxS

)cos(),(
)sin()sin(),(
)cos()sin(),(

uvuz
vuvuy
vuvux

=
=
=

  
π

π
2v0

u0
≤≤
≤≤

,       (3.3) 
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Both implicit and parametric forms have their advantages and disadvantages. Successful 

geometric modeling is done using both techniques. Piegl [17] gives a comparison 

between both representations as follows: 

• By adding a  coordinate, the parametric method is easily extended to represent 

arbitrary curves in three-dimensional space, 

z

))(),(),(()( uzuyuxuC = ; the implicit 

form only specifies curves in the xy  (or xz  or ) plane. yz

 

 

 

 

 

 

Figure (3.2). A sphere of radius 1, centered at the origin. 

• It is difficult to represent bounded curve segments (or surface patches) with the 

implicit form. However, boundedness is built into the parametric form through the 

bounds on the parameter interval. On the other hand, unbounded geometry (e.g., a 

simple straight line given by 0cbyaxyxf =++=),( ) is difficult to implement using 

parametric geometry. 

• Parametric curves possess a natural direction of traversal (from  to  if 

); implicit curves do not. Hence, it is easy to generate ordered sequences of 

)(aC )(bC

bua ≤≤
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points along a parametric curve. A similar statement holds for generating meshes of 

points on surfaces. 

• The complexity of many geometric operations and manipulations depends greatly on 

the method of representation.  

Two classic examples are: 

• Computing a point on a curve or surface, which is difficult in the implicit form and 

• Determining if a given point is on the curve or surface, which is difficult in the 

parametric form. 

 

Parametric representations are the most suitable forms for representing free-form 

surfaces. Since the main concern of the presented thesis is the fitting of free-form surfaces 

to a set of measured points, the rest of this chapter concentrates on free-form 

representations. 

 

3.2.2 Bezier Curves 
 

One of the early parametric curve and surface representations that became widely used is 

the Bezier representation. An nth-degree Bezier curve is defined by: 

∑=
=

n

0i
ini PuBuC )()( ,   10 ≤≤ u       (3.4) 

The basis (blending) functions, { }, are the classical nth-degree Bernstein 

polynomials given by: 

)(, uB ni

ini
ni u1u

ini
nuB −−
−

= )(
)!(!

!)(,         (3.5) 
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The geometric coefficients of this form, { }, are called control points. The control 

points form a linear approximation of the free-form curve as shown in figure 2.5. The 

polynomial given by equation 3.5 covers the whole range of the independent parameter 

. 

iP

u

 

3.2.3 Rational Bezier Curves 
 

It is known from classical geometry that all conic curves, including circles, can be 

represented using rational functions, which are defined as the ratio of two polynomials. In 

fact, they are represented with rational functions of the form: 

)(
)()(

uW
uXux =   

)(
)()(

uW
uYuy =        (3.6) 

where , and  are polynomials, that is, each of the coordinate functions 

has the same denominator. 

)(),( uYuX )(uW

Thus an nth-degree rational Bezier curve is defined by: 

∑=
=

n

0i
ini PuRuC )()( ,   10 ≤≤ u       (3.7) 

where 

∑
=

=

n

0j
jnj

ini
ni

wuB

wuB
uR

)(

)(
)(

,

,
,  
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The Pi = (xi, yi, zi) represents control points and  represents basis functions; the  

are scalars, called the weights. Thus,  is the common denominator 

function. It is assumed that  for all i. This ensures that  for all 

(u)B ni, iw

∑=
=

n

0j
inj wuBuW )()( ,

0wi > 0uW >)( [ ]1,0∈u . 

 

3.2.4 Tensor Product Surfaces 
 

While a curve  is a vector-valued function of one parameter, a surface is a vector-

valued function of two parameters, u and v. Thus it has the form 

, 

)(uC

)),(),,(),,(( vuzvuyvuxS Rvu ∈),( . There are many schemes for representing surfaces. 

Probably the simplest method, and the one most widely used in geometric modeling 

applications, is the tensor product scheme. 

 

The tensor product method is basically a bi-directional curve scheme. It uses basis 

functions and geometric coefficients. The basis functions are bivariate functions of u and 

v. Nonrational Bezier surfaces are obtained by taking a bi-directional net of control points 

and products of the univariate Bernstein polynomials: 

( )∑ ∑=
= =

n

0i

m

oj
jimjni PvBuBvuS ,,, )(),(   1,0 ≤≤ vu     (3.8) 

A rational Bezier surface is defined as follows: 

∑ ∑=
= =

n

0i

m

oj
jiji PvuRvuS ,, ),(),(   1,0 ≤≤ vu      (3.9) 

where 
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( )
( )∑ ∑

=

= =

n

0r

m

0s
srmsnr

jimjni
ji

wvBuB

wvBuB
vuR

,,,

,,,
,

)(

)(
),(  

Bezier curves and surfaces are considered to be a prelude to the more flexible B-Spline 

curves and surfaces. 

 

3.3 B-Spline Curves and Surfaces 
 

3.3.1 Definition and Properties of B-Spline Basis Functions 
 

Curves consisting of just one polynomial or rational segment (as in the case of Bezier 

curves) are often inadequate. Their shortcomings are: 

• A high degree is required in order to satisfy a large number of constraints; e.g., 

( )-degree is needed to pass a polynomial Bezier curve through n  data points. 

However, high degree curves are inefficient to process and are numerically unstable. 

1−n

• A high degree is required to accurately fit some complex shapes. 

• A change in one control point changes the whole curve and hence, there is no local 

control on segments of the curve. 

 

The solution is to use curves (surfaces) which are piecewise polynomial, or piecewise 

rational of which the most common type is the B-Spline curves (surfaces). B-Spline 

curves use the same structure of Bezier curves, but the Bernstein polynomial (equation 

3.5) is replaced with B-Spline basis function. 
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The following paragraph describes how a B-Spline curve is defined. 

Let  be a non-decreasing sequence of real numbers, i.e., },...,{ 0 muuU = 1+≤ ii uu , 

. The  are called knots, and U is the knot vector. The i1,...,0 −= mi iu th B-Spline basis 

function of p-degree (order k), denoted by , is defined as follows: (u)N pi,

1uN 0i =)(,  if  1+<≤ ii uuu

0uN 0i =)(,  otherwise 

)()()( ,,, uN
uu
uu

uN
uu

uu
uN 1p1i

1i1pi

1pi
1pi

ipi

i
pi −+

+++

++
−

+ −

−
+

−
−

=     (3.10) 

Note that: 

•  is a step function, equal to zero everywhere except on the half-open interval 

. 

)(, uN 0i

),[ 1+∈ ii uuu

• For ,  is a linear combination of two (p-1) -degree basis functions. 0>p )(, uN pi

• Computation of a set of basis functions requires specification of a knot vector, U, and 

the degree, p. 

• The  is a piecewise polynomial, defined on the entire real line. Generally the 

interval [  is of interest. 

piN ,

]mi uu ,

• The half-open interval, , is called the i),[ 1ii uu +
th knot span. It can have zero length, 

since knots need not be distinct. 
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Ex 3.1:   Let ,4,3,2,1,0,0,0{ 6543210 ======== uuuuuuuU  

}5,5,5,4,5,4 1098787 ====== uuuuuu  and 2=p . The zeroth-, first-, and second-

degree basis functions, which are not identically zero, are shown in figures 3.3, 3.4, and 

3.5, respectively. 

B-Spline basis functions possess the following important properties : 

•  if u is outside the interval  (local support property). )(, uN pi ),[ 1++ pii uu

• In any given knot span, , at most ),[ 1+jj uu 1+p  i.e. k of the  are nonzero, 

namely the functions . 

)(, uN pi

pjppj NN ,, ,...,−

•  for all )(, uN pi pi, , and u (nonnegativity). 

• For an arbitrary knot span, ,  for all  (partition of 

unity). 

),[ 1+ii uu ∑ =
−=

i

pij
pj 1uN )(, ),[ 1+∈ ii uuu

Except for the case ,  attains exactly one maximum value. 0=p )(, uN pi

Once the degree is fixed the knot vector completely determines the functions . 

There are several types of knot vectors. In this thesis, only nonperiodic (or clamped or 

open) knot vectors are considered. These have the form: 

)(, uN pi

},...,,,...,,,...,{ 11 bbuuaaU pmp −−+=        (3.11) 

where there are   a’s and 1+p 1+p   b’s. That is the first and last knots have multiplicity 

. The knots  are called interior knots. A knot vector  1+p },...,{ 11 −−+ pmp uu },...,{ 0 muuU =
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is defined to be uniform if all the interior knots are equally spaced; otherwise it is non-

uniform. 

 
Figure (3.3) The Non-Zero Zeroth-Degree Basis Functions, }5,5,5,4,4,3,2,1,0,0,0{=U . 

 

 
Figure (3.4) The nonzero first-degree basis functions, }5,5,5,4,4,3,2,1,0,0,0{=U .(Youssef 

[35]) 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.5).The nonzero second-degree basis functions, 
.(Youssef [35]) }5,5,5,4,4,3,2,1,0,0,0{=U

 
3.3.2 Definition and Properties of B-Spline Curves 
 

A pth-degree B-Spline curve is defined by: 
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∑=
=

n

0i
ipi PuNuC )()( ,          (3.12) 

where the  are the control points, and the  are the pth-degree B-Spline basis 

functions defined on the nonperiodic (and nonuniform) knot vector: 

}{ iP )}({ , uN pi

},...,,,...,,,...,{ 11 bbuuaaU pmp −−+= . Generally, it is assumed that  and 0=a 1=b . The 

polygon formed by the  is called the control polygon. Three steps are required to 

compute a point on a B-Spline curve at a fixed u value: 

}{ iP

1. Find the knot span in which u lies. 

2. Compute the nonzero basis functions. 

3. Multiply the values of the nonzero basis functions with the corresponding control 

points. 

Examples of B-Spline curves (in some cases together with their basis functions) are 

shown in figures 3.6 through 3.14). B-Spline curves have the following properties: 

• If pn =  and , where there are p+1 number of 0’s and p+1 number 

of 1’s, then  is a Bezier curve as shown in figure 3.6. 

},...,,,...,{ 1100U =

)(uC

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (3.6) A cubic B-Spline curve on }1,1,1,1,0,0,0,0{=U , i.e., a cubic Bezier curve. 
(Youssef [35]) 
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•  is a piecewise polynomial curve (since the (u) are piecewise polynomials); 

the degree, p, number of control points, 

)(uC piN ,

1+n , and number of knots, , are related 

by: 

1+m

1++= pnm         (3.13) 

Figures 3.7 and 3.8 show basis functions and sections of the B-Spline curves 

corresponding to the individual knot span; in both figures the alternating solid/dashed 

segments corresponds to the different polynomials (knot spans) defining the curve. 

• End point interpolation: 0P0C =)(  and nP1C =)( . 

• Affine invariance: an affine transformation is applied to the curve by applying it to the 

control points. Affine transformations include translations, rotations, scaling, and 

shears. 

• Strong convex hull property: the curve is contained in the convex hull of its control 

polygon; in fact, if , ),[ 1+∈ ii uuu 1−−≤≤ pmip , then  is in the convex hull of 

the control points  (figures 3.9, 3.10, and 3.11). This follows from the 

nonnegativity and partition of unity properties of the , and the property that 

 for . Figure 3.11 shows how to construct a quadratic curve 

containing a straight line segment. Since , , and  are colinear, the strong 

convex hull property forces the curve to be a straight line segment from  to 

. 

)(uC

ipi PP ,...,−

)(, uN pi

0uN pi =)(, ),[ 1++∉ pii uuu

2P 3P 4P

)/( 52C

)/( 53C
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Figure (3.7a) Cubic basis functions on }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U .(Youssef [35]) 
 
 

 

 

 
 
 
 
 

Figure (3.7b) A cubic curve using the basis functions of figure 3.7a. (Youssef [35]) 
 
 

 

 

 
 
 
 
 

Figure (3.8a) Quadratic basis functions on }1,1,1,5/4,5/3,5/2,5/1,0,0,0{=U .(Youssef [35]) 
 
 
 
 

 

 

 

 
 

Figure (3.8b) A quadratic curve using the basis functions of figure 3.8a. (Youssef [35]) 
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Figure (3.9) The strong convex hull property for a quadratic B-Spline curve; for 

,  is in the triangle .(Youssef [35]) ),[ 1+∈ ii uuu )(uC iii PPP 12 −−

 

 

 

 

 

 

 

 

 

Figure (3.10) The strong convex hull property for a cubic B-Spline curve; for , 

 is in the quadrilateral .(Youssef [35]) 

),[ 1+∈ ii uuu
)(uC iiii PPPP 123 −−−

 
 
 

 

 

 
 
 
 
 
 
 
 

 

 
Figure (3.11) A quadratic B-Spline curve on }1,1,1,5/4,5/3,5/2,5/1,0,0,0{=U . The curve is 

a straight line between  and .(Youssef [35]) )/( 52C )/( 53C
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• Local modification scheme: moving  changes  only in the interval  

(figure 3.12). This follows from the fact that 

iP )(uC ),[ 1++ pii uu

0uN pi =)(,  for ),[ 1++∉ pii uuu . 

• As a general rule, the lower the degree, the closer a B-Spline curve follows its control 

polygon (figures 3.13 and 3.14). The curves of figure 3.14 are defined using the same 

six control points, and the knot vectors: 

1=p :  }1,1,5/4,5/3,5/2,5/1,0,0{=U

2=p :  }1,1,1,4/3,2/1,4/1,0,0,0{=U

3=p :  }1,1,1,1,3/2,3/1,0,0,0,0{=U

4=p :  }1,1,1,1,1,2/1,0,0,0,0,0{=U

5=p :  }1,1,1,1,1,1,0,0,0,0,0,0{=U

The reason for this phenomenon is intuitive: the lower the degree, the fewer the control 

points that are contributing to the computation of  for any given . The extreme 

case is  for which every point  is just a linear interpolation between two 

control points. In this case, the curve is the control polygon.  

)( 0uC 0u

1=p )(uC

 

 

 

 

 

 

 

Figure (3.12) A cubic curve on }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U ; moving  (to ) 
changes the curve in the interval .(Youssef [35]) 

4P /
4P

)1,4/1[
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• Moving along the curve from 0=u  to 1=u , the  functions act like switches; 

as u moves past a knot, one  (and hence the corresponding ) switches off, 

and the next one switches on (Figure 3.7 and 3.8). 

)(, uN pi

)(, uN pi iP

 

3.3.3 Definition and Properties of B-Spline Surfaces     
 

A B-Spline surface is obtained by taking a bi-directional net of control points, two set of 

knot vectors, and the products of the univariate B-Spline functions: 

∑ ∑=
= =

n

0i

m

0j
jiqjpi PvNuNvuS ,,, )()(),(        (3.14) 

with 

}1,...,1,,...,,0,...,0{ 11 −−+= prp uuU  

}1,...,1,,...,,0,...,0{ 11 −−+= qsq vvV  

where we have  of 0’s and 1+p 1+p  of 1’s in both U and V. 

U has 1+r  knots, and V has 1+s , where 

1++= pnr  and        (3.15) 1++= qms

 

 

 

 

 

 
igure (3.13) B-Spline curves (a) A ninth-degree Bezier curve on the knot vector 

.(Youssef [35]) }1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0{=U
 



       34 

 

 
 
 
 
 
 

 

 

 
Figure (3.13) B-Spline curves (b) A quadratic curve using the same control polygon defined 

on .(Youssef [35]) }1,1,1,8/7,8/6,8/5,8/4,8/3,8/2,8/1,0,0,0{=U
 

 

 

 

 

 
 
 
 
 

Figure (3.14) B-Spline curves of different degrees, using the same control polygon. 
(Youssef [35]) 

 

Five steps are required to compute a point on a B-Spline surface at fixed  parameter 

values: 

),( vu

1. Find the knot span in which u lies, say ),[ 1+∈ ii uuu . 

2. Compute the nonzero basis functions . )(),...,( ,, uNuN pippi−

3. Find the knot span in which v lies, say ),[ 1+∈ jj vvv . 

4. Compute the nonzero basis functions . )(),...,( ,, vNvN qjqqj−
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5. Multiply the values of the nonzero basis functions with the corresponding control 

points. 

Figures (3.15a and 3.15b) show the tensor product basis functions  and 

 respectively. Figures 3.16 to 3.19 show examples of B-Spline surfaces.  

)()( ,, vNuN 2434

)()( ,, vNuN 2234

 

 

 

 

 

 

 

 

 
 

Figure (3.15) Product of a cubic and a quadratic basis function (a) ( ) ( )vNuN 2434 ,, ; 

 and  }1,1,1,1,4/3,4/2,4/1,0,0,0,0{=U }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V (Youssef [35]). 
 

 

 

 

 

 

 

 

 
 
 

Figure (3.15) Product of a cubic and a quadratic basis function (b) ( ) ( )vNuN 2234 ,, ; 

 and }1,1,1,1,4/3,4/2,4/1,0,0,0,0{=U }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V (Youssef [35]). 
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The properties of the tensor product basis functions follow from the corresponding 

properties of the univariate basis functions as follows: 

• Nonnegativity:  for all 0vNuN qjpi ≥)()( ,, vuqpji ,,,,, . 

• Partition of unity:  for all ∑ ∑ =
= =

n

0i

m

0j
qjpi 1vNuN )()( ,, [ ] [ ]1010vu ,,),( ×∈ . 

• If pn = , , qm = }1,...,1,0,...,0{=U , and }1,...,1,0,...,0{=V , then 

 for all )()()()( ,,,, vBuBvNuN mjniqjpi = ji, ; that is, products of B-Spline functions 

degenerate to products of Bernstein polynomials. 

•  if  is outside the rectangle  (Figures 

3.15a and 3.15b). 

0vNuN qjpi =)()( ,, ),( vu ),[),[ 11 ++++ × qjjpii vvuu

• In any given rectangle, ),[),[ 11 0000 ++ × jjii vvuu , at most ( )( )11 ++ qp  basis functions are 

nonzero, in particular the  for )()( ,, vNuN qjpi 00 iipi ≤≤−  and . 00 jjqj ≤≤−

• If  and , then  attains exactly one maximum value (figures 

3.15a and 3.15b). 

0>p 0>q )()( ,, vNuN qjpi

 

B-Spline surfaces have the following properties: 

• If pn = , , , and qm = }1,...,1,0,...,0{=U }1,...,1,0,...,0{=V , then  is a Bezier 

surface. 

),( vuS

• The surface interpolates the four corner control points: , 00P00S ,),( = 0nP01S ,),( = , 

, and m0P10S ,),( = mnP11S ,),,( =  (figures 3.16 through 3.19). 
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Figure (3.16a) A B-Spline surface-control net (Youssef [35]). 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure (3.16b) A B-Spline surface (Youssef [35]).  
 

• Affine invariance: an affine transformation is applied to the surface by applying it to 

the control points. 

• Strong convex hull property: if ),[),[),( 1jj1ii 0000
vvuuvu ++ ×∈ , then S  is in the 

convex hull of the control points , 

),( vu

jiP , 00 iipi ≤≤−  and 00 jjqj ≤≤−  (figure 3.17). 
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Figure (3.17a) Product of a cubic and a quadratic B-Spline surface (Youssef [35]). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (3.17b) The strong convex hull property (Youssef [35]). 
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• If triangulated, the control net forms a piecewise planar approximation to the surface; 

as is the case for curves, the lower the degree the better the approximation (figures 

3.18a and 3.18b). 

 

 

 

 

 

 

 

 

 

 
Figure (3.18a) A biquadratic surface (Youssef [35]). 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (3.18b) A biquadratic surface ( )4qp ==  using figure 3.18a control points (Youssef 
[35]). 
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• Local modification scheme: if  is moved, it affects the surface only in the 

rectangle . Now consider figures 3.19a and 3.19b: the initial 

surface is flat because all the control points lie in a common plane; the control net is 

offset from the surface only for better visualization. When  is moved, it affects the 

surface shape only in the rectangle 

jiP ,

),[),[ 11 ++++ × qjjpii vvuu

5,3P

)1,5/2[)1,4/1[ × . 

 

 

 

 

 

 

 

 
 

Figure (3.19a) A product of a planar quadratic and a cubic surface, 
 and }1,1,1,4/3,2/1,4/1,0,0,0{=U }1,1,1,1,5/4,5/3,5/2,5/1,0,0,0,0{=V  (Youssef [35]). 

 

 

 

 

 

 

 

 

 

 
 

Figure (3.19b)  is moved, affecting surface shape only in the rectangle  5,3P )1,5/2[)1,4/1[ ×  
(Youssef [35]). 
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3.4 Rational B-Spline Curves and Surfaces 
 

3.4.1 Definition and Properties of Non-Uniform Rational B-Spline 
Curves 

 

A Non-Uniform Rational B-Spline Curve, denoted by NURBS, of degree p is defined by: 

∑=
=

n

0i
ipi PuRuC )()( ,   bua ≤≤       (3.16) 

where 

∑
=

=

n

0j
jpj

ipi
pi

wuN

wuN
uR

)(

)(
)(

,

,
,                      (3.17) 

where  are the control points (forming a control polygon),  is the set of weights, 

the is the set of  pth-degree B-Spline basis functions defined on the nonperiodic 

(and nonuniform) knot vector: 

}{ iP }{ iw

)}({ , uN pi

},...,,,...,,,...,{ 11 bbuuaaU pmp −−+=  

)}({ , uR pi  is the set of rational basis functions; they are piecewise rational functions on 

 where we assume that [ 10u ,∈ ] 0=a , 1=b , and  for all i. 0>iw

 

)(, uR pi  have the following properties: 

• Nonnegativity:  for all 0uR pi ≥)(, pi, , and [ ]1,0∈u . 

• Partition of unity:  for all ∑ =
=

n

0i
pi 1uR )(, [ ]1,0∈u . 

 



       42 

• . 11R0R pnp0 == )()( ,,

• For , all  attain exactly one maximum value on the interval 0>p )(, uR pi [ ]10u ,∈ . 

• Local support:  for 0uR pi =)(, ),[ 1++∉ pii uuu . Furthermore, in any given knot span, at 

most  i.e. k (order of the curve) of the  are nonzero (in general, 

 are nonzero in ). 

1+p )(, uR pi

)(),...,( ,, uRuR pippi− ),[ 1+ii uu

• If  for all i , then 0=iw )()( ,, uNuR pipi =  for all ; i.e.,  is a special case of 

. In fact, for any 

i )(, uN pi

)(, uR pi 0≠a , if awi =  for all i  then )()( ,, uNuR pipi =  for all . i

• The previous properties yield the following important geometric characteristics of 

NURBS curves: 

• Affine invariance: an affine transformation is applied to the curve by applying it to the 

control points; NURBS curves are also invariant under perspective projections, which 

is very important in computer graphics. 

• Strong convex hull property: if ),[ 1+∈ ii uuu , then  lies within the convex hull of 

the control points  (figure 3.20, where  for  (dashed 

segment) is contained in the convex hull of , the dashed area). 

)(uC

ipi PP ,...,− )(uC )2/1,4/1[∈u

},,,{ 4321 PPPP

• A NURBS curve with no interior knots is a rational Bezier curve, since the  

reduce to the . This implies that NURBS curves contain nonrational B-Spline 

and rational and nonrational Bezier curves as special cases. 

)(, uN pi

)(, uB ni
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• Local approximation: if the control point  is moved, or the weight  is changed, it 

affects only that portion of the curve on the interval 

iP iw

),[ 1++∈ pii uuu . 

 

 

 

 

 

 
 
 

Figure (3.20a)  and }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U }1,1,1,13,1,1{},...,{ 60 =ww  A cubic 
NURBS curve. (Youssef [35]) 

 

 

 

 
 
 
 
 
 
 

Figure (3.20b)  and }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U }1,1,1,13,1,1{},...,{ 60 =ww  Associated 
basis functions. (Youssef [35]) 

 

The last property is very important for refining surface fits to measured points. Using 

NURBS curves, both control point movement and weight modification can be utilized to 

attain local shape control. Figures 3.21 to 3.25 show the effects of modifying a single 

weight. (eg: Assuming , the effect is that if  increases (decreases), the 

point  moves closer to (farther from) , and hence the curve is pulled toward (pushed 

),[ 1++∈ pii uuu iw

uC iP
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away from) . Furthermore, the movement of  for fixed u is along a straight line 

(figure 3.25)). In figure 3.25, u is fixed and  is changing. Let 

iP uC

3w );( 0wuCB 3 ==  and 

. Then the straight line defined by B and N passes through , and for 

arbitrary ,  lies on this line segment between B and . 

);( 1wuCN 3 == 3P

∞<< 30 w );( 33 wuCB = 3P

 

 

 

 

 

 

 
 

Figure (3.21) Rational cubic B-Spline curves, with  varying. (Youssef [35]) 3w
 

 

 

 

 

 
Figure (3.22a) The cubic basis functions for the curves of figure 3.21 (Youssef [35]) 

 

 

 

 

 

 
 

Figure (3.22b) The cubic basis functions for the curves of figure 3.21(Youssef [35]) 
(b) 10/33 =w . 
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Figure (3.22c) The cubic basis functions for the curves of figure 3.21 (c) .(Youssef  03 =w
 
 

[35]) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.23) Rational quadratic curves, with  varying. (Youssef [35]) 1w
 
 
 

 

 

 

 

 
 

Figure (3.24a) The quadratic basis functions for the curves of figure 3.23 .(Youssef 
[35]) 

41 =w
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Figure (3.24b) The quadratic basis functions for the curves of figure 3.23 
10/31 =w .(Youssef [35]) 

 
 
 

 

 

 
 
 
 

Figure (3.24c) The quadratic basis functions for the curves of figure 3.23 .(Youssef 
[35]) 

01 =w

 

 

 

 

 

 

 

 

 

 

 
 

Figure (3.25) Modification of the weight .(Youssef [35]) 3w
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3.4.2 Definition and Properties of NURBS Surfaces 
 

A NURBS surface of degree p in the u direction and degree q in the v direction is a 

bivariate vector-valued piecewise rational function of the form: 

∑ ∑=
= =

n

0i

m

oj
jiji PuRvuS ,, )(),(   1vu0 ≤≤ ,      (3.18) 

where 

∑ ∑
=

= =

n

0k

m

0l
lkplpk

jiqjpi
ji

wvNuN

wvNuN
vuR

,,,

,,,
,

)()(

)()(
),(                    (3.19) 

}{ , jiP  forms a bi-directional control net,  is the set of weights,  are the 

piecewise rational basis functions for 0

}{ , jiw ),(, vuR ji

≤ i ≤ n and 0 ≤ j ≤ m , and  and  

are the nonrational B-Spline basis functions defined on the knot vectors: 

)}({ , uN pi )}({ , vN qj

}1,...,1,,...,,0,...,0{ 11 −−+= prp uuU  

}1,...,1,,...,,0,...,0{ 11 −−+= qsq vvV  

where there are  0’s and 1+p 1+p  1’s and 1++= pnr  and 1++= qms  

Figures 3.26 and 3.27 show examples of NURBS surfaces. 
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Figure (3.26a ) Control net and biquadratic NURBS surface, 102,21,22,11,1 ==== wwww  

with the rest of the weights 1. }1,1,1,3/2,3/1,0,0,0{== VU  Control net (Youssef [35]). 
 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.26b) Control net and biquadratic NURBS surface, 102,21,22,11,1 ==== wwww  

with the rest of the weights 1. }1,1,1,3/2,3/1,0,0,0{== VU Biquadratic NURBS surface 
(Youssef [35]). 
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Figure (3.27) Bicubic NURBS surface defined by the control net in figure 3.26a, with 
 and with the same weights (Youssef [35]). }1,1,1,1,2/1,0,0,0,0{== VU

 

The important properties of the functions  are the same as those given in Section 

3.3 for the nonrational basis functions,  

),(, vuR ji

)()( ,, vNuN qjpi

The following are the main properties of NURBS surfaces: 

• Corner points interpolation: 00P00S ,),( = , 0nP01S ,),( = , m0P10S ,),( = , . mnP11S ,),( =

• Affine invariance: an affine transformation is applied to the surface by applying it to the 

control points. 

• Strong convex hull property: assume  for all 0, ≥jiw ji, . If 

, then  is in the convex hull of the control points 

,  and 

)v,v[)u,u[)v,u( 1jj1ii 0000 ++ ×∈ ),( vuS

jiP , 00 iipi ≤≤− 00 jjqj ≤≤− . 

• Local modification: if  is moved, or  is changed, it affects the surface shape only 

in the rectangle . 

jiP , jiw ,

),[),[ 11 ++++ × qjipii vvuu
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• Nonrational B-Spline and Bezier and rational Bezier surfaces are special cases of NURBS 

surfaces. 

It is obvious that both control point movement and weight modification to locally change 

the shape of NURBS surfaces. Figures 3.28a and 3.28b show the effects on the basis 

function  and the surface shape when a single weight, , is modified.  ),(, vuR ji jiw ,

(eg: Assuming ),[),[),( 1qjj1pii vvuuvu ++++ ×∈ ,  then the effect on the surface if  

increases (decreases), the point  moves closer to (farther from)  and hence the 

surface is pulled toward (pushed away from) ). 

jiw ,

),( vuS jiP ,

jiP ,

 

 

 

 

 

 

 

 

 

 

Figure (3.28a) The basis function , with ),(, vuR 24 }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U  and 

, }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V 1, =jiw  for all )2,4()j,i( ≠ (Youssef [35]). 
 

 

 

 

 

 
 



       51 

 

 

 

 

 

 
 
 
 
 

Figure (3.28b) The basis function , with ),(, vuR 24 }1,1,1,1,4/3,2/1,4/1,0,0,0,0{=U  and 

, }1,1,1,5/4,5/3,5/3,5/2,5/1,0,0,0{=V 1, =jiw  for all )2,4()j,i( ≠ (Youssef [35]). 
 

3.5 Curve and Surface Fitting 
 

This section describes the fitting of free-form curves and surfaces to an arbitrary set of 

geometric data, such as points and derivative vectors. Two types of fitting are 

distinguished : interpolation and approximation. In interpolation, the constructed curve or 

surface satisfies the given points precisely, e.g., the curve passes through the given points 

and assumes the given derivatives at the prescribed points. Figure 3.29 shows a curve 

interpolating five points and the first derivative vectors at the endpoints. 

 

 

 

 

 

Fi
 

 
 

gure (3.29) A curve interpolating five points and two end derivatives. 
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In approximation, the constructed curves and surfaces do not necessarily satisfy the given 

data precisely, but only approximately. In some applications, an example is generation of 

point data by use of coordinate measuring devices or digitizing tablets. In this case it is 

important for the curve or surface or surface to capture the “shape” of the data, but not to 

“wiggle” its way through every point. In approximation, it is often desirable to specify a 

maximum bound on the derivation of the curve or surface from the given data, and to 

specify certain constraints. 

 

Figure 3.30 shows a curve approximating a set of m+1 points. A maximum deviation 

bound, E, was specified, and the perpendicular distance, ei, is the approximation error 

obtained by projecting Qi on the curve. The ei of each point, Qi, is less than E. The end 

point Qo and Qm were specified as constraints, with the result that eo = em = 0. Input to a 

fitting problem generally consists of geometric data, such as points or derivatives. Output 

is a curve or surface, after the calculation of control points and knots. Furthermore, either 

the degree p (or (p, q) for surfaces) must be input. 

 
Figure (3.30) A curve approximating m+1 points; the curve is constrained to pass through 

the end points, Q0 and Qm.
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3.6 Optimization of NURBS Parameters 
 

The evaluation of the control points by least squares approximation can be viewed as an 

initial estimation of the fitted surface. Further refinement can be obtained by optimizing 

the different NURBS parameters, such as the knot values and the weights in order to 

achieve better fitting accuracy. The error function between the measured points and the 

fitted surface is generally given by equation (2.1). This equation has been specified to suit 

the NURBS representation of the fitted surface as follows: 

rs

k

r
ekk sQQE

/1

0
⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

        (3.41) 

where: 

1.  is the kkQ th-measured point. 

2.  is the equivalent point on the surface to the kekQ th-measured point. Accurately, this 

point would be found by orthogonally projecting the measured point on the fitted 

surface. Such evaluation would lead to cumbersome computations and hence in 

Dierckx [3], this point is approximated by ),( lk vuP , where ku  and lv  are the 

independent parameters associated with measured point . kQ

3. r  is the exponent. If the average deviation is to be minimized, then r is set to either 1 

or 2 (least-squares deviation function). Setting r to infinity leads to the minimization 

of the maximum deviation. The selection of such exponent depends on the 

measurement device and its accuracy [15]. For the problem in hand the measurement 

device is a laser scanner so the value used for r  is 2. 
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4.  is the number of measured points. s

 

 

Shalaby et.al. [28] showed that better results could be obtained by optimizing the weights 

while keeping the knot values uniformly distributed. The fitting task can be viewed 

mathematically as an approximation problem between an unknown function, represented 

by a set of measured points {Q}, and an approximating function, represented by the 

geometric model of the fitted curve/surface S(α1, ...., αn), where {α1, ...., αn} are the 

parameters of the fitted curve/surface. The general formulation of the objective function 

of the optimization problem is represented by the following equation: 

( )
rs

i

r
ni sSQE

/1

0
1 ,..., ⎟

⎠

⎞
⎜
⎝

⎛
−= ∑

=

αα                                (3.42) 

where s is the number of measured points, and r is an exponent, ranging from 1 to 

infinity. The fitting task can then be viewed as the optimization of the curve/surface 

parameters { }nαα ,...,1  to minimize the error E 

 

However the weights present a large number of independent variables (equaling the 

number of control points) to the optimization problem, which may lead to a large search 

space. In addition, the fitting of free-form surfaces to the measured points has been shown 

by Shalaby et. al.  [28] as well as by Limeaiem et.al. [12] to be a multi-modal 

optimization problem. Therefore, global optimization techniques are needed for 

optimizing such problems. Other researchers have used different variants of Genetic 

Algorithms (GA’s), but all came to the conclusion that GA’s need a large number of 
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objective function evaluations. Since reverse engineering of free-form surfaces processes 

a large number of measured points, the single evaluation of the objective function is 

computationally exhaustive. The above findings inspired the research of the presented 

thesis to be focused on Simulated Annealing (SA). SA is one of the global optimization 

methods like GA’s and Tabu Search (TS). The next chapter presents an approach to the 

global optimization of continuous functions based on Simulated Annealing. 
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4 SIMULATED ANNEALING 
 
 
4.1 Introduction 
 

Simulated Annealing (S.A.) exploits analogy between the way in which a metal cools and 

freezes into a minimum energy crystalline structure (the Annealing process) and the 

search for a minimum in a general system. If a physical system is melted and then cooled 

slowly, the entire system can be made to produce the most stable (crystalline) 

arrangement, and not get trapped in a local minimum. 

 

The S.A. algorithm was first proposed by Metropolis  et. al. [14] as a means to find 

equilibrium configuration of a collection of atoms at a given temperature. Kirkpatrick et. 

al. [10] were the first to use the connection between this algorithm and mathematical 

minimization as the basis of an optimization technique for combinatorial (as well as 

other) problems. 

 

S.A’s major advantage over other methods is its ability to avoid being trapped in local 

minima. The algorithm employs a random search, which not only accepts changes that 

decrease the objective function E, but also some changes that would increase it. The latter 

are accepted with a probability 

 

   Prob(accept) = exp(-∆E/T)
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where ∆E is the increase in E and T is a control parameter, which by analogy with the 

original application is known as the  system “temperature” irrespective of the objective 

function involved.  

 

Briefly S.A. works in the following way. Given a function to optimize, and some initial 

values for the variables, Simulated Annealing starts at a high, artificial, temperature. 

While cooling the temperature slowly, it repeatedly chooses a subset of the variables, and 

changes them randomly in a certain neighborhood of the current point. If the objective 

function has a lower function value at the new iterate, the new values are chosen to be the 

initial values for the next iteration. If the objective function has a higher function value at 

the new iterate, then the new values are chosen to be the initial values for the next 

iteration with a certain probability, depending on the change in the value of the objective 

function and the temperature.  

 

The higher the temperature and the lower the change, the more probable that the new 

values are chosen to be the initial variables for the next iteration. Throughout this process, 

the temperature is decreased gradually, until eventually the values do not change 

anymore. Then, the function is presumably at its global minimum. The global minimum is 

obtained by choosing an appropriate “cooling schedule” which includes the temperature 

and its cooling rate. A cooling schedule describes the temperature parameter T, and gives 

rules for lowering it as the search progresses. 
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4.2 Simulated Annealing Algorithm 
 

The Simulated Annealing algorithm is shown in Figure 4.1(a) and the Metropolis 

procedure used by the algorithm is shown in figure 4.1(b). 

Algorithm Simulated_Annealing (So, To, α, β, M, Maxtime); 

 (*So is the initial solution *) 

 (*BestS is the best solution*) 

 (*To is the initial temperature*) 

 (*α is the cooling rate*) 

 (*β a constant*) 

(*Maxtime is the total allowed time for the Annealing process*) 

(*M represents the time until the next parameter update*) 

Begin 

 T  = To; 

 CurS = So; 

 BestS = CurS;  /*BestS is the best solution seen so far */ 

 CurCost = Cost(CurS); 

 BestCost = Cost(BestS); 

 Time = 0; 

  Repeat 

   Call Metropolis(CurS, CurCost, BestS, BestCost, T, M ); 

   Time = Time + M; 

   T = α T; 

   M = β M; 

  Until (Time ≥ MaxTime); 

  Return (BestS) 

End (* of Simulated Annealing *) 
Figure (4.1a) The Simulated Annealing Algorithm. 
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Algorithm Metropolis(CurS, CurCost, BestS, BestCost, T, M ); 

Begin 

 Repeat 

  NewS = Neighbor(CurS);  

  NewCost = Cost(NewS); 

  ∆Cost = (NewCost – CurCost); 

  If (∆Cost < 0) Then 

   CurS = NewS; 

    If NewCost < BestCost Then 

     BestS = NewS 

    EndIf 

  Else 

   If (RANDOM < e-∆Cost/T) Then 

    CurS = NewS; 

   EndIf 

  EndIf 

  M = M – 1 

 Until  (M = 0) 

 

End (*of Metropolis*) 
Figure (4.1b) The Metropolis procedure. 

 

The Metropolis procedure, which simulates the Annealing process at a given temperature 

T, is the core of the S.A algorithm. The Metropolis procedure receives as input the current 

temperature T, and the current solution CurS, which it improves through local search. 

Finally, Metropolis must also be provided with the value M, which is the amount of time 

for which Annealing must be applied for a temperature T. 
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The procedure Simulated_Annealing simply invokes Metropolis at decreasing 

temperatures. Temperature is initialized to a value To at the beginning of the procedure, 

and is reduced in a controlled manner (typically in a geometric progression); the 

parameter α is used to achieve this cooling. The amount of time spent in Annealing at a 

temperature is gradually increased as temperature is lowered. This is done using the 

parameter β > 1.The variable Time keeps track of the time being expended in each call to 

the Metropolis. The Annealing procedure halts when Time exceeds the allowed time. 

 

The Metropolis procedure uses the procedure Neighbor to generate a local neighbor NewS 

of any given solution S. The function Cost returns the cost of a given solution S. If the 

cost of the new solution NewS is better than the cost of the current solution CurS, then the 

new solution is accepted, and we do so by setting CurS = NewS. If the cost of the new 

solution is better than the best solution (BestS) seen thus far, we replace BestS by NewS. If 

the new solution has a higher cost in comparison to the original solution CurS, Metropolis 

will accept the new solution on a probabilistic basis. A random number (RANDOM) is 

generated in the range 0 to 1. If this random number is smaller than e-∆Cost/T , where ∆Cost 

is the difference in costs, and T is the current temperature, the uphill solution is accepted. 

This criterion for accepting the new solution is known as the Metropolis criterion. The 

Metropolis procedure generates and examines M solutions. 

 

The probability that an inferior solution is accepted by the Metropolis, is given by  



61 

 

P(RANDOM < e-∆Cost/T). The random number generation is assumed to follow a uniform 

distribution. Remember that ∆Cost > 0 since we have assumed that NewS is uphill from 

CurS. At very high temperatures, (when T → ∞), e-∆Cost/T ≈ 1. and hence the above 

probability approaches 1. On the contrary, when T → 0, the probability e-∆Cost/T falls to 0. 

 

In order to implement Simulated Annealing, we need to formulate a suitable cost function 

for the problem being solved. In addition, as in the case of local search techniques, we 

assume the existence of a neighborhood structure, and need Neighbor function to generate 

new states (neighborhood states) from current states. And finally we need a cooling 

schedule that describes the temperature parameter T and gives rules for lowering it. 

 

4.3 Parameters of the S.A. algorithm 
 

If S.A is allowed to run for an infinitely long time, starting with a high value of T, and 

allowing T  0, then it will find a desired optimal configuration. In practice, however, 

Simulated Annealing is only run for a finite amount of time. A finite time implementation 

can be realized by generating homogeneous Markov chains of finite lengths for a 

sequence of decreasing values of temperature. T0 achieve this, a set of parameters that 

govern the convergence of the algorithm must be specified. This set of parameters is 

commonly referred to as the “cooling schedule”. 
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The Metropolis procedure receives as input the current temperature T, the current solution 

CurS, and a value M, which is the amount of time for which Annealing must be applied at 

temperature T. Temperature is initialized to a value T0 at the beginning  of the procedure, 

and is slowly reduced in a geometric progression; the parameter α is used to achieve this 

cooling. The amount of time spent in Annealing at a given temperature is gradually 

increased as temperature is lowered. This is done using the parameter β ≥ 1. The variable 

Time keeps track of the time being expended in each call to the Metropolis. The 

Annealing procedure halts when Time exceeds the allowed time. The cooling schedule 

specifies the following: 

A finite sequence of values of temperature, which are given by the initial value , a 

decrement factor (α), and the final value, which is specified by the stopping criterion. 

0T

A finite number of transitions (denoted by βM) at each value of the temperature, which 

corresponds to the finite length of each homogeneous Markov chain. 

 

Therefore, a cooling schedule is completely specified by setting the values of parameters 

α, β, M,  and Time. It is customary to determine the schedule by trial and error. 

However, some researches have proposed cooling schedules that rely on some 

mathematical rigor. In our work, we have used the cooling schedule presented by 

Kirkpatrick et al [Kirkpatrick 83]. 

0T
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4.4 S.A. Requirements 
 

In order to use Simulated Annealing to solve a particular problem, a sequence of Markov 

chains is to be generated at descending values of temperature. As seen earlier, the inner 

loop of the Annealing algorithm is a homogeneous Markov chain, and T does not change 

within the loop. Such Markov chains are generated by transforming a current solution to 

another one by applying a generation mechanism (perturbance or neighbor function) and 

using an acceptance function which is usually the Metropolis function. Application of the 

Annealing algorithm therefore requires the following. 

 

1. A concise representation of the state space, where each state represents a 

configuration, and a cost function that represents the cost effectiveness of the 

solutions with respect to the optimization objectives. It is important that the solution 

representation be easy to manipulate. Furthermore, the cost function should be given 

by a simple expression that is easy to evaluate. This requirement is important because 

the manipulation of current configurations to generate new neighborhood states and 

the evaluation of the cost of that solution are done a large number of times. 

2. A mechanism for transforming the current solution into a subsequent one to which the 

search should move. This will involve two steps.  

a. First, the neighbor function is applied to generate a new solution.  

guarantees asymptotic convergence to the set of optimal solutions, the 

0T
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neighborhood structure must be properly chosen so that the corresponding 

generation mechanism induces an irreducible and aperiodic Markov chain. 

b. Second, the cost of this new solution, and hence the difference in cost ∆Cost is 

computed. Then, a decision is made whether to accept or reject this newly 

generated solution. 

These two steps are the most time consuming and should be executed in a time efficient 

manner. Therefore, in practice, the neighbor functions are generally simple.  

3. Finally, the success of a S.A algorithm depends on the choice of a proper cooling 

schedule, that is, on the initial value of temperature, the decrement function, the 

length of the Markov chain and a suitable stopping criterion.  
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5 THE PROPOSED METHOD 
 
 
5.1 Introduction 
 

Figures 5.1a and 5.1b shows the basic building blocks of our implemented system for 

curves and surfaces respectively for weight optimization. We discuss Figure 5.1 briefly 

below. 

 

Initially a character/surface is scanned to get a digitized image. In case of curves, its 

contour is extracted using boundary detection algorithms, to obtain a number of data 

points. We assume that the curves are continuous, i.e. they possess single segments. The 

parametric value ‘u’ for each data point is then calculated using chord length 

parameterization [24]. In the case of a surface, the parameter calculation is bi-directional. 

The least squares technique is used to calculate the control points. A uniform knot vector 

is calculated in the case of a curve and two uniform knot vectors are calculated in the case 

of a surface, in ‘u’ and ‘w’ directions. Then, Simulated Annealing is used to optimize 

weights. Once the values of all three space parameters – control points, knot vector and 

weights are received, the NURBS curve is fitted to obtain a geometric model of the curve. 
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5.2 Obtaining a digitized image/surface 
 
Figure 5.3 discusses in detail our proposed approach. A digitized image is obtained from 

an electronic device or by scanning an image. The quality of digitized scanned image 

depends of various factors such as the image on paper, scanner type and the attributes set 

during scanning. The quality of digitized image obtained directly from an electronic 

device depends on the resolution device, source of image, type of image, etc. Some of the 

digitized images/surfaces are shown in Figure 5.2. The surfaces are generated using 

mathematical functions.  The Table 5.1shows the surfaces, with their respective generator 

functions. 

Table (5.1) Surface generating functions 
 

Surfaces Functions 

Surface 1 22( yxR += ; RRSinz )(=  

Surface 2 [X,Y,Z] = Cylinder( 2 + cos(t))

Surface 3 [X,Y,Z] = Sphere(N) 
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Figure (5.1a) Curve – weight optimization. 

 
 

Figure (5.1b) Surface – weight optimization. 

 

In Table 5.1, cylinder and sphere are the matlab functions which generate a cylinder and a 

sphere respectively, where ‘t’ is a parameter in surface 2 and N produces (N+1) by (N+1) 

matrices of X,Y & Z  for surface 3. 

 

 

 



68 

 

5.3 Contour extraction 
 

The contour of the digitized image is extracted using the boundary detection algorithms. 

There are numerous algorithms for detecting boundary. We used the algorithm proposed 

by Quddus [20]. The input to this algorithm is a bitmap file. The algorithm returns a 

number of segments and for each segment, a number of boundary points and their values. 

Table 5.1 gives the number of boundary points detected by the boundary detection 

algorithm for the word ‘Ali’, the symbol ‘Pound’ and the letter ‘Aich’ and the number of 

points scanned for surfaces. 

 

 
 
 
 
 

Table (5.2) Scanned data points 
 

S.No Name of the Figure # of data points 

1 Ali 1640 

2 Pound 689 

3 Aich 320 

4 Apple 1204 

5 Open Curve 1001 

4 Surface 1 1089 

5 Surface 2 441 

6 Surface 3 1024 

7 Jar 1089 
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In case of surfaces, Table 5.1 shows their generating functions. Using these generating 

functions, input data points are generated for the surfaces. The Tables 5.3 to 5.6 show the 

data points generated for Surface1, Surface 2, Surface 3 & Jar respectively. 

 

                                   
      Aich      Ali           Pound 

 
              Apple                          Open Curve      Surface1 

 
 Surface 2          Surface3         Jar 

 
Figure (5.2) Input Curves and Surfaces. 

 

 



70 

 

Table(5.3) Sample data points for Surface 1 
 

2.5 -7.5 0.126322 
3 -7.5 0.12071 
3.5 -7.5 0.1102 
4 -7.5 0.0939397 
4.5 -7.5 0.0717446 
5 -7.5 0.0443133 
5.5 -7.5 0.0133241 
6 -7.5 -0.0186304 
6.5 -7.5 -0.0483008 
7 -7.5 -0.0722156 
7.5 -7.5 -0.087238 
8 -7.5 -0.0911519 
-8 -7 -0.0878606 
-7.5 -7 -0.0722156 
-7 -7 -0.0461727 
-6.5 -7 -0.0133328 
-6 -7 0.0221048 
-5.5 -7 0.0560617 
-5 -7 0.0851882 
-4.5 -7 0.107264 
-4 -7 0.121354 
-3.5 -7 0.127726 
-3 -7 0.127599 
-2.5 -7 0.12279 
-2 -7 0.115356 
-1.5 -7 0.10728 
-1 -7 0.100248 
-0.5 -7 0.0955176 
0 -7 0.0938552 
0.5 -7 0.0955176 
1 -7 0.100248 
1.5 -7 0.10728 
2 -7 0.115356 
2.5 -7 0.12279 
3 -7 0.127599 
3.5 -7 0.127726 
4 -7 0.121354 
4.5 -7 0.107264 
5 -7 0.0851882 
5.5 -7 0.0560617 
6 -7 0.0221048 
6.5 -7 -0.0133328 
7 -7 -0.0461727 
7.5 -7 -0.0722156 
8 -7 -0.0878606 
-8 -6.5 -0.0749569 
-7.5 -6.5 -0.0483008
-7 -6.5 -0.0133328 
-6.5 -6.5 0.0250537 
-6 -6.5 0.0618459 

-2 -6.5 0.0727498 
-1.5 -6.5 0.0566662
-1 -6.5 0.0439599 
-0.5 -6.5 0.0358682
0 -6.5 0.0330954 
0.5 -6.5 0.0358682 
1 -6.5 0.0439599 
1.5 -6.5 0.0566662 
2 -6.5 0.0727498 
2.5 -6.5 0.090402 
3 -6.5 0.10728 
3.5 -6.5 0.120673 
4 -6.5 0.127814 
4.5 -6.5 0.126322 
5 -6.5 0.114689 
5.5 -6.5 0.0927286 
6 -6.5 0.0618459 
6.5 -6.5 0.0250537 
7 -6.5 -0.0133328 
7.5 -6.5 -0.0483008
8 -6.5 -0.0749569 
-8 -6 -0.0544021 
-7.5 -6 -0.0186304 
-7 -6 0.0221048 
-6.5 -6 0.0618459 
-6 -6 0.0951366 
-5.5 -6 0.117888 
-5 -6 0.127914 
-4.5 -6 0.125067 
-4 -6 0.110992 
-3.5 -6 0.0886112 
-3 -6 0.0614677 
-2.5 -6 0.0330954 
-2 -6 0.00653931 
-1.5 -6 -0.0159051 
-1 -6 -0.0327292 
-0.5 -6 -0.0430819 
0 -6 -0.0465692 
0.5 -6 -0.0430819 
1 -6 -0.0327292 
1.5 -6 -0.0159051 
2 -6 0.00653931 
2.5 -6 0.0330954 
3 -6 0.0614677 
3.5 -6 0.0886112 
4 -6 0.110992 
4.5 -6 0.125067 
5 -6 0.127914 
5.5 -6 0.117888 
6 -6 0.0951366 

5.5 -5 0.12279 
6 -5 0.127914 
6.5 -5 0.114689 
7 -5 0.0851882 
7.5 -5 0.0443133 
8 -5 -0.00097552 
-8 -4.5 0.0265312 
-7.5 -4.5 0.0717446 
-7 -4.5 0.107264 
-6.5 -4.5 0.126322 
-6 -4.5 0.125067 
-5.5 -4.5 0.103188 
-5 -4.5 0.063807 
-4.5 -4.5 0.0126789 
-4 -4.5 -0.0430819 
-3.5 -4.5 -0.0964682
-3 -4.5 -0.141902 
-2.5 -4.5 -0.176131 
-2 -4.5 -0.198521 
-1.5 -4.5 -0.210717 
-1 -4.5 -0.215789 
-0.5 -4.5 -0.217107 
0 -4.5 -0.217229 
0.5 -4.5 -0.217107 
1 -4.5 -0.215789 
1.5 -4.5 -0.210717 
2 -4.5 -0.198521 
2.5 -4.5 -0.176131 
3 -4.5 -0.141902 
3.5 -4.5 -0.0964682 
4 -4.5 -0.0430819 
4.5 -4.5 0.0126789 
5 -4.5 0.063807 
5.5 -4.5 0.103188 
6 -4.5 0.125067 
6.5 -4.5 0.126322 
7 -4.5 0.107264 
7.5 -4.5 0.0717446 
8 -4.5 0.0265312 
-8 -4 0.0516787 
-7.5 -4 0.0939397 
-7 -4 0.121354 
-6.5 -4 0.127814 
-6 -4 0.110992 
-5.5 -4 0.0727498 
-5 -4 0.0186864 
-4.5 -4 -0.0430819 
-4 -4 -0.103622 
-3.5 -4 -0.154996 
-3 -4 -0.191785 



71 

 

Table(5.4) Sample data points for Surface 2 
 

3 0 0 
2.85317 0.927051 0 
2.42705 1.76336 0 
1.76336 2.42705 0 
0.927051 2.85317 0 
1.83697e-016 3 0 
-0.927051 2.85317 0 
-1.76336 2.42705 0 
-2.42705 1.76336 0 
-2.85317 0.927051 0 
-3 3.67394e-016 0 
-2.85317 -0.927051 0 
-2.42705 -1.76336 0 
-1.76336 -2.42705 0 
-0.927051 -2.85317 0 
-5.51091e-016 -3 0 
0.927051 -2.85317 0 
1.76336 -2.42705 0 
2.42705 -1.76336 0 
2.85317 -0.927051 0 
3 0 0 
2.95106 0 0.05 
2.80662 0.911927 0.05 
2.38745 1.73459 0.05 
1.73459 2.38745 0.05 
0.911927 2.80662 0.05 
1.807e-016 2.95106 0.05 
-0.911927 2.80662 0.05 
-1.73459 2.38745 0.05 
-2.38745 1.73459 0.05 
-2.80662 0.911927 0.05 
-2.95106 3.614e-016 0.05 
-2.80662 -0.911927 0.05 
-2.38745 -1.73459 0.05 
-1.73459 -2.38745 0.05 
-0.911927 -2.80662 0.05 
-5.421e-016 -2.95106 0.05
0.911927 -2.80662 0.05 
1.73459 -2.38745 0.05 
2.38745 -1.73459 0.05 
2.80662 -0.911927 0.05 
2.95106 0 0.05 
2.80902 0 0.1 
2.67153 0.868034 0.1 
2.27254 1.6511 0.1 
1.6511 2.27254 0.1 
0.868034 2.67153 0.1 
1.72003e-016 2.80902 0.1 
-0.868034 2.67153 0.1 
-1.6511 2.27254 0.1 

0.868034 -2.67153 0.1 
1.6511 -2.27254 0.1 
2.27254 -1.6511 0.1 
2.67153 -0.868034 0.1 
2.80902 0 0.1 
2.58779 0 0.15 
2.46113 0.79967 0.15 
2.09356 1.52106 0.15 
1.52106 2.09356 0.15 
0.79967 2.46113 0.15 
1.58456e-016 2.58779 0.15 
-0.79967 2.46113 0.15 
-1.52106 2.09356 0.15 
-2.09356 1.52106 0.15 
-2.46113 0.79967 0.15 
-2.58779 3.16912e-016 0.15 
-2.46113 -0.79967 0.15 
-2.09356 -1.52106 0.15 
-1.52106 -2.09356 0.15 
-0.79967 -2.46113 0.15 
-4.75368e-016 -2.58779 0.15 
0.79967 -2.46113 0.15 
1.52106 -2.09356 0.15 
2.09356 -1.52106 0.15 
2.46113 -0.79967 0.15 
2.58779 0 0.15 
2.30902 0 0.2 
2.19601 0.713525 0.2 
1.86803 1.35721 0.2 
1.35721 1.86803 0.2 
0.713525 2.19601 0.2 
1.41387e-016 2.30902 0.2 
-0.713525 2.19601 0.2 
-1.35721 1.86803 0.2 
-1.86803 1.35721 0.2 
-2.19601 0.713525 0.2 
-2.30902 2.82773e-016 0.2 
-2.19601 -0.713525 0.2 
-1.86803 -1.35721 0.2 
-1.35721 -1.86803 0.2 
-0.713525 -2.19601 0.2 
-4.2416e-016 -2.30902 0.2 
0.713525 -2.19601 0.2 
1.35721 -1.86803 0.2 
1.86803 -1.35721 0.2 
2.19601 -0.713525 0.2 
2.30902 0 0.2 
2 0 0.25 
1.90211 0.618034 0.25 
1.61803 1.17557 0.25 
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Table(5.5) Sample data points for Surface 3 
 

-6.12323e-017 -7.4988e-033 -1 
-5.99789e-017 -1.2326e-017 -1 
-5.62699e-017 -2.41473e-017 -1 
-5.02573e-017 -3.49801e-017 -1 
-4.21871e-017 -4.43808e-017 -1 
-3.23897e-017 -5.19645e-017 -1 
-2.12663e-017 -5.74208e-017 -1 
-9.27228e-018 -6.05262e-017 -1 
3.10137e-018 -6.11537e-017 -1 
1.5348e-017 -5.92776e-017 -1 
2.69664e-017 -5.49747e-017 -1 
3.74807e-017 -4.8421e-017 -1 
4.64605e-017 -3.98851e-017 -1 
5.35383e-017 -2.97162e-017 -1 
5.84242e-017 -1.83307e-017 -1 
6.09182e-017 -6.19477e-018 -1 
6.09182e-017 6.19477e-018 -1 
5.84242e-017 1.83307e-017 -1 
5.35383e-017 2.97162e-017 -1 
4.64605e-017 3.98851e-017 -1 
3.74807e-017 4.8421e-017 -1 
2.69664e-017 5.49747e-017 -1 
1.5348e-017 5.92776e-017 -1 
3.10137e-018 6.11537e-017 -1 
-9.27228e-018 6.05262e-017 -1 
-2.12663e-017 5.74208e-017 -1 
-3.23897e-017 5.19645e-017 -1 
-4.21871e-017 4.43808e-017 -1 
-5.02573e-017 3.49801e-017 -1 
-5.62699e-017 2.41473e-017 -1 
-5.99789e-017 1.2326e-017 -1 
-6.12323e-017 7.4988e-033 -1 
-0.101168 -1.23895e-017 -0.994869
-0.0990974 -0.020365 -0.994869 
-0.0929694 -0.0398963 -0.994869 
-0.0830353 -0.0577942 -0.994869 
-0.0697016 -0.0733261 -0.994869 
-0.0535144 -0.0858559 -0.994869 
-0.0351363 -0.0948708 -0.994869 
-0.0153197 -0.100002 -0.994869 
0.00512409 -0.101038 -0.994869 
0.0253581 -0.0979387 -0.994869 
0.0445539 -0.0908294 -0.994869 
0.0619257 -0.0800015 -0.994869 
0.0767623 -0.0658983 -0.994869 
0.0884562 -0.0490972 -0.994869 
0.0965287 -0.0302861 -0.994869 
0.100649 -0.010235 -0.994869 
0.100649 0.010235 -0.994869 

-0.0535144 0.0858559 -0.994869 
-0.0697016 0.0733261 -0.994869 
-0.0830353 0.0577942 -0.994869 
-0.0929694 0.0398963 -0.994869 
-0.0990974 0.020365 -0.994869 
-0.101168 1.23895e-017 -0.994869 
-0.201299 -2.4652e-017 -0.97953 
-0.197178 -0.0405211 -0.97953 
-0.184985 -0.0793833 -0.97953 
-0.165218 -0.114995 -0.97953 
-0.138688 -0.1459 -0.97953 
-0.10648 -0.170831 -0.97953 
-0.069912 -0.188768 -0.97953 
-0.0304822 -0.198977 -0.97953 
0.0101956 -0.20104 -0.97953 
0.050456 -0.194872 -0.97953 
0.0886507 -0.180727 -0.97953 
0.123216 -0.159182 -0.97953 
0.152737 -0.13112 -0.97953 
0.176005 -0.0976906 -0.97953 
0.192067 -0.0602614 -0.97953 
0.200266 -0.020365 -0.97953 
0.200266 0.020365 -0.97953 
0.192067 0.0602614 -0.97953 
0.176005 0.0976906 -0.97953 
0.152737 0.13112 -0.97953 
0.123216 0.159182 -0.97953 
0.0886507 0.180727 -0.97953 
0.050456 0.194872 -0.97953 
0.0101956 0.20104 -0.97953 
-0.0304822 0.198977 -0.97953 
-0.069912 0.188768 -0.97953 
-0.10648 0.170831 -0.97953 
-0.138688 0.1459 -0.97953 
-0.165218 0.114995 -0.97953 
-0.184985 0.0793833 -0.97953 
-0.197178 0.0405211 -0.97953 
-0.201299 2.4652e-017 -0.97953 
-0.299363 -3.66614e-017 -0.954139
-0.293235 -0.0602614 -0.954139 
-0.275102 -0.118056 -0.954139 
-0.245706 -0.171017 -0.954139 
-0.206251 -0.216976 -0.954139 
-0.158352 -0.254053 -0.954139 
-0.10397 -0.280728 -0.954139 
-0.0453319 -0.295911 -0.954139 
0.0151625 -0.298979 -0.954139 
0.0750361 -0.289807 -0.954139 
0.131838 -0.26877 -0.954139 
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Table(5.6) Sample data points for Jar 
 

-8 -8 0.999999 
-7.5 -8 0.999997 
-7 -8 0.999992 
-6.5 -8 0.99998 
-6 -8 0.99995 
-5.5 -8 0.99988 
-5 -8 0.999726 
-4.5 -8 0.999411 
-4 -8 0.998811 
-3.5 -8 0.997757 
-3 -8 0.996065 
-2.5 -8 0.993617 
-2 -8 0.990467 
-1.5 -8 0.986937 
-1 -8 0.983618 
-0.5 -8 0.981226 
0 -8 0.980353 
0.5 -8 0.981226 
1 -8 0.983618 
1.5 -8 0.986937 
2 -8 0.990467 
2.5 -8 0.993617 
3 -8 0.996065 
3.5 -8 0.997757 
4 -8 0.998811 
4.5 -8 0.999411 
5 -8 0.999726 
5.5 -8 0.99988 
6 -8 0.99995 
6.5 -8 0.99998 
7 -8 0.999992 
7.5 -8 0.999997 
8 -8 0.999999 
-8 -7.5 0.999997 
-7.5 -7.5 0.999992
-7 -7.5 0.999977 
-6.5 -7.5 0.999937
-6 -7.5 0.999836 
-5.5 -7.5 0.999591
-5 -7.5 0.999035 
-4.5 -7.5 0.99785 
-4 -7.5 0.995514 
-3.5 -7.5 0.991284
-3 -7.5 0.984345 
-2.5 -7.5 0.974175
-2 -7.5 0.961071 
-1.5 -7.5 0.946518
-1 -7.5 0.933041 
-0.5 -7.5 0.923476
0 -7.5 0.920015 

3.5 -7.5 0.991284 
4 -7.5 0.995514 
4.5 -7.5 0.99785 
5 -7.5 0.999035 
5.5 -7.5 0.999591 
6 -7.5 0.999836 
6.5 -7.5 0.999937 
7 -7.5 0.999977 
7.5 -7.5 0.999992 
8 -7.5 0.999997 
-8 -7 0.999992 
-7.5 -7 0.999977 
-7 -7 0.999932 
-6.5 -7 0.999808 
-6 -7 0.999479 
-5.5 -7 0.998652 
-5 -7 0.996694 
-4.5 -7 0.992376 
-4 -7 0.983618 
-3.5 -7 0.967559 
-3 -7 0.941471 
-2.5 -7 0.904688 
-2 -7 0.860368 
-1.5 -7 0.815192 
-1 -7 0.776851 
-0.5 -7 0.751481 
0 -7 0.74265 
0.5 -7 0.751481 
1 -7 0.776851 
1.5 -7 0.815192 
2 -7 0.860368 
2.5 -7 0.904688 
3 -7 0.941471 
3.5 -7 0.967559 
4 -7 0.983618 
4.5 -7 0.992376 
5 -7 0.996694 
5.5 -7 0.998652 
6 -7 0.999479 
6.5 -7 0.999808 
7 -7 0.999932 
7.5 -7 0.999977 
8 -7 0.999992 
-8 -6.5 0.99998 
-7.5 -6.5 0.999937
-7 -6.5 0.999808 
-6.5 -6.5 0.999435
-6 -6.5 0.998404 
-5.5 -6.5 0.995706
-5 -6.5 0.989092 

-1.5 -6.5 0.560517
-1 -6.5 0.506555 
-0.5 -6.5 0.474566
0 -6.5 0.464027 
0.5 -6.5 0.474566 
1 -6.5 0.506555 
1.5 -6.5 0.560517 
2 -6.5 0.635209 
2.5 -6.5 0.724457 
3 -6.5 0.815192 
3.5 -6.5 0.891514 
4 -6.5 0.944049 
4.5 -6.5 0.974175 
5 -6.5 0.989092 
5.5 -6.5 0.995706 
6 -6.5 0.998404 
6.5 -6.5 0.999435 
7 -6.5 0.999808 
7.5 -6.5 0.999937 
8 -6.5 0.99998 
-8 -6 0.99995 
-7.5 -6 0.999836 
-7 -6 0.999479 
-6.5 -6 0.998404 
-6 -6 0.995313 
-5.5 -6 0.986937 
-5 -6 0.966045 
-4.5 -6 0.920015 
-4 -6 0.835763 
-3.5 -6 0.715107 
-3 -6 0.582087 
-2.5 -6 0.464027 
-2 -6 0.373492 
-1.5 -6 0.310302 
-1 -6 0.269764 
-0.5 -6 0.247351 
0 -6 0.240199 
0.5 -6 0.247351 
1 -6 0.269764 
1.5 -6 0.310302 
2 -6 0.373492 
2.5 -6 0.464027 
3 -6 0.582087 
3.5 -6 0.715107 
4 -6 0.835763 
4.5 -6 0.920015 
5 -6 0.966045 
5.5 -6 0.986937 
6 -6 0.995313 
6.5 -6 0.998404 
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5.4 Parameter extraction 
 

The parameter value uj for each data point is a measure of the distance of the data point 

along the curve. One useful approximation for this parameter value uses the chord length 

between data points. Specifically, for j data points, the parameter value at the l th data 

point is 

    u1 = 0 

maxu
ul  = 

∑ −

∑ −

=
−

=
−

j

2s
1ss

2s
1ss

DD

DD
l

          (5.1) 2≥l

The maximum parameter value, tmax, is usually taken as the maximum value of the knot 

vector. 

 

The expanded version of the system is shown in Figure 5.3a and 5.3b. 
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Figure (5.3a) Detailed Curve weight optimization. 
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Figure (5.3b) Detailed Surface weight optimization. 
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5.5 Control point generation 
 

Before we discuss about control point generation, let us discuss some of the basics of 

pseudo-inverse of a matrix. The inverse A-1 of a matrix A exists only if A is square and 

has full rank. In this case, Ax = b has the solution x = A-1b.  

 

The pseudoinverse A+ is a generalization of the inverse, and exists for any (m,n) matrix. 

We assume m > n. If A has full rank (n) we define:       

TT AAAA 1)( −+ =                                                                      (5.2) 

and the solution of Ax = b is x = A+b.  

 

The control points are calculated using the least squares technique. A fairer or smoother 

curve is obtained by specifying fewer control polygon points than data points, i.e.  

nk2 ≤≤ < j. Recalling that a matrix times its transpose is always square, the control 

polygon for a curve that fairs or smoothes the data is given by 

[D] = [B] [P] 

[B] T [D] = [B] T [B] [P] 

[P] = [[B] T [B]] -1 [B] T [D]        (5.3) 

where [D] T = [ D1(t1) D2(t2) . . . Dj(tj) ] are data points, [P] T = [ P1 P2 . . . Pn+1 ] are the 

control points and [B] is the set of B-spline basis functions. 
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5.6 Generation of knot values.  
 

Shalaby et. al.  [28] showed that better results could be obtained by optimizing the 

weights while keeping the knot values uniformly distributed.  Simulated Annealing 

optimization heuristic  is used in this thesis, to optimize weights , using non-uniform knot 

values. 

 

A knot value xi belonging to the open knot vector X , is given by 

xi = 0   1 ≤  i  ≤  k 

xi = i – k  k + 1 ≤ i ≤ n + 1 

xi = n – k + 2  n + 1 ≤ i ≤ n + k + 1      (5.4) 

The parameter range is 0 ≤ t ≤ n – k + 2 i.e., from zero to the maximum knot value. The 

number of knot values is n + k +1. 

  

5.7 Weight optimization 
 

The evaluation of the control points by least squares approximation can be viewed as an 

initial estimation of the fitted curve. Further refinement can be obtained by optimizing the 

different NURBS parameters, such as the knot values and the weights in order to achieve 

better fitting accuracy. The error function (or cost function) between the measured points 

and the fitted curve is generally given by the equation 3.41. 
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Better results could be obtained by optimizing the weights while keeping the knot values 

uniformly distributed [28]. However, the weights present a large number of independent 

variables (equaling the number of control points) to the optimization problem, which may 

lead to a large search space. Therefore, global optimization techniques are needed for 

optimizing such problems. 

 

5.7.1 Weight optimization using Simulated Annealing  
 

We have used the Simulated Annealing optimization heuristic to optimize weights of the 

NURBS curve. Figures 5.3a and 5.3b describe in detail the algorithms used for curves and 

surfaces respectively. The initial solution of weight vector is randomly selected from 

the range [0,0.5]. The number of elements in the weight vector corresponds to the number 

of control points. A uniform knot vector is calculated in the range of [0, npts+k-1] for 

curves, where npts is the number of control points and k is the order of the curve. For 

surfaces, two knot vectors are calculated in the range [0, npts+k-1] and [0, mpts+ℓ-1] in 

the ‘u’ and ‘w’ directions respectively. 

0S

 

The cooling schedule used here is presented in [10]. It is based on the idea that the initial 

temperature  must be large to virtually accept all transitions and that the changes in the 

temperature at each invocation of the Metropolis loop are small. The scheme provides 

guidelines to the choice of , the rate of decrements of T, the termination criterion and 

the length of the markov chain (M). 

0T

0T
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Initial Temperature T0: The initial temperature must be chosen so that almost all 

transitions are accepted initially. That is, the initial acceptance ratio χ( ) must be close 

to unity where 

0T

χ( )= 0T
0

0

T at attempted moves of number Total
T at accepted moves of Number

     (5.6) 

To determine , we start off with a small value of initial temperature given by 0T 0T ′ , in the 

metropol function. Then χ( 0T ′ ) is computed. If χ( 0T ′ ) is not close to unity, then 0T ′  is 

increased by multiplying it by a constant factor larger than one. The above procedure is 

repeated until the value of χ( 0T ′ ) approaches unity. The value of  is then the required 

value of .  

0T ′

0T

 

Decrement of T: A decrement function is used to reduce the temperature in a geometric 

progression, and is given by  

Tk+1 = α Tk ,  k = 0,1, … ,         (5.7) 

where α is a positive  constant less than one, as successive temperatures are decreasing. 

Further, since small changes are desired, the value of α is chosen very close to unity, e.g. 

0.8 ≤ α ≤ 0.99. 

 

Length of Markov chain M: This is equivalent to the number of times the Metropolis 

loop is executed at a given temperature. If the optimization process begins with a high 

value of , the distribution of relative frequencies of states will be very close to the 0T
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stationary distribution. In such a case, the process is said to be in quasi equilibrium. The 

number M is based on the requirement that at each value of Tk quasi equilibrium is 

restored. 

 

Since at decreasing temperatures, uphill transitions are accepted with decreasing 

probabilities, one has to increase the number of iterations of the Metropolis loop with 

decreasing T (so that the Markov chain at that particular temperature will remain 

irreducible and with all states being non null).  A factor β is used (β > 1) which, in a 

geometric progression, increases the value of M. That is, each time the Metropolis loop is 

called, T is reduced to αT and M is increased to βM. 

 

The neighborhood of each element of the weight vector is randomly selected within a 

range of [weight_element_value, weight_element_value + 1]. Since the number of 

elements of the weight vector equals the number of control points, this range is selected in 

order to optimize the locality of the search. 

 

5.8 Knot optimization  

Knots can also be used as a parameter for optimization, in order to achieve better fitting 

accuracy. The error function (or cost function) between the measured points and the fitted 

curve is generally given by the following equation 
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E = 
r/1s

0i

r
n1i s/),...,(SQ ⎟

⎠

⎞
⎜
⎝

⎛
αα−∑

=

       (5.8) 

where Q represents the set of measured points; S(α1, …, αn) is the geometric model of the 

fitted curve, where (α1, …, αn) are the parameters of the fitted curve; s is the number of 

measured points and r is an exponent, ranging from 1 to infinity. The fitting task can then 

be viewed as the optimization of the curve parameters (α1, …, αn) to minimize the error 

(or cost) E. In case the exponent r is equal to 2, the above equation reduces to the least 

squares function. 

We have used the Simulated Annealing heuristic to optimize knots of the NURBS curve. 

Figures 5.4a and 5.4b shows the algorithm used for curves and surfaces respectively. In 

Figure 5.4a, the weight vector is set to unity. The number of elements in the weight vector 

corresponds to the number of control points. Knot optimization requires a good initial 

solution of knot vector. The initial solution is a uniform knot vector, with a range of 

[0,npts+k-1].   

0S

 

For surfaces, the optimization of knot vectors is bidirectional i.e. a knot vector in the ‘u’ 

and another in the ‘w’ direction. The initial solution CurS1 and CurS2 are uniformly 

generated knot vectors in the range [0,npts+k-1] and [0,mpts+ℓ-1] respectively. Figure 

5.4b describes the optimization of the knots for surfaces in detail. 
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The cooling schedule used is the same as that described in section 5.7.1. Only the method 

used to generate the neighbor of the current solution is different. The neighbor of the 

current solution ‘CurS’ is generated in the neighborhood of [CurS - 0.001, CurS + 0.001]. 

The same neighborhood strategy is used for both curves and surfaces. 
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Figure (5.4a) Detailed Curve knot optimization. 
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Figure (5.4b) Detailed Surface knot optimization.
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6 RESULTS 
 
 
6.1 Introduction 
 

We used the images and surfaces shown in Figure 5.2 as the input to our algorithm both 

for weight optimization and knot optimization. Three curves and three surfaces have been 

selected for testing our algorithm. In section 6.2, we show the results for weight 

optimization for both curves and surfaces, while in section 6.3, knot optimization results 

are shown.  

 

The general parameters taken for both curves and surfaces are described below. While 

cooling, since small changes in temperatures are desired, we have chosen the value of α 

as 0.99, which is close to unity. Since the value of β should be greater than 1, a value of 

1.5 is chosen. The algorithm executes the Metropol function, based on Maxtime, which is 

set to 250. The order K, for the curves is chosen to be 4 and for surfaces, it is set to the 

same value 4, in both the ‘u’ and ‘w’ directions. The number of control points in case of 

curves is taken to be 70 and in case of surfaces, 8 each in both direction ‘u’ and ‘w’. 
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6.2 Weight optimization  
 

6.2.1 Curve Fitting results 
 

The general parameters used for curve fitting are tabulated in Table 6.1. The GUI 

developed for weight optimization of curves is shown in Figure 6.1.Figures 6.2 shows the 

pound symbol, fitted with the Simulated Annealing heuristic for the parameters shown in 

Table 6.1. 

 

Figure 6.2(a) shows the original scanned image given as an input to the algorithm. Figure 

6.2(b) shows the outline of the image obtained after applying the boundary detection 

algorithm. Figures 6.2(c) & 6.2(d) depict the intermediate fittings of the ‘pound’ symbol 

at iterations ( Time + i ) = 51 & 126 respectively and figure 6.2(e) shows the fitting for 

the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 

6.2(f) depicts the actual reduction in the costs (error) as the number of iterations increase. 

Table (6.1) S.A. parameters for curves. 
 

Parameter Value 

Number of control points 70 

M 50 

α 0.99 

β 1.5 

Maxtime 250 

K (order) 4 
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Figure (6.1) GUI for curves. 

 

Figure 6.2(f) shows the calculation of the best cost by the S.A. heuristic. A gradual 

decrease in the (current) cost function can be viewed. The figure also shows that (current) 

costs are selected for the next iteration, even if previous (current) costs were better, to 

avoid getting trapped in the local minimum. Table 6.2 shows the actual number of times 

that the Metropolis function is executed. Table 6.2 shows that, the Metropol function 

executes Time + M i.e. 238.5 + 168.75, which is equal to 407 number of times, which is 

correctly shown in Figure 6.2(f). 
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(a) (b) 

(c) (d) 

(e) 
(f) 

 
Figure (6.2) Weight optimization for ‘Pound’. 
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Table (6.2) Metropol function execution time. 
 

S.No Time=Time+M M=β*M 

1 1 50 

2 51 75 

3 126 112.5 

4 238.5 168.75 
 

 
Table (6.3) Weight optimization parameters for ‘Pound’. 

 
Name POUND 

dpts (# of data points) 688 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 3.378 

Execution time (secs) 530.859 

 

Table 6.3 shows the various parameters used and generated in the weight optimization of 

the ‘Pound’ symbol. The BestCost (Least Error) is found to be 3.378 units and the 

execution time is found to be 530.859 seconds. 
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Figure 6.3(a) shows the original scanned image given as an input to the algorithm. Figure 

6.3(b) shows the outline of the image obtained after applying the boundary detection 

algorithm. Figures 6.3(c) & 6.3(d) depict the intermediate fittings of the ‘Aich’ symbol at 

iterations ( Time + i ) = 51 & 126 respectively and figure 6.3(e) shows the fitting for the 

actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 

6.3(f) depicts the actual reduction in the costs (error) as the number of iterations increase. 

 

Table 6.4 shows the various parameters used and generated in the weight optimization of 

the ‘Aich’ symbol. The BestCost (Least Error) is found to be 14.332 units and the 

execution time is found to be 625.406 seconds. 

 

Table (6.4) Weight optimization parameters for ‘Aich’. 
 

Name AICH 

dpts (# of data points) 787 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 14.332 

Execution time (secs) 625.406 
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(a) (b) 

(c) (d) 

(e) (f) 
 

Figure (6.3) Weight optimization for ‘Aich’. 
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Figure 6.4(a) shows the original scanned image given as an input to the algorithm. Figure 

6.4(b) shows the outline of the image obtained after applying the boundary detection 

algorithm. Figures 6.4(c) & 6.4(d) depict the intermediate fittings of the ‘Ali’ symbol at 

iterations ( Time + i ) = 51 & 126 respectively and figure 6.4(e) shows the fitting for the 

actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 

6.4(f) depicts the actual reduction in the costs (error) as the number of iterations increase. 

 

Table 6.5 shows the various parameters used and generated in the weight optimization of 

the ‘Ali’ symbol. The BestCost (Least Error) is found to be 12.03 units and the execution 

time is found to be 2029.8 seconds. 

 

Table (6.5) Weight optimization parameters for ‘Ali’. 
 

Name ALI 

dpts (# of data points) 1644 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 12.03 

Execution time (secs) 2029.8 

 



   94

 

 
(a) (b) 

(c) (d) 

(e) (f) 

Figure (6.4) Weight optimization for ‘Ali’  
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Figure 6.5(a) shows the original scanned image given as an input to the algorithm. Figure 

6.5(b) shows the outline of the image obtained after applying the boundary detection 

algorithm. Figures 6.5(c) & 6.5(d) depict the intermediate fittings of the ‘Apple’ symbol 

at iterations ( Time + i ) = 51 & 126 respectively and figure 6.5(e) shows the fitting for 

the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 

6.5(f) depicts the actual reduction in the costs (error) as the number of iterations increase. 

 

Table 6.6 shows the various parameters used and generated in the weight optimization of 

the ‘Apple’ symbol. The BestCost (Least Error) is found to be 16.518 units and the 

execution time is found to be 1207.1 seconds. 

 

Table (6.6) Weight optimization parameters for ‘Apple’. 
 

Name APPLE 

dpts (# of data points) 1204 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 16.518 

Execution time (secs) 1207.1 

 



   96

 

 
(a) (b) 

(c) (d) 

(e) (f) 
 

Figure (6.5) Weight optimization for ‘Apple’ 
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Figure 6.6(a) shows the original scanned image given as an input to the algorithm. 

Figures 6.6(b) & 6.6(c) depict the intermediate fittings of the ‘Open Curve’ at iterations ( 

Time + i ) = 51 & 126 respectively and figure 6.6(d) shows the fitting for the actual 

iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.6(e) 

depicts the actual reduction in the costs (error) as the number of iterations increase. 

 

Table 6.7 shows the various parameters used and generated in the weight optimization of 

the ‘Open Curve’. The BestCost (Least Error) is found to be 0.418 units and the execution 

time is found to be 917.031seconds. 

 

Table (6.7) Weight optimization parameters for ‘Open Curve’. 
 

Name Open Curve 

dpts (# of data points) 1001 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.418 

Execution time (secs) 917.031 
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(a) (b) 

(c) (d) 

(e) 

  
  
   

Figure (6.6) Weight optimization for ‘Open Curve’ 
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6.2.2 Surface fitting results. 
 

  
  
   

Figure 6.7 show the GUI developed for optimizing the weights for surfaces. Figure 6.8(a) 

shows the original image given as an input to the algorithm.. Figures 6.8(b) & 6.8(c) 

depict the intermediate fittings of the ‘Surface 1’ at iterations ( Time + i ) = 51 & 126 

respectively and figure 6.8(d) shows the fitting for the actual iteration of 250 (Maxtime), 

where ‘i’ iterates over Annealing time ‘M’. Figure 6.8(e) depicts the actual reduction in 

the costs (error) as the number of iterations increase. 

 

 

 
 

Figure (6.7) GUI for surfaces. 
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(a) 

 

(b) 

(c) (d) 

(e) 
Figure (6.8) Weight optimization for ‘Surface 1’  
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Table (6.8) Weight optimization parameters for ‘Surface 1’. 
 

Name SURFACE1 

dpts (# of data points) 1089 

k (Order in ‘u’ direction) 4 

l (Order in ‘w’ direction) 4 

npts (control points in ‘u’direction) 8 

mpts (control points in ‘w’ direction) 8 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.085 

Execution time (secs) 442 
 

 

Table 6.8 shows the various parameters used and generated in the weight optimization of  

‘Surface 1’. The BestCost (Least Error) is found to be 0.085 units and the execution time 

is found to be 442 seconds. 

 

Figure 6.9(a) shows the original image given as an input to the algorithm.. Figures 6.9(b) 

& 6.9(c) depict the intermediate fittings of the ‘Surface 2’ at iterations ( Time + i ) = 51 & 

126 respectively and figure 6.9(d) shows the fitting for the actual iteration of 250 

(Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.9(e) depicts the actual 

reduction in the costs (error) as the number of iterations increase. 
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Figure (6.9) Weight optimization for ‘Surface 2’  
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Table (6.9) Weight optimization parameters for ‘Surface 2’. 
 

Name SURFACE2 

dpts (# of data points) 441 

k (Order in ‘u’ direction) 4 

l (Order in ‘w’ direction) 4 

npts (control points in ‘u’direction) 8 

mpts (control points in ‘w’ direction) 8 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.1925 

Execution time (secs) 117.016 
 

Table 6.9 shows the various parameters used and generated in the weight optimization of 

‘Surface 2’.The BestCost (Least Error) is found to be 0.1925 units and the execution time 

is found to be 117.016 seconds. 

 

Figure 6.10(a) shows the original image given as an input to the algorithm. Figures 

6.10(b) & 6.10(c) depict the intermediate fittings of the ‘Surface 3’ at iterations (Time + i 

) = 51 & 126 respectively and figure 6.10(d) shows the fitting for the actual iteration of 

250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.10(e) depicts the 

actual reduction in the costs (error) as the number of iterations increase. 
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 (a) (b) 

(c) (d) 

(e) 
Figure (6.10) Weight optimization for ‘Surface 3’. 

  
  
   



   105

  
  
   

Table (6.10) Weight optimization parameters for ‘Surface 3’. 
 

Name SURFACE3 

dpts (# of data points) 1024 

k (Order in ‘u’ direction) 4 

l (Order in ‘w’ direction) 4 

npts (control points in ‘u’direction) 8 

mpts (control points in ‘w’ direction) 8 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.005 

Execution time (secs) 664.406 
 

Table 6.10 shows the various parameters used and generated in the weight optimization of 

’Surface 3’. The BestCost (Least Error) is found to be .005 units and the execution time is 

found to be 664.406 seconds. 

 

Figure 6.11(a) shows the original image given as an input to the algorithm. Figures 

6.11(b) & 6.11(c) depict the intermediate fittings of the ‘Jar’ at iterations ( Time + i ) = 

51 & 126 respectively and figure 6.11(d) shows the fitting for the actual iteration of 250 

(Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.11(e) depicts the actual 

reduction in the costs (error) as the number of iterations increase. 
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(a) 

(b) 

(c)  (d) 

(e) 
Figure (6.11) Weight optimization for ‘Jar’. 

  
  
   



   107

  
  
   

Table (6.11) Weight optimization parameters for ‘Jar’. 
 

Name Jar 

dpts (# of data points) 1089 

k (Order in ‘u’ direction) 4 

l (Order in ‘w’ direction) 4 

npts (control points in ‘u’direction) 8 

mpts (control points in ‘w’ direction) 8 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.132 

Execution time (secs) 781.2650 
 

Table 6.11 shows the various parameters used and generated in the weight optimization of 

’Jar’. The BestCost (Least Error) is found to be 0.132 units and the execution time is 

found to be 781.2650 seconds. 
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6.3 Knot optimization 
 

6.3.1 Curve fitting results 
 

Figure 6.12(a) shows the original scanned image given as an input to the algorithm. 

Figure 6.12(b) shows the outline of the image obtained after applying the boundary 

detection algorithm. Figures 6.12(c) & 6.12(d) depict the intermediate fittings of the 

‘pound’ symbol at iterations ( Time + i ) = 51 & 126 respectively and figure 6.12(e) 

shows the fitting for the actual iteration of 250 (Maxtime), where ‘i’ iterates over 

Annealing time ‘M’. Figure 6.12(f) depicts the actual reduction in the costs (error) as the 

number of iterations increase. 

 

Table (6.12) Knot optimization parameters for ‘Pound’. 
 

Name POUND 

dpts (# of data points) 688 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 3.3775 

Execution time (secs) 517.781 
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Table 6.9 shows the various parameters used and generated in the knot optimization of 

the ‘Pound’ symbol. The BestCost (Least Error) is found to be 3.3775 units and the 

execution time is found to be 517.781 seconds.  

 

Figure 6.13(a) shows the original scanned image given as an input to the algorithm. 

Figure 6.13(b) shows the outline of the image obtained after applying the boundary 

detection algorithm. Figures 6.13(c) & 6.13(d) depict the intermediate fittings of the 

‘Aich’ symbol at iterations ( Time + i ) = 51 & 126 respectively and figure 6.13(e) shows 

the fitting for the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time 

‘M’. Figure 6.13(f) depicts the actual reduction in the costs (error) as the number of 

iterations increase. 

 

Table (6.13) Knot optimization parameters for ‘Aich’. 
 

Name AICH 

dpts (# of data points) 787 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 14.3 

Execution time (secs) 595.703 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure (6.12) Knot optimization for ‘Pound’ . 
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Table 6.13 shows the various parameters used and generated in the knot optimization of 

the ‘Aich’ symbol. The BestCost (Least Error) is found to be 14.3 units and the execution 

time is found to be 595.703 seconds. 

 

Figure 6.14(a) shows the original scanned image given as an input to the algorithm. 

Figure 6.14(b) shows the outline of the image obtained after applying the boundary 

detection algorithm. Figures 6.14(c) & 6.14(d) depict the intermediate fittings of the ‘Ali’ 

symbol at iterations ( Time + i ) = 51 & 126 respectively and figure 6.14(e) shows the 

fitting for the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time 

‘M’. Figure 6.14(f) depicts the actual reduction in the costs (error) as the number of 

iterations increase. 

 

Table (6.14) Knot optimization parameters for ‘Ali’. 
 

Name ALI 

dpts (# of data points) 1644 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 12.036 

Execution time (secs) 2048.3 
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(c) (d) 

(e) (f) 

Figure (6.13) Knot optimization for ‘Aich’. 
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Table 6.14 shows the various parameters used and generated in the knot optimization of 

the ‘Ali’ symbol. The BestCost (Least Error) is found to be 12.036 units and the execution 

time is found to be 2048.3 seconds. 

 

Figure 6.15(a) shows the original scanned image given as an input to the algorithm. 

Figure 6.15(b) shows the outline of the image obtained after applying the boundary 

detection algorithm. Figures 6.15(c) & 6.15(d) depict the intermediate fittings of the 

‘Apple’ symbol at iterations ( Time + i ) = 51 & 126 respectively and figure 6.15(e) shows 

the fitting for the actual iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time 

‘M’. Figure 6.15(f) depicts the actual reduction in the costs (error) as the number of 

iterations increase. 

 

Table (6.15) Knot optimization parameters for ‘Apple’. 
 

Name Apple 

dpts (# of data points) 1204 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 16.553 

Execution time (secs) 1219.6 
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(c) (d) 

(e) 
 

(f) 
Figure (6.14) Knot optimization for ‘Ali’ . 
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Table 6.15 shows the various parameters used and generated in the knot optimization of 

the ‘Apple’ symbol. The BestCost (Least Error) is found to be 16.553 units and the 

execution time is found to be 1219.6 seconds. 

 

Figure 6.16(a) shows the original scanned image given as an input to the algorithm. 

Figures 6.16(b) & 6.16(c) depict the intermediate fittings of the ‘Open Curve’ at iterations 

( Time + i ) = 51 & 126 respectively and figure 6.16(d) shows the fitting for the actual 

iteration of 250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.16(e) 

depicts the actual reduction in the costs (error) as the number of iterations increase. 

 

Table (6.16) Knot optimization parameters for ‘Open Curve’. 
 

Name Open 

Curve 

dpts (# of data points) 1001 

K (Order of NURBS) 4 

npts (# of control points) 70 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.1275 

Execution time (secs) 920.131 
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Figure (6.15) Knot optimization for ‘Apple’. 
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Figure (6.16) Knot optimization for ‘Open Curve’. 
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Table 6.16 shows the various parameters used and generated in the knot optimization of 

the ‘Open Curve’ symbol. The BestCost (Least Error) is found to be 0.1275 units and the 

execution time is found to be 920.131 seconds. 

 

6.3.2 Surface fitting results. 
 

Figure 6.17(a) shows the original image given as an input to the algorithm. Figures 

6.17(b) & 6.17(c) depict the intermediate fittings of the ‘Surface 1’ at iterations ( Time + i 

) = 51 & 126 respectively and figure 6.17(d) shows the fitting for the actual iteration of 

250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.17(e) depicts the 

actual reduction in the costs (error) as the number of iterations increase. 

Table (6.17) Knot optimization parameters for ‘Surface 1’. 
 

Name SURFACE1 

dpts (# of data points) 1089 

k (Order in ‘u’ direction) 4 

l (Order in ‘w’ direction) 4 

npts (control points in ‘u’direction) 8 

mpts (control points in ‘w’ direction) 8 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.082 

Execution time 434.828 
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Table 6.17 shows the various parameters used and generated in the knot optimization of 

‘Surface 1’. The BestCost (Least Error) is found to be 0.082 units and the execution time 

is found to be 434.828 seconds. 

 

Figure 6.18(a) shows the original image given as an input to the algorithm. Figures 

6.18(b) & 6.18(c) depict the intermediate fittings of the ‘Surface 2’ at iterations ( Time + i 

) = 51 & 126 respectively and figure 6.18(d) shows the fitting for the actual iteration of 

250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.18(e) depicts the 

actual reduction in the costs (error) as the number of iterations increase. 

 

Table (6.18) Knot optimization parameters for ‘Surface 2’. 
 

Name SURFACE2 

dpts (# of data points) 441 

k (Order in ‘u’ direction) 4 

l (Order in ‘w’ direction) 4 

npts (control points in ‘u’direction) 8 

mpts (control points in ‘w’direction) 8 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.19052 

Execution time 110.89 
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(c) 

 
(d) 

 
(e) 

Figure (6.17) Knot optimization for ‘Surface 1’. 
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Table 6.18 shows the various parameters used and generated in the knot optimization of 

’Surface 2’. The BestCost (Least Error) is found to be 0.19052 units and the execution 

time is found to be 110.89 seconds. 

 

Figure 6.19(a) shows the original image given as an input to the algorithm. Figures 

6.19(b) & 6.19(c) depict the intermediate fittings of the ‘Surface 3’ at iterations ( Time + i 

) = 51 & 126 respectively and figure 6.19(d) shows the fitting for the actual iteration of 

250 (Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.19(e) depicts the 

actual reduction in the costs (error) as the number of iterations increase. 

 

Table (6.19) Knot optimization parameters for ‘Surface 3’. 
 

Name SURFACE3 

dpts (# of data points) 1024 

k (Order in ‘u’ direction) 4 

l (Order in ‘w’ direction) 4 

npts (control points in ‘u’direction) 8 

mpts (control points in ‘w’ direction) 8 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.0032 

Execution time 705.485 
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(e) 

Figure (6.18) Knot optimization for ‘Surface 2’. 
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Table 6.19 shows the various parameters used and generated in the knot optimization of 

‘Surface 3’. The BestCost (Least Error) is found to be 0.0032 units and the execution time 

is found to be 705.485 seconds. 

 

Figure 6.20(a) shows the original image given as an input to the algorithm. Figures 

6.20(b) & 6.20(c) depict the intermediate fittings of the ‘Jar’ at iterations ( Time + i ) = 

51 & 126 respectively and figure 6.20(d) shows the fitting for the actual iteration of 250 

(Maxtime), where ‘i’ iterates over Annealing time ‘M’. Figure 6.20(e) depicts the actual 

reduction in the costs (error) as the number of iterations increase. 

 

Table (6.20) Knot optimization parameters for ‘Jar’. 
 

Name Jar 

dpts (# of data points) 1089 

k (Order in ‘u’ direction) 4 

l (Order in ‘w’ direction) 4 

npts (control points in ‘u’direction) 8 

mpts (control points in ‘w’ direction) 8 

α (Cooling rate) 0.99 

β (constant) 1.5 

M (Annealing time) 50 

MaxTime 250 

BestCost (Least Error) 0.129 

Execution time 797.109 
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Figure (6.19) Knot optimization for ‘Surface 3’. 
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Table 6.20 shows the various parameters used and generated in the knot optimization of 

‘Jar’. The BestCost (Least Error) is found to be 0.129 units and the execution time is 

found to be 797.109 seconds. 

 

Table 6.21 summarizes the results obtained for both curves (Pound, Aich & Ali) and 

surfaces (Surface 1, Surface 2, Surface 3) for weight optimization and knot optimization. 

 

Table (6.21) Weight & Knot optimization results summary. 
 

 

6.3.2.1 Weight 
optimizati

on  
6.3.2.2 Knot 

optimization  

 Time Least error Time Least error Points 

Pound 530.859 3.378 517.781 3.3775 688 

Aich 625.406 14.332 595.703 14.3 787 

Ali 2029.8 12.03 2048.3 12.03655 1644 

Surface 1 442 0.085 434.828 0.082 1089 

Surface 2 117.016 0.1925 110.89 0.19052 441 

Surface 3 664.406 0.005 705.485 0.0032 1024 
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Figure (6.20) Knot optimization for ‘Jar’. 
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Finally, Figure 6.21 picturizes the data shown in Table 6.21. It is observed that there is 

little difference between weight and knot optimization for both curves and surfaces. But, 

knot optimization requires a good initial location of knots. A random initial location of 

knots does not give good results within the specified Maxtime of 250. 

 

Since, knot optimization requires a good initial location of knots, weight optimization of 

NURBS curve and surfaces is a better option giving comparable results. 

Results Comparison - Logarithmic Table
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Pound Aich Ali Surface 1 Surface 2 Surface 3

weight optimization Time weight optimization least error

knot optimization Time knot optimization least error
 

Figure (6.21) Weight – Knot Comparison.  
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7. CONCLUSION 
 

The objective of the research presented in this thesis was to develop an algorithm for the 

global optimization of the fitting error between a set of scanned points and a fitted 

curve/surface. To achieve this objective, the Simulated Annealing optimization heuristic 

was tailored to solve the problem. We also had the objective of finding out the best 

NURB optimization parameter among weights and knots.  

 

For weight optimization, a uniform knot vector and a fixed number of control points are 

calculated using the least squares technique, while the sum of squared errors is taken as 

the objective function. In knot optimization, the weight vector is set to unity. The number 

of elements of the weight vector is taken the same as the number of control points. A 

good initial solution of knot vector is taken. New knot vectors are calculated using the 

neighborhood function of the Simulated Annealing Algorithm. 

 

Results obtained from optimization of weights and knots of NURBS for both curves and 

surfaces indicate that weight optimization is a better option than knot optimization 

because knot optimization requires a good initial location of knot vector. 

 

From our work, we conclude that the use of a global optimization method such as 

Simulated Annealing is essential for the problem at hand. The S.A. algorithm uses an 
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efficient local optimization method, which ensures it’s accurate arrival at the global 

optimum. We also conclude that weight optimization is a better alternative than knot 

optimization. 

 

One of the shortcomings of our algorithm is that it works for images with a single 

segment. Images such as ’O’ with double segments do not work with this algorithm. Also 

we see very low errors in case of surfaces compared to curves. The reason behind these 

results is that input surfaces are created using mathematical functions, while curves are 

actually scanned. 

 

In future, this work can be extended to simultaneous optimization of two or more NURBS 

parameters like control point-weight, knot vector-weight, etc. Other global optimization 

techniques like the Ant Algorithm can also be applied to optimize NURBS parameters to 

solve the problem. Also, this work can be incorporated in the reverse engineering 

component of the CAD/CAM modeling softwares. 
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