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A B-Spline-based Generative Adversarial Network Model for
Fast Interactive Airfoil Aerodynamic Optimization

Xiaosong Du∗, Ping He†, and Joaquim R. R. A. Martins.‡
University of Michigan, Ann Arbor, MI, 48109, USA

Airfoil aerodynamic optimization is of great importance in aircraft design; however, it relies
on high-fidelity physics-based models that are computationally expensive to evaluate. In this
work, we provide a methodology to reduce the computational cost for airfoil aerodynamic opti-
mization. Firstly, we develop a B-spline based generative adversarial networks (BSplineGAN)
parameterization method to automatically infer design space with sufficient shape variability.
Secondly, we construct multi-layer neural network (MNN) surrogates for fast predictions on
aerodynamic drag, lift, and pitching moment coefficients. The BSplineGAN has a relative
error lower than 1% when fitting to UIUC database. Verification of MNN surrogates shows
the root means square errors (RMSE) of all aerodynamic coefficients are within the range of
20%–40% standard deviation of testing points. Both normalized RMSE and relative errors
are controlled within 1%. The proposed methodology is then demonstrated on an airfoil aero-
dynamic optimization. We also verified the baseline and optimized designs using a high-fidelity
computational fluid dynamic solver. The proposed framework has the potential to enable
web-based fast interactive airfoil aerodynamic optimization.

I. Introduction
Aerodynamic optimization plays a key role in aircraft design because it effectively reduces the design period [1, 2].

However, both gradient-free [3–5] and gradient-based [6, 7] optimization algorithms rely on high-fidelity computational
fluid dynamics (CFD) simulations that are computationally expensive to run. To reduce the computational budget and
obtain fast optimization convergence, researchers have focused on two main branches: dimensionality reduction [8, 9],
and surrogate modeling [10, 11].

On one hand, dimensionality reduction methods, such as principal component analysis and partial least squares,
reduce the number of design variables by obtaining representative principal components. Moreover, advanced
parameterization methods [12] including singular value decomposition and non-uniform rational B-spline are introduced
to represent geometries with as few design variables as possible. On the other hand, surrogate models [13, 14], such
as radial basis function and Gaussian regression process, have been widely used in various engineering areas for fast
response estimations. These methods manage to alleviate the computational costs, however, they still suffer from these
drawbacks [15, 16]: (1) dimensionality reduction methods lose part of available information as a trade-off, (2) typical
parameterization methods have to guess the design variable limits which are always much larger than sufficient shape
variability, (3) traditional surrogate models can hardly deal with large data set.

Generative adversarial networks (GAN) model was invented by Goodfellow et al. [17, 18] to generate new data
with the same statistics as the training data. Goodfellow et al. [17, 18] successfully demonstrated this new conception
on a series of machine learning data sets. They claimed the viability of the modeling framework and pointed out
straightforward extensions including semi-supervised learning and efficiency improvements. Chen et al. [19] proposed an
information-theoretic extension of GAN (InfoGAN) to learn disentangled representations in a completely unsupervised
manner by maximizing mutual information between latent variables and training data observations. Chen et al. [15, 16]
improved the InfoGAN to BezierGAN model for smooth shape representation and applied this approach to airfoil
shape parameterization of aerodynamic optimization. BezierGAN model reduces the high dimensionality of Bezier
representation to low-dimensional latent variables for optimization. Besides, BezierGAN model reduces design space
by automatically inferring the boundary and keeping sufficient shape variability in the meantime. Results show that
BezierGAN model accelerates the optimization convergence and generates smoother shapes than InfoGAN.

∗Post-Doctoral Fellow, Department of Aerospace Engineering.
†Assistant Research Scientist, Department of Aerospace Engineering.
‡Professor, Department of Aerospace Engineering, AIAA Associate Fellow.
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Neural networks [20, 21] surrogate models capture intricate structure of training data and handle large data set via
batch optimization strategy, motivating breakthroughs in high-dimensional regression tasks, and processing images,
audios, and videos. LeCun et al. [22] showed detailed insights and predicted the future of deep neural network methods
including multi-layer neural networks (MNN), convolutional neural networks and recurrent neural networks. Raissi et
al. [23, 24] proposed the physics-informed neural networks (PINN) to take advantage of the neural networks gradient
and incorporate useful physics information from governing equations. They managed to demonstrate the proposed
PINN model on flow field predictions. Zhu et al. [25] developed a physics-constrained neural to address constrains of
data implied by partial differential equations, and demonstrated the model on high-dimensional unlabeled data.

In our previous work, we generated data-driven surrogate models, namely, gradient-enhanced Kriging with partial
least squares [21, 26, 27], and gradient-enhanced MNN [28]. Surrogate models are both verified with sufficient accuracy,
and successfully applied to our Webfoil online airfoil tool.∗ Webfoil is a web-based tool for fast interactive airfoil
analysis and design optimization using any modern computer or mobile device. The completed work, however, defined
large design space and filtered out unreasonable airfoil shapes through complex procedures. In addition, separate
surrogate models with different numbers of parameterization variables were generated for subsonic and transonic
regimes.

Continuing with previous work, we propose a B-spline-based GAN (BSplineGAN) model for Webfoil parameteriza-
tion. BSplineGAN is an extension to the state-of-the-art BezierGAN airfoil parameterization method. After training
with the UIUC airfoil database, the BSplineGAN automatically generates reasonable airfoil shapes with sufficient
variability. The advantages of B-spline curves [29, 30] over Bezier curves provide BSplineGAN with a better shape
control with fewer control parameters. Moreover, we construct one generalized MNN model for both subsonic and
transonic regimes.

The rest of this paper is organized as follows. Section II describes the methods including BSplineGAN and MNN
surrogate model used in this work. The optimization framework is demonstrated on an aerodynamic optimization case
shown in Section III. Then we conclude the paper in Section IV.

II. Methodology
This section describes the general workflow of BSplineGAN, then steps into its key elements including B-spline

parameterization, GAN model, BSplineGAN and surrogate modeling.

A. General Workflow
The BSplineGAN-based fast interactive aerodynamic optimization framework is summarized as follows (Fig. 1):
1) Starting with the UIUC airfoil database, we feed the existing airfoil shapes as training data into BSplineGAN

model, where reasonable airfoils with sufficient variability are obtained. We add the B-spline layer onto the
BSplineGAN generator module to enhance the smoothness of generated airfoils.

2) Apply Latin hypercube sampling (LHS) [31] on BSplineGAN input parameters for random generated airfoil
shapes, which are fed together with operating conditions into the CFD solver, ADflow † in this work.

3) Use the training data set to construct MNN surrogate models.
4) Verify the surrogate model accuracy using verification metrics against testing data set, and determine whether

the surrogate model is of sufficient accuracy.
5) If the surrogate model is sufficiently accurate we can start surrogate-based aerodynamic analysis and optimization.

Otherwise, we re-sample a larger training data set, and repeat the process above until surrogate model has
sufficient accuracy.

B. B-Spline Parameterization
B-spline curve is a generalization of Bezier curve [29, 30]. Moreover, B-spline curves provide more control flexibility

and finer shape control because of the following reasons [29]:
1) The degree of B-spline curve is independent with the number of control points.
2) The strong convex hull property provides B-spline curves finer shape control.
3) Advanced techniques such as changing knots can be implemented for editing and designing shapes.

More details can be found in Piegl and Thiller [29].

∗http://webfoil.engin.umich.edu
†https://github.com/mdolab/adflow
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UIUC database

BSplineGAN

Neural network
Neural network

B-spline layer

Generator Discriminator

MNN surrogate modeling

Aerodynamic analysis 

& optimization

Existing airfoils

Sampling & CFD

Verification

Generated data sets

Response prediction

Sufficient accuracy
Insufficient accuracy

Larger training

data set

Fig. 1 BSplineGAN-based fast interactive aerodynamic optimization framework.

A B-spline curve is defined as

P(u) =
n∑
i=0

Ni,k(u)pi, (1)

where k is order of B-spline curve, u is knot within the range of [0, 1], pi is the (i + 1) th control point, the total number
of control points is n + 1, Ni,k is basis function and defined as

Ni,1 =

{
1 ui ≤ u ≤ ui+1,

0 otherwise,
(2)

Ni,k =
u − ui

ui+k−1 − ui
Ni,k−1(u) +

ui+k − u
ui+k − ui+1

Ni+1,k−1(u), (3)

with the increasing knot vector [u0, ...,un+k] and u0 = 0,un+k = 1 in this work.
B-spline curves are commonly used to represent airfoils [12]. We construct two distinct B-splines for upper and

lower airfoil surfaces, separately. Each B-spline curve has two end control points fixed at leading edge (0, 0) and trailing
edge (1, 0). The remaining control points of each surface are distributed on a half-cosine scale between (0, 1) along the
chordwise direction and only allowed to vary in the vertical direction. The half-cosine scale is given as

pi,x =
1
2

[
1 − cos

(
π(i − 1)

n + 1

)]
. (4)

C. Generative Adversarial Networks and Key Variants
GAN model is a type of generative model, developed by Goodfellow et al [17]. to match the existing data statistics

and patterns. As shown in Fig. 2, a GAN model consists of generator and discriminator neural networks. The former
maps a set of input parameters with prior distributions, i.e. noise variables, into generated designs. The latter takes both
existing data and generated designs as inputs, and output the probabilities of being real designs. The training process is
typically seen as a competition between generator and discriminator. Specifically, discriminator is trained with existing
data set to output 1 and with generated design to output 0, while generator is trained to generate designs that are difficult
for discriminator to judge. This process is mathematically formulated as a minimax problem

min
G

max
D

V(D,G) = Ex∼Pdata [logD(x)] + Ez∼Pz [log(1 − D(G(z)))], (5)
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where x is sampled from existing data distribution Pdata, z is sampled from the noise variable distribution Pz, and G and
D are the generator and discriminator. In this way, a trained GAN model generates reasonable designs with sufficient
shape variability within the prior noise variable distribution.

The noise variable z represents the design space, however, the relationship between the noise variable and generated
shapes are entangled and disordered. The InfoGAN model (Fig. 3) was developed to solve this problem by decomposing
design space into a set of semantically meaningful factors of variations. Specifically, InfoGAN model [19] uses two
vectors of input variables: noise variable z representing the incompressible data information and latent variable c
representing the salient structured semantic features of existing data set. Then we maximize a lower bound of the mutual
information between c and generated designs. The mutual information lower bound is formulated as

L1(G,Q) = Ex∼PG

[
Ec′∼P(c |x)[logQ(c′ |x)]

]
+ H(c), (6)

where Q is the auxiliary distribution for approximating P(c |x), H(c) is the latent variable entropy which is viewed as a
constant. Thus, the InfoGAN objective cost function is given as

min
G,Q

max
D

V(D,G) − λL1(G,Q), (7)

where λ is a weighting factor.
BezierGAN model [15, 16] shares a similar structure as InfoGAN model except that a Bezier curve parameterization

layer is added as output layer of generator neural networks. This Bezier layer synthesizes the control points, weighting
factors, and parameter variables for a rational Beizer curve representation of airfoil shapes. Thus, the generator provides
smooth airfoil shapes because of the Bezier layer, instead of simple discrete points provided by InfoGAN model. Besides
these operations, BezierGAN objective cost function is regularized to avoid convergence to bad optima:

1) Regularize adjacent control points to keep them close via the corresponded average and maximum Euclidean
distance

R1(G) =
1

Nn

N∑
j=1

n+1∑
i=1
‖p(j)i − p(j)

i−1‖2, (8)

R2(G) =
1
N

N∑
j=1

max
i
‖p(j)i − p(j)

i−1‖2, (9)

where N is the sample size.
2) Regularize weighting factors w to eliminate unnecessary control points

R3(G) =
1

N(n + 1)

N∑
j=1

n+1∑
i=1
|w
(j)
i |, (10)

3) Regularization to prevent highly non-uniform parameter variables

R4(G) =
1

N M

N∑
j=1

M∑
i=0
‖a(j)i − 1‖2 + ‖b(j)i − 1‖2, (11)

where a and b are parameters of the Kumaraswamy distribution to obtain parameter variables, M is the number
of Kumaraswamy cumulative distribution functions.

Generator

Neural networks

Discriminator

Neural networks

Noise variable Generated design

Existing database

Fake

Real

Fig. 2 GAN model architecture.
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Generator

Neural networks

Discriminator

Neural networks

Noise variable Generated design

Existing database

Fake

RealLatent variable

Latent distribution

Fig. 3 InfoGAN model architecture.

Table 1 Neural network layers setup of generator and discriminator

Layers Generator Discriminator
L0 Fully connected layer, ReLU, batch normalization Convolutional layer, ReLU, batch normalization, dropout=0.9
L1 Fully connected layer, ReLU, batch normalization Convolutional layer, ReLU, batch normalization, dropout=0.9
L2 Deconvolutional layer, ReLU, batch normalization Convolutional layer, ReLU, batch normalization, dropout=0.9
L3 Deconvolutional layer, ReLU, batch normalization Fully connected layer, ReLU, batch normalization
L4 Deconvolutional layer, ReLU, batch normalization Fully connected layer, no activation, no normalization
L5 Deconvolutional layer, Tanh, no normalization
L6 B-spline parameterization layer

Combining the above mentioned regularization terms, the objective function becomes

min
G,Q

max
D

V(D,G) − λ0L1(G,Q) +
4∑
i=1

λiRi(G). (12)

D. B-Spline-Based Generative Adversarial Networks
The BSplineGAN model replaces the Bezier layer of BezierGAN model with a B-spline parameterization layer. As

described in Section II.B, we use two separate B-spline curves sharing the x coordinates to represent the upper and
lower airfoil surfaces. The B-spline layers takes control points generated by previous neural network layers to output
smooth airfoil shapes. The neural network architectures of generator and discriminator are summarized in Table 1.

We add the following regularization terms to avoid bad converged optima
1) Regularize control points on each airfoil surface to keep them close by the average Euclidean distance between

each adjacent control points

R1(G) =
1

Nn

N∑
j=1

n+1∑
i=1
‖p(j)i − p(j)

i−1‖2, (13)

2) Regularize the difference between upper and lower surface control points of the same x coordinates to avoid
intersected airfoil shapes

R2(G) =
1

Nns

N∑
j=1

ns∑
i=1

max(0, p(j)
l,i
− p(j)u,i), (14)

where ns is the number of control points on each surface. Thus, the objective cost function becomes

min
G,Q

max
D

V(D,G) − λ0L1(G,Q) +
2∑
i=1

λiRi(G). (15)

We set λi as 1 in this work.
The advantages of BSplineGAN parameterization are summarized as follows
1) Share the properties of dimensionality reduction with sufficient shape variability as original GAN model.
2) Extract disentangled features of existing data for fast optimization convergence as described by Chen et

al . [15, 16].
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3) B-spline layer enables more control feasibility and finer shape control than Bezier layer.
4) Two separate B-spline curves force the leading and trailing edge of generated airfoil shapes going through points

(0, 0) and (1, 0), respectively.

E. Multi-Layer Neural Networks Surrogate Modeling
In this work, the surrogate model input parameters are random input variables of BSplineGAN model and

aerodynamic operating condition parameters, i.e., Mach number (M), Reynolds number (Re), and angle of attack (α).
We use the LHS scheme to sample the design space for training, validation, and testing data sets. We then obtain real
model observations of all data sets using ADflow.

ADflow is a finite-volume structured CFD solver that is available under an open-source license. ADflow also has a
discrete adjoint [32], overset mesh capability [33], and Newton-type solvers. The inviscid fluxes are discretized by
using three different numerical schemes: the scalar Jameson–Schmidt–Turkel [34] (JST) artificial dissipation scheme, a
matrix dissipation scheme based on the work of Turkel and Vatsa [35], and a monotone upstream-centered scheme for
conservation laws (MUSCL) based on the work of van Leer [36] and Roe [37]. The viscous flux gradients are calculated
by using the Green–Gauss approach. For turbulent RANS solutions, the Spalart–Allmaras [38] turbulence model is
used to close the equations. To converge the residual equations, we use a Runge–Kutta (RK) algorithm, followed by an
approximate Newton–Krylov (ANK) algorithm [39]. For all simulations we require the flow residuals to drop 14 order
of magnitudes.

The quantities of interest in current work are drag coefficients (Cd), lift coefficient (Cl), and pitching moment
coefficient Cm. We construct MNN surrogate models for Cd, Cl , Cm, separately. Each MNN model shares similar
neural network architecture. The MNN construction process is shown in Fig. 4 and described as

1) Preprocess the input parameters with MinMaxScaler within SKlearn toolbox.
2) Build up multiple-hidden-layer neural networks, each layer of which ends with ReLU activation function.
3) Set the cost function as the RMSE between training data observations and MNN predictions.
4) Train MNN model using Adam optimizer via batch optimization strategy.
5) Monitor the RMSE of training and validation data sets for the convergence of MNN model training.

MNN

Input parameters

L1 layer

ReLU

Ln layer

ReLU

Output layer

Optimizer

Cost function

Preprocessing

Batch strategy

MNN evaluation

Fig. 4 Construction process of MNN surrogate model.
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F. Verification
To check the accuracy of trained MNN surrogate model from various perspectives, we select root mean squared

error (RMSE), normalized RMSE (NRMSE), and relative error as verification metrics, which are defined as follows

RMSE =

√∑Nt

i=1(Ypred − Yreal)2

Ntesting
, (16)

NRMSE =
RMSE

max(Yreal) −min(Yreal)
, (17)

Rel. error =
Nt∑
i=1
(Ypred − Yreal)2/

Nt∑
i=1
(Yreal)2, (18)

where Ntesting is the number of testing points, Ypred is surrogate model prediction, Yreal is real model observation.
If RMSE is within one standard deviation of testing points, σtesting, the surrogate model is relatively good. RMSE

within 10%σtesting is a sign for a good surrogate model. NRMSE and Rel. error, as relative verification metrics, are
expected to be within 1%.

III. Results and Discussion
In this section, we use the proposed approach to perform aerodynamic shape optimization. To this end, we generate

CFD sample points and feed them into the MNN surrogate model to prediction aerodynamics. To ensure numerical
accuracy, we conduct grid convergence studies, parametric studies about selecting the B-spline order, the number of
control points, and the number of latent variables, and the MNN surrogate verification. Finally, we incorporate the
MNN surrogate model into a gradient-based optimization framework and demonstrate a transonic airfoil aerodynamic
optimization.

A. Grid convergence study
Since the MNN surrogate model is generated for both subsonic and transonic regimes, we run grid convergence

studies for both types of cases, following [40]. We set up two set of grids for incompressible (Ma < 0.3) and compressible
(Ma ≥ 0.3) cases, and use a convergence threshold of 0.1 drag counts. Figure 5 shows the grid convergence study
results on two typical aerodynamic optimization cases. In particular, Fig. 5(a) shows the NACA 0012 airfoil validation
case, where Ma is 0.15, Re is 6×106, chord length of 1 m, and a Cl at target of 0.0. Table 2 shows the CFD results,
showing a convergence between L0 and L0.5 grids. Figure 5(b) shows the RAE2822 case, where Ma is 0.725, Re is
6.5×106, chord length of 1 m, and a Cl at target of 0.824. Table 3 shows the CFD results, showing a convergence
between L0 and L1 grids. There, we use L0.5 and L1 for subsonic and transonic cases, respectively.

Table 2 Grid convergence for the incompressible case. We use the L0.5 mesh for generated samples.

Mesh size α Cl Cd

L0 687,616 0.0 0.0 0.0081896
L0.5 343,808 0.0 0.0 0.0081922
L1 171,904 0.0 0.0 0.0083086

Table 3 Grid convergence for the compressible case. We use the L1 mesh for generated samples.

Mesh size α Cl Cd

L0 687,616 2.8825 0.823999 0.0156983
L1 171,904 2.8516 0.823999 0.0156985
L2 42,976 2.8197 0.823999 0.0158520
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Fig. 5 Grid convergence study: (a) NACA 0012 case which has a convergence order of 10.97; (b) RAE2822
case which has a convergence order of 5.98.

B. Parametric study
Figure 6 shows the parametric study of mean relative L1 norm [27] with respective to the order of B-spline curve

and the number of control points for selected order. The mean relative L1 norm is obtained by fitting B-spline curve
to 1503 airfoils in UIUC database. Masters et al. [12] suggests a maximum B-spline order of 15, however, Fig. 6(a)
shows a considerable accuracy increase using a order of 18 with maximum control points. Therefore, we set the order
of both lower and upper airfoil surfaces as 18. Figure 6(b) shows the parametric study with respective to the total
number of control points, and 32 control points have sufficient accuracy. Therefore, the B-spline layer of BSplineGAN
generator has an order of 18 and 16 control points on each airfoil surface. We fix the number of BSplineGAN noise
variables as 10. Figure 7 shows parametric study with respect to the number of latent variables. We use 16 latent
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variables because of the fitting accuracy within 1%. Figure 8 shows a comparison between B-spline curve and the
trained BSplineGAN parameterization methods. In particular, Fig. 8(a) shows randomly generated shapes using the
B-spline layer of BSplineGAN, directly. The control points are set within the ranges of [-0.01, 0.10] and [-0.10, 0.01]
for upper and lower airfoil shapes, respectively. Figure 8(b) has the randomly generated airfoils using the trained
BSplineGAN model. Prior distributions of BSplineGAN variables are given in Table 4.
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Fig. 6 B-spline parametric study of mean L1 norm w.r.t.: (a) B-spline order, where we use the 18-th order; (b)
the number of control points, where we select the maximum number of control points for two separate 18-th
order B-spline curves.
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Fig. 7 Parametric study of BSplineGAN latent variables. We select 16 latent variables which reduces the mean
relative L1 norm within 1%.
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(a)

(b)

Fig. 8 Comparison between randomly generated shapes using: (a) B-spline curve; (b) BSplineGAN parame-
terization.
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C. Accuracy verification
Having decided the mesh density, B-spline order and the number of control points and latent variables, we generate

the CFD samples using ADflow. The distributions of input parameters are given in Table 4. We generate 8000 LHS
points as training data set, 100 as validation set, and 1000 as testing set. MNN surrogate models of Cd , Cl , and Cm have
an architecture of four, four, and three layers, respectively.

Key verification metrics are shown in Tables 5 to 7. NRMSE results of all three aerodynamic coefficients are within
5%, and all relative errors are well controlled within 1%. RMSE values vary between 20% to 40% meaning good global
surrogate models [11]. Figures 9 to 11 show visual comparisons between MNN surrogate models and testing data sets.
The mean absolute errors of Cd , Cl , and Cm are 37.863 counts, 476.79 counts, 258.515 counts, respectively. They have
not reached the accuracy level of our previous work [26]. We speculate this is because we have only 8000 training
points for 29 input parameters. We will generate more samples to improve the accuracy.

Table 4 Input parameter setup.

16 latent variables 10 noise variables Ma Re α

Uniform(0, 1) Normal(0, 0.52) Uniform(0, 0.9) Uniform(1E4, 1E10) Uniform(0, 3) deg

Table 5 Key verification metric about Cd

RMSE σtesting NRMSE Rel. Error
0.008314 0.039618 2.0% 0.53%

Table 6 Key verification metric about Cl

RMSE σtesting NRMSE Rel. Error
0.074643 0.276308 3.43% 0.47%

Table 7 Key verification metric about Cm

RMSE σtesting NRMSE Rel. Error
0.045355 0.123205 4.26% 0.70%
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Fig. 9 Validation of Cd: (a) prediction vs. ADflow results; (b) absolute error.
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Fig. 10 Validation of Cl: (a) prediction vs. ADflow results; (b) absolute error.
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Fig. 11 Validation of Cm: (a) prediction vs. ADflow results; (b) absolute error.
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D. Aerodynamic shape optimization
Weuse the trainedMNN surrogatemodel to perform a constrained aerodynamic shape optimization. The optimization

configuration is summarized in Table 8. The baseline airfoil is NACA 0012. The objective function is Cd . The design
variables are the 26 B-Spline control points that morph the airfoil shape, along with the angle of attack. We constrain
the lift coefficient to be equal to 0.5. In addition, we constrain the area of the airfoil to be equal to or larger than 80% of
its baseline value. The flow condition is at Ma = 0.734 and Re = 6.5 × 106.

We use an open-source Python package pyOptSparse‡ to setup the optimization problem. The SNOPT [41] optimizer
is used, which adopts the sequential quadratic programming (SQP) algorithm for optimization. Cd and Cl are predicted
by using the MNN surrogate model, and their derivatives are computed by using the finite-difference method.

The optimization results are summarized in Table 9. We obtain a 67.3% drag reduction in Cd. To confirm the
drag reduction, we run high-fidelity CFD simulations for the baseline and optimized designs using ADflow. The drag
reduction predicted by ADflow is 64.2%, 3.1% lower than that predicted by MNN. The optimized Cd value predicted by
ADflow is 2.9 count higher than that predicted by MNN. However, for the baseline design, the Cd value predicted by
MNN is 16.9 count higher than ADflow. We speculate the relatively large error is primarily due to the limited sample
size (8000 sample points) used in this study. In the future, we will increase the number of sample points to improve
the accuracy, as mentioned before. In addition, we will implement an analytical approach to compute derivatives, as
opposed to the finite-difference method, for better speed and accuracy.

Figure 12 shows the comparison of pressure and airfoil profiles between the baseline and optimized designs. The
optimized design uses a relatively flat upper surface to reduce the intensity of shock, which eventually reduces the drag.
This can be further confirmed by comparing the pressure contours between the baseline and optimized designs, as
shown in Fig. 13.

Table 8 Aerodynamic optimization setup for the NACA 0012 airfoil, which has 27 design variables and 2 constraints.

Function or variable Description Quantity
minimize CD Drag coefficient

with respect to y Coordinates of B-Spline control points 26
α Angle of attack 1

Total design variables 27

subject to CL=0.5 Lift-coefficient constraint 1
A ≥ 0.8Abaseline Minimum-area constraint 1

Total constraints 2

Table 9 Comparison of baseline and optimized Cd and Cl computed byMNN and ADflow. The drag reduction
predicted by MNN is qualitatively verified by ADflow.

Cd Cl

Baseline (MNN) 0.02830 0.5000
Optimized (MNN) 0.00924 0.5000
Baseline (ADflow) 0.02661 0.5000
Optimized (ADflow) 0.00953 0.5000

‡https://github.com/mdolab/pyoptsparse
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Fig. 12 Comparison of pressure and airfoil profiles between the baseline and optimized designs. The optimized
design reduces the shock intensity for drag reduction.

Fig. 13 Comparison of pressure contour between the baseline and optimized designs. The optimized design
reduces the shock intensity for drag reduction.

IV. Conclusion
In this work, we proposed a fast-response aerodynamic optimization methodology. We developed the BSplineGAN

parameterization approach based on the stat-of-the-art BezierGANmethod. The BSplineGAN parameterization provides
more control feasibility and finer shape control. Besides, BSplineGAN automatically infers a reduced design space
with sufficient shape variability. Multi-layer neural networks surrogate models were constructed for fast prediction of
aerodynamic coefficients. Optimization results showed the potentiality of this conception. We are currently running a
larger data set to further improve the accuracy of completed work. The proposed methodology has the potential to
improve the current Webfoil toolbox on fast interactive airfoil aerodynamic optimization.
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