502,305 research outputs found
Epidemic Model with Isolation in Multilayer Networks
The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the
propagation of such airborne diseases as influenza A (H1N1). Although the SIR
model has recently been studied in a multilayer networks configuration, in
almost all the research the isolation of infected individuals is disregarded.
Hence we focus our study in an epidemic model in a two-layer network, and we
use an isolation parameter to measure the effect of isolating infected
individuals from both layers during an isolation period. We call this process
the Susceptible-Infected-Isolated-Recovered () model. The isolation
reduces the transmission of the disease because the time in which infection can
spread is reduced. In this scenario we find that the epidemic threshold
increases with the isolation period and the isolation parameter. When the
isolation period is maximum there is a threshold for the isolation parameter
above which the disease never becomes an epidemic. We also find that epidemic
models, like overestimate the theoretical risk of infection. Finally, our
model may provide a foundation for future research to study the temporal
evolution of the disease calibrating our model with real data.Comment: 18 pages, 5 figures.Accepted in Scientific Report
Radiation Effects on CMOS Image Sensors With Sub-2 µm Pinned Photodiodes
CMOS image sensor hardness under irradiation is a key parameter for application fields such as space or medical. In this paper, four commercial sensors featuring different technological characteristics (pitch, isolation or buried oxide) have been irradiated with 60Co source. Based on dark current and temporal noise analysis, we develop and propose a phenomenological model to explain pixel performance degradation
Epidemic model with isolation in multilayer networks
The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network and we use an isolation parameter w to measure the effect of quarantining infected individuals from both layers during an isolation period tw. We call this process the Susceptible-Infected-Isolated-Recovered (SIIR) model. Using the framework of link percolation we find that isolation increases the critical epidemic threshold of the disease because the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and tw. When the isolation period is maximum there is a critical threshold for w above which the disease never becomes an epidemic. We simulate the process and find an excellent agreement with the theoretical results.We thank the NSF (grants CMMI 1125290 and CHE-1213217) and the Keck Foundation for financial support. LGAZ and LAB wish to thank to UNMdP and FONCyT (Pict 0429/2013) for financial support. (CMMI 1125290 - NSF; CHE-1213217 - NSF; Keck Foundation; UNMdP; Pict 0429/2013 - FONCyT)Published versio
Clinical parameters as predictors of bacterial isolation in the uterine content of dogs suspected of pyometra
In this study, female canines referred with clinical signs consistent with pyometra were prospectively evaluated. Signalment, clinical signs, laboratory findings and surgical findings were compared between dogs with and without bacterial isolation based on aerobic techniques. Patients with positive bacterial isolation were placed in the pyometra group, whereas patients with negative bacterial isolation were grouped as mucometra. A total of 140 dogs (118 with pyometra and 22 with mucometra) met the inclusion criteria.
Prereferral antibiotic administration was associated with a prolonged duration of clinical signs in the patients of the pyometra group (12 +/- 2 days versus 7 +/- 1 days; P=0.006). In the pyometra patients, clinical signs, like pyrexia, anorexia and discomfort on abdominal palpation, were observed more commonly than in the mucometra group. The total leukocyte count was the only parameter that differed significantly between the two groups (P=0.01). Although no difference in color and consistency of the uterine fluid was noted, the uteri of the pyometra group were heavier (851.80 +/- 800.30 g compared to 263.50 +/- 297.10 g). E. coil was the most commonly isolated bacterium (92/123)
Switching Control for Parameter Identifiability of Uncertain Systems
This paper considers the problem of identifying the parameters of an
uncertain linear system by means of feedback control. The problem is approached
by considering time-varying controllers. It is shown that even when the
uncertainty set is not finite, parameter identifiability can be generically
ensured by switching among a finite number of linear time-invariant
controllers. The results are shown to have several implications, ranging from
fault detection and isolation to adaptive and supervisory control. Practical
aspects of the problem are also discussed in details
Predicting and controlling the dynamics of infectious diseases
This paper introduces a new optimal control model to describe and control the
dynamics of infectious diseases. In the present model, the average time of
isolation (i.e. hospitalization) of infectious population is the main
time-dependent parameter that defines the spread of infection. All the
preventive measures aim to decrease the average time of isolation under given
constraints
Isolated Prompt Photon Production in Hadronic Final States of Annihilation
We provide complete analytic expressions for the isolated prompt photon
production cross section in annihilation reactions through one-loop
order in quantum chromodynamics (QCD) perturbation theory. Functional
dependences on the isolation cone size and isolation energy parameter
are derived. The energy dependence as well as the full angular
dependence of the cross section on are displayed, where
specifies the direction of the photon with respect to the
collision axis. We point out that conventional perturbative QCD
factorization breaks down for isolated photon production in
annihilation reactions in a specific region of phase space. We discuss the
implications of this breakdown for the extraction of fragmentation functions
from annihilation data and for computations of prompt photon
production in hadron-hadron reactions.Comment: 54 pages RevTeX plus 19 postscript figures submitted together in one
compressed fil
- …
