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Abstract— This paper introduces a new optimal control
model to describe and control the dynamics of infectious
diseases. In the present model, the average time to isolation
(i.e. hospitalization) of infectious population is the main time-
dependent parameter that defines the spread of infection. All
the preventive measures aim to decrease the average time to
isolation under given constraints.

The model suggested allows one to generate a “small” num-
ber of possible future scenarios and to determine corresponding
trajectories of infected population in different regions. Then,
this information is used to find an optimal distribution of bed
capabilities across countries/regions according to each scenario.

I. INTRODUCTION

The outbreak of Ebola Virus Disease (EVD) in West
Africa 2014 revealed many challenges in predicting and
controlling the spread of infectious diseases. These chal-
lenges are partly related to the mathematical modeling of
the dynamics of the epidemic. Providing accurate predictions
appeared to be extremely difficult.

To address these challenges, several new models have been
suggested each providing quite different results, for example
[1], [2], [3], [4], [13], [14], [15]. We also note that different
aspects of possible control have been intensively studied in
the literature including distribution strategies for vaccination
and antibiotic programs [12] as well as travel restrictions [8].

In this paper we concentrate on the development of models
that are well suited to the control of an outbreak. The most
commonly studied models in this area deal with temporal
networks [10], [11], [20] where several different models have
been suggested.

In [9] the 1995 Ebola outbreak in Congo is considered us-
ing an SEIR model whereby control intervention, performed
at time t∗, is described by the transmission coefficient β(t)
defined by β(t) = β if t < t∗ and β(t) = β exp(−q(t− t∗))
for t ≥ t∗, where β is the initial transmission rate that would
remain stable without the intervention.

Our paper models and studies an alternative control mech-
anism to decrease in the transmission of infection based on
the model developed in [7] where the transmission of infec-
tion depends mainly on two parameters: the transmission rate
β and the average time to isolation τ. In contrast to [9] we
assume that the transmission rate β does not change over
the whole period under consideration. The main dynamic
parameter in our model is τ and all the intervention measures
are directed at decreasing τ and consequently reducing the
spread of infection.
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The average time to hospitalization can be used for the
average time to isolation τ, although the isolation of infec-
tious population is not exactly the same as “hospitalization”.
Clearly, as the disease progresses hospitals become short on
beds (as well as staff and supplies) required to isolate and
treat all newly infected individuals. As a result, the number
of infected population can grow exponentially. This was the
case for the Ebola virus epidemic in West Africa (Guinea,
Sierra Leone and Liberia) where the spread of infection
was highly dangerous during June-November 2014 when the
capacity for treating Ebola patients was insufficient. It was
reported [5] that during this period “... many clinics and
hospitals in all three of the countries worst hit by Ebola
have effectively been shut down”.

After rapidly building new infrastructure and increasing
the capacity of beds the outbreak slowed down significantly.
Starting from January 2015, the epidemic has moved to
the ending phase that involves ensuring “capacity for case
finding, case management, safe burials and community en-
gagement” ([17] - WHO, Ebola Situation Report, 28 Jan
2015). Note that in [6] the hospitalization rate was the
parameter showing the greatest change.

Addressing these issues, this paper suggests new mathe-
matical models that can be used to increase the efficiency
of available resources. The main goal here is to keep
the model as simple as possible and, at the same time,
to have measurable control variables. Note that there are
many useful control measures that have been intensively
studied by introducing more “detailed” mathematical models,
however such models have less predictive capabilities (due
to overfitting). Prediction is crucial when considering future
planning periods.

The main component in the suggested model is the optimal
distribution of bed capabilities across countries/regions. This
is a very important and difficult problem that requires an
accurate prediction of the dynamics of infected population
in each region. For example, evaluating the situation of
the Ebola outbreak, WHO’s Ebola Situation Report on 14
Jan 2015 [17] notes that “Each of the intense-transmission
countries has sufficient capacity to isolate and treat patients,
with more than 2 treatment beds per reported confirmed and
probable case. However, the uneven geographical distribution
of beds and cases, and the under-reporting of cases, means
that not all EVD cases are isolated in several areas.”

II. MODEL

In [7] a new model is introduced to study the dynamics
of epidemics by considering the average time for isolation
(denoted by τ ) of infectious population as a time-dependent
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parameter. This model is derived from the well studied SIR
(Susceptible-Infectious-Recovery) model (e.g. [16]) and is
similar to models based on transmission rates from infectious
population at different generations (e.g. [13]).

The use of time-dependent parameter τ enables the analy-
sis of future scenarios by considering possible changes in τ.
In this paper we extend this approach by developing practical
and efficient optimal control models.

We denote by x(t) the number of infected cases at t ∈
{1, 2, · · · , T} (in days). Assuming that the natural death rate
of population (µ) is zero, the equation for x(t) is as follows
(see [7] for more details)

x(t+ 1) = β

τ−1∑
i=0

(1− αω(i))x(t− d− i). (1)

Here α is the death rate due to disease; d is the average
latent period (in days) for infected individuals to become
infectious; τ is the average infectiousness period (in days);
it is the average time required for isolation (time to hospi-
talization); and β is the transmission rate. Moreover, ω is a
gamma (cumulative) distribution function (with p.d.f - ωp)
for deaths due to disease. The fraction (1 − αω(i)) in this
case represents the proportion of remaining infected cases
x(t− d− i) after d+ i days.

The sum

Ia(t) =

τ−1∑
i=0

(1− αω(i))x(t− d− i)

defines the number of ”active” infectious population at time
t; it represents the number of infectious population that
are not yet isolated and therefore it is the only source of
secondary infections. (for the sake of simplicity we do not
consider infections in hospitals and death ceremonies). Then
by setting x(t) = βIa(t) we obtain model (1) in [7] where
µ (the natural death rate) in our case is zero.

The basic reproduction number R is calculated by consid-
ering the stationary states in (1):

R = β [τ − α
τ−1∑
i=0

ω(i)]. (2)

There are three main parameters in (1) - α, β and τ. The
results obtained in [7] show that this model provides quite
good approximation to the total number infected cases and
deaths during the current Ebola epidemic if τ is a piecewise
constant function (in fact, constant over consequent subin-
tervals with durations 2-3 months) and the parameters α and
β are constant over the whole period.

These results help us to predict the dynamics of an infected
population at future time intervals by keeping the values of
α and β unchanged (estimated from the previous period) and
considering different possible changes in τ. In this case the
major strategy of preventive intervention is the achievement
of some decrease in τ that according to (2) is equivalent to
decreasing the effective reproduction number.

This approach is implemented below by introducing
an optimal control models where the average time to
hospitalization τ is the key variable. According to the
results of data fitting mentioned above, it is sufficient to let
τ be constant on quite long time intervals (months).

Control τ . Therefore, we define τ(t) as a control
variable by assuming that it is piece-wise constant with
integer values (days). For the sake of simplicity let

τ(t) ≡ τi ∈ U, ∀t ∈ (Tj , Tj+1], j = 1, 2, · · · , p.

It is reasonable to assume that U
.
= {τmin, τmin +

1, · · · , τmax}; where τmin ≥ 1 is the minimal number of
days required to isolate infectious population.

Trajectory x. Given control τ we define trajectory
x = x(t) as follows

x(t+ 1) = β

τ(t)−1∑
i=0

(1− αω(i))x(t− d− i). (3)

In this formula the sum
∑τ(t)−1
i=0 (1 − αω(i))x(t − d − i)

represents the number of infectious individuals that are not
yet isolated. Considering the average length of hospital stay
(in days), the number of hospitalized cases at t can be
calculated as

h(t : τ,x) =

τ(t)+σ∑
i=τ(t)

(1− αω(i))x(t− d− i) (4)

Note that, recent studies (see for example [6]) show that σ
is around 6.5 days.

III. DATA FITTING

In this section we provide some numerical experiments
based on data from Guinea, Sierra-Leon and liberia. We
consider the cumulative number of infectious cases and
deaths denoted by C(t) and D(t), respectively. They can
be calculated as

C(t+ 1) =

t∑
s=0

x(s− d); (5)

D(t+ 1) =

t∑
s=0

n∑
i=0

αωp(i)x(s− d− i). (6)

Here αωp(i) is the death rate of infectious population in
generation x(s− d− i) and n is a large number. Parameters
of the gamma distribution function ω(i) are taken from [15]
where

ωp(x) =
ba

Γ(a)
xa−1e−bx, a = 10, b = 1.3333 (7)

with mean value 7.5. Moreover, we set d = 7 and n = 35
as in [7].
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TABLE I
RESULTS OF BEST FITS: THE (EFFECTIVE) REPRODUCTION

NUMBERS Rk AND AVERAGE TIMES TO HOSPITALIZATION τk (IN

DAYS) FOR DIFFERENT INTERVALS ∆k, k = 1, 2, 3, 4. THE

OPTIMAL VALUES FOR α AND β ARE ALSO PROVIDED; THEY

ARE CONSTANT FOR A WHOLE PERIOD

Country α β R1 (τ1) R2 (τ2) R3 (τ3) R4 (τ4)
Gui. 0.66 0.265 0.79 (3) 1.31 (5) 1.06 (4) 0.79 (3)
S.-L. 0.32 0.274 1.36 (5) 1.36 (5) 1.09 (4) 0.82 (3)
Lib. 0.46 0.294 1.17 (4) 1.46 (5) 0.88 (3) 0.88 (3)

Given data - the total number of infectious population
C0(t) and deaths D0(t) at time points t ∈ T , we minimize
the Root Mean Squared Error; that is, the function∑

t∈T
[C(t)− C0(t)]2 + [D(t)−D0(t)]2.

In the considered model there are only three parameters α
and β (constants) and a piece-wise constant control function
τ(t) that need to be optimized to fit data. The aim here
is to show that there exists a control τ(t) such that the
corresponding trajectory x(t) fits data well.

We consider three consequent intervals ∆k = [Tk, Tk+1]
(k = 1, · · · , 4) for each country and find optimal values
α, β and τk (k = 1, · · · , 4) where τ(t) = τk, ∀t ∈ ∆k.
The results are presented in Table I. The last time point T5
is 01-Mar-2015. The values of T1, T2, T3, T4 are as follows:
22-March, 23-May, 20-July and 04-Dec-2014 for Guinea; 27-
May, 20-June, 20-August and 04-Dec-2014 for Sierra Leone;
and 16-June, 20-July, 07-Sept and 04-Dec-2014 for Liberia.
Each interval ∆k has its own reproduction number Rk that
defines the shape of the best fits presented in Figure 1.

Data were retrieved from the WHO website [17] for the
cumulative numbers of clinical cases (confirmed, probable
and suspected) collected till 1 March 2015. The global
optimization algorithm DSO in Global And Non-Smooth
Optimization (GANSO) library [18], [19] is applied for
solving optimization problems in this section as well as in
Section V.

The results obtained show that the estimated values of α
and β can be used for future time intervals while considering
τ as a dynamic parameter that defines the spread of infection.
This naturally leads to optimal control problems that are
considered in the next section.

IV. OPTIMAL DISTRIBUTION OF BED
CAPACITIES

Denote by B(t) the number of beds (capacity of hospitals)
at time t. It is an increasing and piece-wise constant function
where jumps are at the points T bi , i = 1, 2, · · · , q. We refer
to [6] (Fig 1) for an example of B(t) in Liberia between
June-September 2014. Note that q ≥ p; that is the number
of points T bi is larger than Tj .

We assume that the initial period of epidemic is long
enough to estimate parameters α, β and to provide some

Fig. 1. The best fits for the cumulative numbers of infected cases and
deaths in Guinea, Sierra Leone and Liberia by considering three parameters
α, β and 4 subintervals with different values τk, k = 1, 2, 3, 4 (for the
values see Table I). The lines represent the best fits, red and black circles
represent the data

future scenarios depending on τ(t).

A. Objective function

Given process (τ,x) we define hospitalization rate as

HospRate(t) =
h(t : τ,x)

B(t)
. (8)

Note that the number of infectious cases (especially during
high growth) may exceed the number of available beds,
while it becomes quite low when the infection is slowing
down. Taking into account this observation, we use the
hospitalization rate in the definition of the objective function
(to be minimized) given by

x(T ) +K ·
T∑
t=1

h(t : τ,x)

B(t)
;
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where K is constant.

B. Constraints in terms of costs

We consider the following three functions that will be used
to formulate cost constraints.
• cB(∆b) - costs associated to building ∆b additional

beds;
• cS(h) - costs required for servicing h patients in hos-

pitals;
• cI(∆h) - costs required for ∆h infectious cases before

hospitalization.

Assuming that F (t) is the total available funds, we can
formulate cost constraints as

cB(∆b(t)) + cS(h(t)) + cI(∆h(t)) ≤ F (t), ∀t.

Here ∆b(t) = b(t + 1) − b(t) and ∆h(t) = h(t + 1 :
τ,x)− h(t : τ,x).

C. Multi regions

Now consider m regions/countries and assume there is
an inter-transmission of infections between them. Denote
by xr(t) the number of infected cases in country r and
assume that the transmission of infection from country i
to r is given by the coefficient βir ([13]). In this case, by
considering corresponding average times of isolation τr(t)
in each country r, we have the following system

xr(t+ 1) = β1r
∑τ1(t)−1
i=0 (1− α1ω(i))x1(t− d− i)

+β2r
∑τ2(t)−1
i=0 (1− α2ω(i))x2(t− d− i)

· · ·
+βmr

∑τm(t)−1
i=0 (1− αmω(i))xm(t− d− i)

where βir is the infections generated from country i. One
would expect βrr to be much larger than βir for i 6= r
and in a special case βir = 0. The number of hospitalized
population at time t is defined by (4); that is

hr(t : τr,xr) =

τr(t)+σ∑
i=τr(t)

(1−αrω(i))x(t−d−i), r = 1, · · · ,m.

We assume that the death rates αr and the coefficients βir
are estimated from the initial data and they are constant over
the whole period of the epidemic. Then, we can consider
the problem of optimal distribution of available new beds
between regions formulated below.

Problem 1 (Optimal distribution of bed capacities):
Given initial data (αr, βir and xr(t), t ≤ 1), total bed
capacity B(t) and future scenario for control functions
τr(t), r = 1, · · · ,m, find increasing piece-wise constant
functions br(t), r = 1, · · · ,m, for the problem

Minimize :

m∑
r=1

[
xr(T ) +K ·

T∑
t=1

hr(t : τr,xr)

br(t)

]
;

subject to : b1(t) + · · ·+ bm(t) ≤ B(t), ∀t.

In the next problem we take into account the cost
constraints:

Problem 2 (Optimal distribution of bed capacities
under cost constraints): Given initial data (αr, βir and
xr(t), t ≤ 1), total budget function F (t) and future scenario
for control functions τr(t), r = 1, · · · ,m, find increasing
piece-wise constant functions br(t), r = 1, · · · ,m, for the
problem

Minimize :

m∑
r=1

[
xr(T ) +K ·

T∑
t=1

hr(t : τr,xr)

br(t)

]
;

subject to : b1(t) + · · ·+ bm(t) ≤ B(t), ∀t;

cB(∆B(t)) +

m∑
r=1

[cS(hr(t)) + cI(∆hr(t))] ≤ F (t), ∀t.

Feasible processes. Given initial data (αr, βir and
xr(t), t ≤ 1) and B(t)) consider the trajectory x =
(x1, · · · ,xm) corresponding to τ = (τ1, · · · , τm). Denote
also b = (b1, · · · ,bm), where each br stands for the bed
capacity function br(t) in region r.

We call process (τ,b,x) feasible if all the constraints of
the problem under consideration hold and the hospitalization
rates are less than 1; that is,

hr(t : τr,xr) ≤ br(t), ∀t, r = 1, · · · ,m.

The meaning of feasible processes can be explained as
follows. If (τ,b,x) is feasible then the number of required
beds and the resources needed for isolation are sufficient at
every time point t in order to keep the average times of
isolation at level τ = (τ1, · · · , τm). Thus, the corresponding
effective reproduction numbers τ can be considered as upper
bounds (the actual effective reproduction numbers might be
even lower). Therefore, a feasible process determines in
some sense the best use of given resources to achieve the
“guaranteed lowest” number of infectious cases.

V. NUMERICAL EXPERIMENTS

In this section we provide an example on a synthetic
data set to demonstrate how the problems formulated above
can be used for controlling the spread of infection. In this
example there are two regions (m = 2) and for the sake
of simplicity we assume that there is no transmission of
infection between these regions (i.e. β1,2 = β2,1 = 0).
Moreover, we consider only Problem 1; that is, costs related
to bed building (cB), services (cS) and before isolation (cI )
assumed to be sufficient in all cases.

Initial data. We assume the time interval is [1, T ] =
[1, 150]; where [1, 100] is an initial (past) period and
[101, 150] is the future/planning period for our optimal
control problem.
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The number of initial (i.e. t ≤ 0) infected cases is 2 in
both regions. The set of possible values for τ is {3, 4, 5}
(as in the case of data fitting in Section III). We generate
synthetic data - x1(t), x2(t) for t ∈ [1, 100] by setting
• Region 1: α = 0.6, β11 = 0.30 and τ1(t) = 4,∀t ∈

[1, 50], τ1(t) = 5,∀t ∈ [51, 100];
• Region 2: α = 0.6, β22 = 0.28 and τ2(t) = 4,∀t ∈

[1, 50], τ2(t) = 5,∀t ∈ [51, 100].

As in [7], ω as a gamma distribution function with
mean value 7.5 defined by (7). According to formula (2)
corresponding effective reproduction numbers are
• Region 1: R = 0.90, 1.20 and 1.48 for τ = 3, 4 and 5,

respectively;
• Region 2: R = 0.84, 1.12 and 1.38 for τ = 3, 4 and 5,

respectively.
Thus, the initial functions x1(t), x2(t) for t ∈ [1, 100] have
effective reproduction numbers R = 1.20 and 1.48 for x1(t)
on [1, 50] and [51, 100], respectively; R = 1.12 and 1.38 for
x2(t) on [1, 50] and [51, 100], respectively.

We will consider Problem 1 on the interval [101, 150].
Both controls τi(t) will be assumed to be constant: τi(t) =
τi,∀t ∈ [101, 150], i = 1, 2. Values τ1 and τ2 will be used
to describe future possible scenarios.

The initial number of beds are b1(100) = 126 and
b2(100) = 60. We assume that new beds will be created
at times T b1 = 101, T b2 = 108, T b3 = 115 and T b4 = 122;
corresponding numbers of additional beds will be denoted
by ∆bi, i = 1, 2, 3, 4. Optimal control problem aims to
distribute these additional beds between the regions.

We introduce a new variable - λi that denotes part of ∆bi
considered for the first region, the remaining part (1−λi)∆bi
for the second region.

Under these assumptions, Problem 1 can formulated as
follows:

Minimize(λ1,λ2,λ3,λ4) x1(150) + x2(150)

+K ·
150∑
t=101

[
h1(t : τ1,x1)

b1(t)
+
h2(t : τ2,x2)

b2(t)

]
subject to : λk ∈ [0, 1], k = 1, 2, 3, 4;

xr(t+ 1) = βrr

τr(t)−1∑
i=0

(1− αω(i))xr(t− d− i), r = 1, 2;

b1(t) = b1(100) +

|{T b
j≤t; j=1,2,3,4}|∑

i=1

λi ·∆bi;

b2(t) = b2(100) +

|{T b
j≤t; j=1,2,3,4}|∑

i=1

(1− λi) ·∆bi

Here K = 100 and hr(t : τr,xr) is calculated by (4) by
setting σ = 6 and d = 6.

We can consider different scenarios depending on τ1, τ2
and additional beds ∆bk, k = 1, 2, 3, 4. Below we will
provide three scenarios where we set

∆b1 = 350,∆b2 = 300,∆b3 = 100,∆b4 = 20

and change the values of τ1, τ2 as 3, 4 and 5 (that is, all
possible values used in the data fitting problem in Section
III). The aim here is to compare corresponding optimal
distributions of bed capacities. We recall that additional beds
are introduced (weekly) at T b1 = 101, T b2 = 108, T b3 = 115
and T b4 = 122. The cumulative number of infected cases at
the start t = 100 are: 1259 in Region 1 and 675 in Region 2.

Case 1: τ1 = τ2 = 3.

The summary of the optimal solution obtained is provided
below.
• The optimal distribution of additional beds:

Region1 : 192.3 183.4 72.9 20
Region2 : 157.7 116.6 27.1 0
Total : 350 300 100 20

• Cumulative number of infected cases at the end (t =
150) of planning period: 2951 in Region 1 and 1289 in
Region 2.

• The average number of bed occupancy over the time
interval [100, 150] is 0.45 for Region 1 and 0.29 for
Region 2.

• The maximum occupancy rates are: 0.83 (that is, av-
erage 0.83 patient per bed) in Region 1 and 0.55 in
Region 2; that is, the demand for hospital beds is met
at every point t ∈ [100, 150].

Thus the solution obtained is feasible.

Case 2: τ1 = τ2 = 4.

Optimal solution obtained and some relevant parameters
are:
• The optimal distribution of additional beds:

Region1 : 192.0 183.4 74.5 20
Region2 : 158.0 116.6 25.5 0
Total : 350 300 100 20

• Cumulative number of infected cases at the end (t =
150) of planning period: 5846 in Region 1 and 2259 in
Region 2.

• The average number of bed occupancy over the time
interval [100, 150] is 0.65 for Region 1 and 0.40 for
Region 2.

• The maximum occupancy rates are: 0.96 (that is, av-
erage 0.96 patient per bed) in Region 1 and 0.52 in
Region 2.

Again, the demand for hospital beds is met at every point
t ∈ [100, 150] and accordingly the optimal solution obtained
is feasible.
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TABLE II
THE OPTIMAL DISTRIBUTION OF ADDITIONAL BEDS

τ1 τ2
3 4 Region 1: 204.7 183.9 9.1 0

Region 2: 145.3 116.1 90.9 20
4 5 Region 1: 206.2 188.2 31.6 0

Region 2: 143.8 111.8 68.4 20
4 3 Region 1: 179.3 223.3 100 20

Region 2: 170.7 76.7 0 0
5 4 Region 1: 177.1 208.5 100 20

Region 2: 172.9 91.5 0 0

Case 3: τ1 = τ2 = 5.

Optimal solution obtained and some relevant parameters
are:
• The optimal distribution of additional beds:

Region1 : 191.6 183.3 75 20
Region2 : 158.4 116.7 25 0
Total : 350 300 100 20

• Cumulative number of infected cases at the end (t =
150) of planning period: 11585 (Region 1) and 4163
(Region 2).

• The average number of bed occupancy over the time
interval [100, 150] is 0.83 for Region 1 and 0.51 for
Region 2.

• The maximum occupancy rates are: 1.91 (that is, 1.91
patient per bed) in Region 1 and 1.05 in Region 2.

Therefore this solution is not feasible as the bed capacities
are not enough for isolation all infected individuals.

Comparting the results in Cases 1-3, where τ1 = τ2, we
observe that, the optimal distributions of bed capacities are
almost the same although the solution obtained in Case 3
is even not feasible. In table II we also provide the results
obtained by assuming that the rate of increase in one region
is greater than the other one. The results for τ1 = τ2+1 (that
is, τ1 = 3, τ2 = 4 and τ1 = 4, τ2 = 5) display quite similar
optimal bed distributions. We observe the same situation for
τ2 = τ1 + 1.

Summarizing these results we note that the optimal con-
trol problem considered can provide quite “robust” optimal
distributions of new bed capacities across the regions under
each of the assumptions τ1 = τ2, τ1 > τ2 and τ1 < τ2.

VI. CONCLUSIONS

The optimal distribution of bed capabilities across coun-
tries/regions is a very important and difficult problem that
requires an accurate prediction of the dynamics of infected
population in each region.

In this paper a new optimal control model is introduced
to describe and control the dynamics of infectious diseases.
In the present model, the average time to isolation (i.e.
hospitalization) of infectious population is the main time-
dependent parameter that defines the spread of infection. It
is considered an integer-valued parameter (with values 3,4

and 5 days). The results obtained show that this can be
considered relatively stable over large time of periods (2-
3 months). These findings enable the generation of future
scenarios and the determination of corresponding trajectories
of infected populations in each region. This information can
be used to find an optimal distribution of bed capabilities
across countries/regions according to each scenario.
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