1,191 research outputs found

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Firefly Algorithm: Recent Advances and Applications

    Full text link
    Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.Comment: 15 page

    Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications

    Full text link
    Business optimization is becoming increasingly important because all business activities aim to maximize the profit and performance of products and services, under limited resources and appropriate constraints. Recent developments in support vector machine and metaheuristics show many advantages of these techniques. In particular, particle swarm optimization is now widely used in solving tough optimization problems. In this paper, we use a combination of a recently developed Accelerated PSO and a nonlinear support vector machine to form a framework for solving business optimization problems. We first apply the proposed APSO-SVM to production optimization, and then use it for income prediction and project scheduling. We also carry out some parametric studies and discuss the advantages of the proposed metaheuristic SVM.Comment: 12 page

    Metaheuristic Parameter Identification of Motors Using Dynamic Response Relations

    Get PDF
    This article presents the use of the equations of the dynamic response to a step input in metaheuristic algorithm for the parametric estimation of a motor model. The model equations are analyzed, and the relations in steady-state and transient-state are used as delimiters in the search. These relations reduce the number of random parameters in algorithm search and reduce the iterations to find an acceptable result. The tests were implemented in two motors of known parameters to estimate the performance of the modifications in the algorithms. Tests were carried out with three algorithms (Gray Wolf Optimizer, Jaya Algorithm, and Cuckoo Search Algorithm) to prove that the benefits can be extended to various metaheuristics. The search parameters were also varied, and tests were developed with different iterations and populations. The results show an improvement for all the algorithms used, achieving the same error as the original method but with 10 to 50% fewer iterationsThis research received no external funding. Partial funding for open access charge: Universidad de Málag

    Critical review on improved electrochemical impedance spectroscopy-cuckoo search-elman neural network modeling methods for whole-life-cycle health state estimation of lithium-ion battery energy storage systems.

    Get PDF
    Efficient and accurate health state estimation is crucial for lithium-ion battery (LIB) performance monitoring and economic evaluation. Effectively estimating the health state of LIBs online is the key but is also the most difficult task for energy storage systems. With high adaptability and applicability advantages, battery health state estimation based on data-driven techniques has attracted extensive attention from researchers around the world. Artificial neural network (ANN)-based methods are often used for state estimations of LIBs. As one of the ANN methods, the Elman neural network (ENN) model has been improved to estimate the battery state more efficiently and accurately. In this paper, an improved ENN estimation method based on electrochemical impedance spectroscopy (EIS) and cuckoo search (CS) is established as the EIS-CS-ENN model to estimate the health state of LIBs. Also, the paper conducts a critical review of various ANN models against the EIS-CS-ENN model. This demonstrates that the EIS-CS-ENN model outperforms other models. The review also proves that, under the same conditions, selecting appropriate health indicators (HIs) according to the mathematical modeling ability and state requirements are the keys in estimating the health state efficiently. In the calculation process, several evaluation indicators are adopted to analyze and compare the modeling accuracy with other existing methods. Through the analysis of the evaluation results and the selection of HIs, conclusions and suggestions are put forward. Also, the robustness of the EIS-CS-ENN model for the health state estimation of LIBs is verified
    corecore