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Abstract: This article presents the use of the equations of the dynamic response to a step input
in metaheuristic algorithm for the parametric estimation of a motor model. The model equations
are analyzed, and the relations in steady-state and transient-state are used as delimiters in the
search. These relations reduce the number of random parameters in algorithm search and reduce
the iterations to find an acceptable result. The tests were implemented in two motors of known
parameters to estimate the performance of the modifications in the algorithms. Tests were carried
out with three algorithms (Gray Wolf Optimizer, Jaya Algorithm, and Cuckoo Search Algorithm)
to prove that the benefits can be extended to various metaheuristics. The search parameters were
also varied, and tests were developed with different iterations and populations. The results show an
improvement for all the algorithms used, achieving the same error as the original method but with 10
to 50% fewer iterations.

Keywords: Cuckoo Search; metaheuristic; parameter estimation; DC motor; Jaya; Grey Wolf Optimizer

1. Introduction

Parameter identification is a highly studied problem due to its multiple fields of appli-
cation. For example, Hammerstein controlled auto-regressive moving average systems and
autonomous robot navigation in the state of charge estimation of lithium-ion batteries [1–3].
One of the studied systems for their parametric identification is the direct current motors
due to their increasing use in high-demand applications [4].

The parametric identification techniques are diverse. Some authors opt for using
intelligent methods, as in [5], where a backpropagation network is used for parametric
identification. The disadvantage is that a large amount of data is required to train accurately
the network, which is a weakness of all ANNs of this type. Another intelligent technique
was used in [6], where the authors estimate the parameters with fuzzy techniques. In [7],
a Sparse estimation is developed by combining SPARSEVA and the Steiglitz–McBride
method. Methods such as least squares and Steiglitz–McBride are heuristic methods that
generally provide adequate results. However, metaheuristic algorithms represent a more
straightforward option in complex problems [8]. This optimization algorithm is biologically
inspired, and its use is widespread in multiple areas [9].

Metaheuristic algorithms have been widely developed and implemented in multiple
areas. These algorithms are iterative which complicates their implementation in real-
time [10]. However, its complexity is reduced with respect to other heuristic methods [8].
Some examples of applications are found in works such as [11,12], where authors use
metaheuristics algorithms to tune controllers. In [13], a GA with a neural network convolu-
tional is proposed to successfully indicate the likelihood of microscopy images belonging
to different classes. In the estimation of parameters, the metaheuristic algorithms have an
application such as that shown in [14].
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In [15], the authors use a metaheuristic algorithm improved for parameter estimation
in permanent magnet synchronous motor. This methodology is similar; however, the
dynamic response of the system is not considered. The work contribution is that using
existing relationships both in the transient and the steady-state of the motor response.
These relations make it possible to reduce an estimation problem of five random variables
(model parameters) to use two and calculate the remaining ones. Reducing random
variables allows this type of algorithm to improve since the method must comply with
these relationships, taken as restrictions. The use of restrictions in the search improves
the performance of this type of algorithm [15]. However, no previous work has used the
relations of the transient-state and the steady-state as constraints to improve the parameter
search process.

The relevance of this work lies in the fact that the engine is a system of second-order
differential equations. Therefore, the method can be extended to systems that are modeled
in the same way. Second-order systems represent a high percentage of physical systems
in engineering systems [16]. Few systems are of one-order, and higher-order systems are
usually reduced to second-order for their analysis [16]. Consequently, the method can be
adapted by changing the fitness/cost function and the relations between the equations.

The second contribution is improving the three metaheuristic algorithms (the Cuckoo
Search, the Gray Wolf Optimizer, and the Jaya algorithm) with dynamic response relations.
The tests in the three algorithms are intended to reveal that these relations can be extended
to other algorithms of this type and are not only applied in a particular case. Each of the
algorithms were tested in their original version and the version proposed in this research.

The standard procedure to develop the parametric estimation was used, where the
motor step response is taken as input data. The tests were carried out with two motors of
known nominal parameters to compare the error of the improved algorithms. Tests were
executed first with simulated signals and later with experimental signals to observe the
performance of the algorithms against signals with the typical noise associated with the
acquisition of signals.

Finally, the processing time, the accuracy, and the number of necessary iterations
of each algorithm are compared. The results indicate a substantial improvement in each
algorithm, ranging between 3% and 5% reduction in magnitude error compared to the
original algorithm until 50% faster. Additionally, the result indicates that the CSP proposed
algorithm is the one that converges in the fewest iterations.

The rest of the work is divided as follows. In Section 2, a literature review is presented
to provide an introspective of the proposed work. In Section 3, the motor model and the
dynamic response relationships, both in their transient and steady-steady parts. Section 3
described the proposed improvement in each algorithm to include the relations described
in part 2. In Section 5, the results at the simulation level and using experimental signals
are exhibited. Finally, in Section 6, the conclusions remarking on parameter identification
are made.

2. Related Work

Parameter estimation has already been studied from a different point of view. For
example, the parameters of the motors when controlling in the open and closed-loop have
been proposed not only for AC electrical machines [17], but also for DC motors [18,19].
Knowing the parameters of the dynamic model helps to perform multiple control and
automation tasks. For example, to improve the machining performance of the toolset when
speaking in a mechatronic process [20].

Some authors focus their investigations with heuristic methods, such as the works
sent in [21,22]. Another option highly used in parametric estimation is metaheuristic algo-
rithms. They are widely used for their versatility and adaptability to multiple problems [8].
Works such as [23–25] have explored the analysis of parametric studies of motors with
metaheuristic algorithms.
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There are a large number of population-based metaheuristic algorithms that can be
adapted to parametric estimation. The most extensive metaheuristic algorithm is the genetic
algorithms that can be observed as parametric estimators of motors in works such as [26,27].
However, several algorithms were adapted to this aim; for example, the research [28–30]
uses the dynamic encoding algorithm for searches (DEAS) for parametric estimation of
a motor. In the research [31], a search for harmony (HS) is carried out to obtain the in-
ductance model of an electrical machine. Another example is investigation [32], where a
PSO approach is applied to have the parameters of an induction motor. In works [33,34],
algorithms such as the whale and the bat are used. Some authors explore the advan-
tages of combining two different metaheuristics algorithms [30]. Finally, some authors
such as [29] analyze the online implementation of these algorithms as estimators through
parallel processing.

Despite the wide variety of similar works for parameter estimation in motors with
metaheuristic algorithms, no work has analyzed the use of dynamic motor relationships as
search constraints in both the steady-state and the transient-state. This work aims to analyze
the effect of its use in the search with different algorithms, which must be fulfilled. In the
Table 1 is shown a comparison between several similar works and the present investigation.

Table 1. Comparison of parameter estimation of DC motor with metaheuristics algorithms in
similar works.

Work Metaheuristic algorithm Improvement

Our work Cuckoo Search Algorithm, Gray Wolf
Optimizer, Jaya

Dynamic relations used as search limiter

[15] Cuckoo Search Pa adjustment based on fuzzy logic
[23] Cuckoo Search Use of steady-state
[26] Genetic Algorithms Geared DC motor optimal estimation
[24] Smart Collaborative Performance Quantify the contribution of the solutions
[25] Gray Wolf Optimizer Torque estimation
[26] Genetic Algorithms Optimal estimation
[28] Dynamic Encoding Algorithm for Searches Control and fault detection
[33] Whale Optimization Algorithm Use of WOA as parameter estimator

The table above shows that the research presented here differs from the related works
that use dynamic relationships to search for the parameters. Therefore, this approach can be
implemented as an additional improvement in the works mentioned and can be extended
to any stable open-loop system.

3. Background

This section briefly explains the D.C. motor equations and their dynamic relations,
and describes the three metaheuristic algorithms used in this work. The variables involved
in the mathematical model of the DC motor are described in Table 2.

Table 2. Variables involved in the mathematical model of the DC motor.

Parameter Description

v(t) Voltage applied to the motor (V)
τ(t) Torque generated by the motor (Nm)
i(t) Current consumed by the motor (A)
ω(t) Rotor angular speed (rad/s)
TL Load torque (N.m)
R Armature resistance (Ω)
L Armature self-inductance (H)
K The equivalent value of both the electrical and the mechanical constant

B Friction coefficient ( Kgm2

s2 )
J Moment of inertia (Nm)



Sensors 2022, 22, 4050 4 of 22

3.1. DC Motor and Its Dynamic Response

The electric motor is a hybrid system composed of an electrical part and a mechanical
part. Its dynamic behavior is observed through the electrical and mechanical equations in
Equation (1).

v(t) = Ri(t) + L di(t)
dt + E(t)

τ(t) = J dω(t)
dt + Bω(t) + TL

}
(1)

The set of equations above is related to the two connection equations depicted in
Equation (2).

E(t) = Keω(t)
τ(t) = Kmi(t)

}
(2)

Substituting Equation (2) in Equation (1) and considering a motor without load (TL = 0),
Equation (3) is obtained, and its representation is observed in Figure 1.
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Figure 1. Schematic diagram for a DC motor.

v(t) = Ri(t) + L di(t)
dt + Keω(t)

kmi(t) = J dω(t)
dt + Bω(t)

}
(3)

The previous differential equation system is the model of a DC motor with six un-
known parameters. In addition, if null initial conditions are considered, the system can be
rewritten in a second-order transfer function. The second-order transfer functions have a
well-known typical dynamic step response, as displayed in Figure 2. The dynamic response
is divided into two phases, the transient and the steady-state stage.
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3.1.1. Steady-State Equations of the Motor

The steady-state is when the output of the system has stabilized, and its response
varies less than 2% with respect to time. In this sense, the current and the speed remain
constant. Therefore, the derivative of current and the derivative of velocity becomes zero. A
fact well-known is that the magnitude of both electrical and mechanical constants is similar.
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Therefore the same K value is used for both. Using these considerations, Equation (3) can
be rewritten as:

vss = Riss + Kωss
Kiss = Bωss

}
(4)

Equation (4) represents the equations of the motor in steady-state of the six initial
parameters, the only parameter that remains in both equations is K. Therefore, the system
is rewritten, leaving the value of the other parameters as a function of K:

R = vss−Kωss
iss

B = Kiss
ωss

}
(5)

3.1.2. Transient-State Equations of the Motor

The transient part is when the output of the system has variations with respect to time.
However, the relationships in this phase are not obvious if it is known that the current has
a directly proportional influence on the derivative of the speed. This relation causes the
maximum value of the current to cause the maximum value in the derivative of the current,
that is:

Kmax(i) = Jmax(
dω

dt
) + Bω(tmax(i)) (6)

From Equation (6), it can be seen that the parameter J can be a function of B and K,
since B is already defined as a function of K, if J is cleared, it is only defined as a function
of K:

J =
Bω(tmax(i))− Kmax(i)

max( dω
dt )

(7)

Equations (5) and (7) are the relationships of the dynamic response.

3.2. Metaheuristics Algorithms

The use of metaheuristic algorithms has spread in the past few years. This is mainly
due to the ease of implementation and adaptation to various problems [8]. This work
decided to verify the effect of using dynamic relationships in populated-based metaheuristic
algorithms. Although multiple tasks can be solved with heuristic methods, the similarity
and adaptability to numerous problems and restrictions make metaheuristic algorithms
ideal for this study. This work compares three algorithms to determine the effect of dynamic
response relations on them.

There are a large number of population-based metaheuristic algorithms in the liter-
ature. However, the Cuckoo Search algorithm, the Gray Wolf Optimizer, and the Jaya
algorithm were chosen because the first contains an explicit, specific parameter, the GWO
has an implicit specific parameter. The Jaya algorithm does not have any specific parame-
ters. Algorithms with two or more specific parameters were avoided because it is required
to adjust them. Nevertheless, it should be considered that recent adjustment techniques can
solve the problem, such as the hyperparameters adjustment technique, as shown in [35].
The tuning of hyperparameters is another way of improvement for metaheuristics. How-
ever, to see only the improvement of the algorithms with the use of dynamic relationships,
they were not considered in this work.

3.2.1. Grey Wolf Optimizer

The GWOO is inspired by how the wolf hunts its prey. The herd is organized by
leading wolves (α) that coordinate the hunt in the space and subordinate wolves (β,δ and
ωwol f ). The GWOO is fully described in [36], and its process is displayed in Figure 3a. On
the other hand, Figure 3b has displayed the GWOP with the dynamic response relations.
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START

Initialize the populations of 
Alpha, Beta, Delta and Omega wolves
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 by Alpha, Beta, and Delta wolves respectively

END

Estimate the target positions, SA, SB, and SD
 by Alpha, Beta, and Delta wolves respectively

(a)

START

Initialize the populations of wolves (L and K)

Evaluate the grey wolf position 
with respec to target position

Update the grey wolf position by 
the equation s(t+1)=(s1+s2+s3)/3

No

Initialize parametes (number of gray wolves, 
number of iterations, limits, etc.)

Save the best solution

iteration< Max iterations
Yes

Estimate the target positions, SA, SB, and SD
 by Alpha, Beta, and Delta wolves respectively

END

Calculate R, B and  J with
 dynamic response relations

Check if R, B, and J 
are within the limits

New random K and L

Calculate R, B and  J with
 dynamic response relations

Check if R, B, and J 
are within the limits

New random K and L

(b)

Figure 3. Grey Wolf Optimizer. (a) Original Algorithm; (b) Modified algorithm with dynamics relations.

The GWOO was chosen among the metaheuristic algorithms since it has a similar
performance to the most well-known algorithms in the area, such as Genetic algorithms. It
has a simple structure, which allows for fewer computational requirements. It also reduces
its search space increasing its convergence speed compared to other algorithms [37].

3.2.2. Algorithm of Jaya

Jaya is a relatively new algorithm. However, like GWOO, it has similar results to
the more popular search methods like GA. Its main feature is simplicity since it has only
general parameters and no specific parameters. It is only based on the best and worst
solution, looking for values close to the best solution and moving away from the worst [38].
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The complete method can be studied in detail in [38]. Figure 4a displays the JayaO while in
Figure 4b, the JayaP with the dynamic relationships of the motor is depicted.
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solution in the population
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 solution

No

Initialize parametes (Population size,
 no. of variables and termination criterion)

Save the best solution

Is the solution corresponding to A(i*1,j,k)
better than that corresponding to A(i,j,k)

No
Yes

Accept and replace
 the previous solution

END

Modify the solutions based on best and worst solutions
A(i+1,j,k)=A(i,j,k)+r(i,j,1)(A(i,j,b)-|A(i,j,k)|)-r(i,j,2)(a(i,j,w)-|A(i,j,k|)

Is the termination criterion satisfied?

Yes

(a)

START

Identify best and worst 
solution in the population

Keep the previous
 solution

No

Initialize parametes (Population size,
 no. of variables and termination criterion)

Inital L and K

Save the best solution

Is the solution corresponding to A(i*1,j,k)
better than that corresponding to A(i,j,k)

No
Yes

Accept and replace
 the previous solution

END

Modify the solutions based on best and worst solutions
A(i+1,j,k)=A(i,j,k)+r(i,j,1)(A(i,j,b)-|A(i,j,k)|)-r(i,j,2)(a(i,j,w)-|A(i,j,k|)

Is the termination criterion satisfied?

Yes

Calculate R,B and J with 
dynamic response relations

Check if R,B and J 
are within the limits

New random K         
and L 

No

Yes

Calculate R,B and J with 
dynamic response relations

Check if R,B and J 
are within the limits

New random K 
and L

No

Yes

(b)

Figure 4. Jaya algorithm. (a) Original Algorithm; (b) Modified algorithm with dynamics relations.

The Jaya algorithm was chosen for reasons similar to the GWOO. The algorithm
exhibits a fast convergence rate and is among the simplest metaheuristic algorithms
to implement.

3.3. The Cuckoo Search Algorithm

The CSO is not found among the simplest algorithms unlike the other two algorithms
Unlike the other two algorithms. However, like the previous ones, it has shown similar
results to the GA, but the convergence is observed in a smaller number of iterations. Like
GWOO, it is a bioinspired algorithm based on the peculiar way Cuckoo birds reproduce by
pinning their eggs in other nests for different birds to raise. Unlike the other two algorithms,
the CSO has a specific parameter. Determining the value of any particular parameter is a
complex subject of study. However, in the literature, a value of 25% is recommended [39].
The complete method is described in [39] where the author of the algorithm tests the
algorithm in problems of a different nature. The differences between the CSO and the CSP
can be observed in the flow diagram of both procedures in Figure 5.
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START
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Let j as a solution

i<=N_IterTotal
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(a)

START

Random initial solutions for K and L

Get a cuckoo randomly by Levy flights, i

Evaluate fitness Fi
with the step response

Replace j by the new solution

Select a nest among n randomly
and evalute fitness Fj

A fraction (Pa) of worse nests are abandoned
and new K and L are generated by Levy flight

Let j as a solution

i<=N_IterTotal

Keep best solutions

End

Fi>Fj

Save the best solution
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No

No

Yes

Calculate R, B and J

Check if R, B and J
 are within the range.
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Recalculate K and L
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and L

No

Yes

(b)

Figure 5. Cuckoo Search algorithm. (a) Original Cuckoo search; (b) Modified algorithm with
dynamics relations.
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The methods used were the Cuckoo Search, the Gray Wolf Optimizer, and the Jaya
algorithm was chosen to contrast with the other two algorithms as it has a specific param-
eter and uses the levy flight hence implementation complexity is greater. However, its
performance and application have been tested in multiple areas. Therefore, it is presented
as a logical option since, in contrast, the most used metaheuristic (GA) has multiple specific
parameters, making a comparison complicated since they must be justified in selecting
each parameter.

4. Methodology

The methods used were the Cuckoo Search, the Gray Wolf Optimizer, and the Jaya
algorithm. All techniques started from original random populations and generated optimal
solutions for a fitness/cost function.

The proposal of the present investigation lies in the use of Equation (5) and (7) to reduce
the search for random parameters. Instead of searching five parameters simultaneously,
only K and L are randomly generated. For this, the dynamic relations are implemented
as search restrictions. In this way, the parameters J, B, and R can be determined by the
dynamic equations and as a function of the value proposed by K and L. Thanks to this, the
algorithm focuses only on finding these last two parameters.

In this work, the fitness/cost function is the Euclidean distance between the sum of
error in current and the sum of error in velocity, that is:

f =
√

∑(ir − is)2 + ∑(wr − ws)2 (8)

The goal of metaheuristic algorithms is to reduce the value of the Equation (8). The
three methods are population-based and have several candidate solutions that report data
about the search, causing abrupt jumps in the direction of the hopeful solution. In addition,
having an initial population with a high number of individuals generates a greater diversity
which helps to avoid a local optimum [40].

All metaheuristic algorithms contain parameters that modify their performance. Some
parameters are similar or even equivalent. On the other hand, some parameters are specific
for each type of method. Table 3 shows the parameters used for each algorithm with the
original names given by the respective author and the similar or equivalent parameters.

Table 3. Name parameters and equivalence in each algorithm.

Parameter GWO Jaya CS Description

Population Search
Agents_no

pop nest Number of initial random so-
lution

Iterations Max_iteration maxGen N_IterTotal
Limits lb,ub mini, maxi lb,ub upper and lower boundaries

of the search
Variables to
search

dim var nd Number of variables to search

Fitness/cost
function

fobj objective fobj Fitness function used (same
for three algorithms)

Pa - - Pa Probability of the alien egg be-
ing discovered

The three algorithms have the distinction of having a reduced number of parameters,
and most of these have their equivalence in other algorithms (see Table 3). This characteristic
is one of the reasons for which they were chosen.
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The tests of the original and modified algorithms with the dynamic relationships are
developed (a total of six algorithms). In addition, two different DC motors will be used
to analyze the performance. As a performance measure of each algorithm, the value of
the cost function that it reaches was taken, with a cost of 0 being the maximum possible
performance. Another factor measured in the tests is the time it takes for the algorithm to
complete the search task. The population parameters and maximum iterations were varied
by performing the following tests:

• Test 1: Population of 50 individuals and 100 iterations.
• Test 2: Population of 30 individuals and 100 iterations.
• Test 3: Population of 50 individuals and 50 iterations.
• Test 4: Population of 30 individuals and 50 iterations.

A large number of individuals provides greater diversity, and a large number of
iterations provides an exhaustive search. However, it should be considered that a greater
number of individuals and iterations increasing the computational cost exponentially. The
chosen values show allow observing the change in results between runs with twice the
number of individuals or iterations. The other common parameters were remain fixed for
all the tests. As shown in Table 3, the cost function was in common for the six algorithms,
which is determined by Equation (8). The number of variables to be proposed randomly
is two (K and L), and the number of variables to be calculated is three (R, B, and J). The
initial search limits will also be the same for all algorithms. The upper limit is determined
by Ub = [5 0.1 0.5 0.001 0.001] and the lower limit for Lb = [0.1 0.01 0.005 0.0000001 0.00001]
corresponding to the vector [R, K, L, J, B].

The first motor used is the Robokits RMCS2004 motor with the following nominal

parameters = [0.921042 Ω, 0.073472, 0.007759 H, 0.000136 Nm, 0.000678 Kgm3

s2 ], referred
to in this work as M1. Motor 2 is the Mavilor CLM-050 (M2) with the following nominal

parameters = [3.1363 Ω, 0.048774, 0.01307 H, 0.000009 Nm, 0.000169 Kgm3

s2 ], this motor is
referred in this work as M2.

The tests are are performed with step response signals obtained with simulation and
measured by sensors and a data acquisition system. The signals obtained by simulation
are called simulated signals and those obtained by measurements are called experimental
signals. For the simulation tests, the motor model described by Equation (3) is simulated
by Simulink, while the metaheuristic algorithms are developed using Matlab. Thus Matlab
obtains a random combination of each method and sends the data to Simulink, which
returns a current and velocity signal to Matlab. The software calculates the dynamic
relationships and estimates a cost according to each algorithm with these signals. In the
case of the experimental signals, only measured data were used.

5. Results

In this section, the results obtained for both tests carried out with simulated signals,
and those with experimental signals. The following results were found:

• the use of dynamic relationships and the estimation of parameters through meta-
heuristic algorithms improve the search speed of the parameters;

• this limits the number of results to valid combinations for all parameters.

5.1. Results with Simulation Signals

The results of the tests performed with original and proposed algorithms are seen in
Table 4.
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Table 4. Cost/Fitness result for each test in M1 and M2.

Test Motor GWOO GWOP JayaO JayaP CSO CSP
Cost Cost Cost Cost Cost Cost Cost

Test 1 M1 0.19 0.08 14.66 4.98 × 10−4 0.003 3.091 × 10−5

Test 2 M1 0.08 0.17 8.25 4.97 × 10−4 0.004 1.232 × 10−4

Test 3 M1 0.12 0.03 99.66 5.63 × 10−4 0.455 4.837 × 10−4

Test 4 M1 24.33 0.07 94.34 7.67 × 10−4 0.170 1.911 × 10−3

Test 1 M2 16.96 0.05 1.59 2.65 × 10−3 0.001 4.973 × 10−6

Test 2 M2 0.88 0.55 7.34 2.65 × 10−3 0.001 1.692 × 10−5

Test 3 M2 28.28 0.13 36.37 2.70 × 10−3 0.194 4.554 × 10−4

Test 4 M2 0.63 0.10 24.52 2.71 × 10−3 0.671 1.434 × 10−3

The performance of each algorithm in the different tests was represented in the follow-
ing graphs. Figure 6 displays the performance of GWOO against the GWOP for the M1.
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Figure 6. Comparison between the Original and the Gray Wolf Optimizer Proposed in four test for
Motor 1. (a) cost and iterations of the GWO in test 1 for Motor 1; (b) cost and iterations of the GWO
in test 2 for Motor 1; (c) cost and iterations of the GWO in test 3 for Motor 1; (d) cost and iterations of
the GWO in test 4 for Motor 1.
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The test results for Motor 2 are exhibit in Figure 7.
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Figure 7. Comparison between the Original and Proposed Gray Wolf Optimizer in four test for Motor
2. (a) cost and iterations of the GWO in test 1 for Motor 2; (b) cost and iterations of the GWO in test
2 for Motor 2; (c) cost and iterations of the GWO in test 3 for Motor 2; (d) cost and iterations of the
GWO in test 4 for Motor 2.

Both Figures 6 and 7 present an improvement for the GWOO, achieving a noticeable
initial reduction in cost. The GWOP shows a cost reduction below the original in the
following iterations. On the other hand, Figure 8 exhibits the results of the algorithm of
Jaya in tests carried out in M1.

The Jaya algorithm results have a similar effect as the GWO, which significantly
improves the initial iterations. For tests 1 and 2, the cost reduces similarly in both cases
as the iterations increase. However, in cases 3 and 4, the original algorithm does not have
proper convergence, unlike the proposed one. Similarly, Figure 9 displays the results
obtained by Jaya for M2.

Considering the results of Jaya in motor 2, a similar behavior to motor 1 is observed,
suggesting that the motor used does not affect the algorithm. Finally, the results of the
Cuckoo search algorithm are shown in Figure 10.

In the same way, the results of the tests on the M2 are depicted in Figure 11.
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Figure 8. Comparison between the Original and the Proposed Jaya in four test for Motor 1. (a) cost
and iterations of the Jaya in test 1 for Motor 1; (b) cost and iterations of the Jaya in test 2 for Motor 1;
(c) cost and iterations of the Jaya in test 3 for Motor 1; (d) cost and iterations of the Jaya in test 4 for
Motor 1.
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Figure 9. Cont.
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Figure 9. Comparison between the original and the proposed Jaya in four test for Motor 2. (a) cost
and iterations of the Jaya in test 1 for Motor 2; (b) cost and iterations of the Jaya in test 2 for Motor 2;
(c) cost and iterations of the Jaya in test 3 for Motor 2; (d) cost and iterations of the Jaya in test 4 for
Motor 2.
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Figure 10. Comparison between the original and the proposed Cuckoo Search in four tests for Motor
1. (a) cost and iterations of the Cuckoo Search in test 1 for Motor 1; (b) cost and iterations of the
Cuckoo Search in test 2 for Motor 1; (c) cost and iterations of the Cuckoo Search in test 3 for Motor 1;
(d) cost and iterations of the Cuckoo Search in test 4 for Motor 1.
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Figure 11. Comparison between the original and the proposed Cuckoo Search in four test for Motor 2.
(a) cost and iterations of the Cuckoo Search in test 1 for Motor 2; (b) cost and iterations of the Cuckoo
Search in test 2 for Motor 2; (c) cost and iterations of the Cuckoo Search in test 3 for Motor 2; (d) cost
and iterations of the Cuckoo Search in test 4 for Motor 2.

The absolute percentage error was calculated in each test with respect to the nominal
parameters to observe the performance of the algorithm in terms of precision. The results
were summarized in Table 5 and Table 6 for M1 and M2, respectively.

Both numerical and tabular improvements are observed in the modified algorithms
compared to the originals. Therefore, subsequent results will focus on the modified algo-
rithms. According to the observed results, the modified algorithm convergence is faster,
adjusting the cost curves in the first iterations. Considering the adjustment speed was
programmed, a condition for when the cost function obtains a value less than 0.1, the search
stopped. The next test was executed in this way for the algorithm convergence speed
comparison and was developed with 30 individuals for all algorithms. The results are
displayed in Figure 12. Figure 12a shows the convergence speed in iterations for Motor 1,
and Figure 12b depicted the convergence speed in iterations for Motor 2.

It can be observed that convergence in the least number of iterations occurs in the
Cuckoo search algorithm.
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Table 5. The absolute percentage error for test in Motor 1.

Test Algorithm R K L J B
% % % % %

Test1 GWOO 1.557 0.355 6.721 2.317 0.182
GWOP 1.473 0.173 0.591 0.397 0.173
JayaO 15.081 3.801 55.180 12.917 0.340
JayaP 0.012 0.001 0.210 0.225 0.001
CSO 0.252 0.029 0.068 0.290 0.029
CSP 0.008 0.001 0.041 0.027 0.001

Test2 GWOO 0.262 0.161 4.030 0.198 0.077
GWOP 0.653 0.076 4.476 0.300 0.076
JayaO 5.623 0.396 55.180 20.540 0.899
JayaP 0.013 0.001 0.194 0.225 0.001
CSO 0.198 0.023 1.084 0.226 0.023
CSP 0.022 0.002 0.069 0.098 0.002

Test3 GWOO 1.445 0.020 3.555 0.508 0.391
GWOP 1.355 0.159 1.391 0.383 0.159
JayaO 20.539 0.572 55.180 168.091 12.048
JayaP 0.014 0.002 0.300 0.225 0.002
CSO 3.137 0.376 9.907 3.560 0.376
CSP 0.004 0.001 0.212 0.215 0.001

Test4 GWOO 13.269 2.785 53.598 66.302 0.375
GWOP 1.233 0.141 0.437 0.082 0.141
JayaO 63.585 21.087 57.780 55.245 35.513
JayaP 0.151 0.018 0.191 0.241 0.018
CSO 0.369 0.043 5.891 3.551 0.043
CSP 0.241 0.028 0.269 0.251 0.028

Table 6. The absolute percentage error for test in Motor 2.

Test Algorithm R K L J B
% % % % %

Test1 GWOO 29.525 4.733 61.008 70.750 5.774
GWOP 0.244 0.054 5.024 0.755 0.054
JayaO 9.779 2.480 3.253 4.529 5.228
JayaP 0.087 0.020 0.667 0.829 0.020
CSO 0.203 0.045 0.086 0.264 0.045
CSP 0.025 0.005 0.024 0.023 0.005

Test2 GWOO 5.792 1.448 19.533 6.690 1.554
GWOP 2.773 0.640 18.245 1.454 0.640
JayaO 9.550 1.637 28.856 17.807 0.466
JayaP 0.060 0.013 0.703 0.823 0.013
CSO 0.307 0.069 0.632 0.459 0.069
CSP 0.053 0.012 0.025 0.013 0.012

Test3 GWOO 11.298 1.530 67.539 192.484 2.660
GWOP 0.936 0.206 8.692 0.601 0.206
JayaO 6.186 0.080 65.769 162.739 6.260
JayaP 0.121 0.027 0.637 0.836 0.027
CSO 0.291 0.065 10.560 5.329 0.065
CSP 0.028 0.006 0.551 0.102 0.006

Test4 GWOO 4.496 0.966 12.593 12.692 0.737
GWOP 2.004 0.436 4.146 0.370 0.436
JayaO 35.942 14.237 161.400 28.310 6.117
JayaP 0.000 0.000 0.665 0.809 0.000
CSO 4.296 0.909 13.716 11.149 0.909
CSP 0.113 0.025 0.035 0.556 0.025
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Figure 12. Comparison between the three modified algorithms. (a) Tests for Motor 1; (b) Tests for
Motor 1.

5.2. Results with Experimental Signals

In this section were tested the proposed algorithms with experimental signals using
an acquisition system of our design based in a simple PIC18F4550 with a sampling period
of 0.001 s and implemented in M2. The algorithms work with experimental signals to
verify the performance of the three modified algorithms under real conditions, unlike the
previous section, the signals acquired from the real world usually have noise and a higher
uncertainty which is a function of the measurement system and the conditions in which
the measurement was taken. For this case, all algorithms were used with a population
of 30 individuals and a maximum of 50 iterations. The sampling process was as follows:
at 0.5 s, a voltage of 10.5 constant was applied, and the measured variables were voltage,
current, and motor speed, for which a 12-bit ADC, the Hall effect sensor Acs712 and the
encoder integrated to the motor are used. Figure 13 displays the setup of the acquisition
system.

Motor

conexion

Normalized outputs of

Current and Voltage from

0 to 5 ���

Motor

Voltage10.5 ���

Current

sensor

Motor

Electronic Architecture

LCD DAC

ADC

USB

Encoder

μC SRAM

Acquisition system

Data processing

Figure 13. Data acquisition system used for the experimental setup.

Although signals can be acquired with such basic equipment, a faster acquisition card
and better performing current sensor would help to obtain better quality signals. The
results of the acquisition for the step signal used can be observed in Figure 14.
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Figure 15 shows the current and velocity signals. Due to the acquisition conditions, the
speed signal must be filtered. For this, the Chebyshev type 1 digital filter is used. Excessive
noise is characteristic of the signal acquisition system and the sensor used. Improving the
acquisition hardware would give better signals. However, this is not always possible.
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Figure 15. Sensed velocity and current signals for Motor 1. (a) Current signal of Motor 1; (b) Velocity
signal of Motor 1.

With these signals, the dynamic response relations are calculated. For estimating the
final current and the final speed, the last 20 values are averaged since the signals preset
minor variations, unlike the simulated signals. Again, these variations are attributed to the
hardware. The performance of each algorithm can be seen in Figure 16.
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Figure 16. Performance of the proposed algorithms with experimental signals.
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Figure 17 displays the comparison between the current signal and the speed signal
calculated for the three modified algorithms with respect to the acquired signal.

0 0.5 1 1.5 2 2.5

Time(s)

0

20

40

60

80

100

120

140

160

180

200

V
e
lo

c
it

y
 (

ra
d

/s
)

Nominal parameters

Proposed GWO

Proposed Jaya

Proposed CS

0.5 0.6 0.7 0.8

170

175

180

(a)

0 0.5 1 1.5 2 2.5

Time(s)

-0.5

0

0.5

1

1.5

2

2.5

C
u

rr
e

n
t 

(A
)

Nominal parameters

Proposed GWO

Proposed Jaya

Proposed CS

0.45 0.5 0.55

1.8

2

2.2

(b)

Figure 17. Comparison between the three modified algorithms for experimental signals. (a) Compari-
son between velocities estimates and acquired velocity; (b) Comparison between currents estimates
and acquired current.

The results of experimental signals acquired with noise suggest that the modified
algorithms can correctly estimate the parameters to recreate the current and velocity signals.

6. Conclusions

This article presents the use of dynamic response relations as search constraints in
metaheuristic algorithms used as parametric estimators. The three relationships were used,
two in the steady-state and one in the transient-state. It was implemented in three different
algorithms with two plants to test the validity of the use of relations. The three relationships
founded were used, two in the steady-state and one in the transient state. The proposed
method is adaptable to any system with a stable response to the step input, and has at least
one relationship in dynamic response. Therefore, this method developed in DC motors can
be extended to systems with similar models.

DC motor modeling is a widely studied topic. In particular, the parameter identifica-
tion with metaheuristic algorithms has shown satisfactory results with multiple techniques.
However, the study with the dynamic relationships used as search restrictions has not been
studied and most of the improvement techniques are oriented to the optimization of hy-
perparameters (see Table 1). The relations were implemented in three different algorithms
with two plants to test the validity of their implementation.

In general terms, the results and the improvement in each algorithm depend on the
initial values that the algorithm takes. Being an algorithm that starts from random values,
a precise improvement cannot be quantified. Nevertheless, the results show an evident
improvement in each algorithm, especially in the first iterations, where the error is reduced
in a smaller number of iterations due to the use of dynamic response relations. Therefore, a
lower error and a faster convergence can be observed for all algorithms. The trend holds
for different motors, although the performance of the GWO is higher with the M1 than
with the M2.

Metaheuristic algorithms with similar or equivalent parameters and with no specific
parameters were used to reduce the effect of selecting parameters in different algorithms,
achieving a more fair comparison. Reducing iterations and initial errors can help in the
implementation in multiple systems since the main problem with metaheuristic algorithms
is their high iterative degree, which complicates their implementation.

Metaheuristic algorithms with similar or equivalent parameters and that did not have
specific parameters were used to reduce the effect of selecting parameters in different
algorithms, achieving a more fair comparison. Reducing iterations and initial errors can
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help its implementation in multiple systems since the main problem with metaheuristic
algorithms is their high iterative degree, which complicates their implementation.

Finally, it should be noted that the metaheuristic algorithms start from random pop-
ulations, thus the performance can vary according to the initial values that it takes. Four
different tests were carried out in two motors to avoid this bias in the three original
and modified algorithms. In total, forty-eight tests were developed to verify that cost
reduction and iteration reduction are maintained despite the variation of the initial pop-
ulation and the search parameters. Future work should aim to make the tests with the
adjustment of hyperparameters and measure execution times with the objective of parallel
online implementations.
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Abbreviations

CSO Original Cuckoo Search Algorithm
WGOO Original Gray Wolf Optimizer
JayaO Original Jaya Algorithm
CSP Proposed Cuckoo Search Algorithm for motor parameter estimation
WGOP Proposed Gray Wolf Optimize for motor parameter estimation
JayaP Proposed Jaya Algorithm for motor parameter estimation
GA Genetic algorithm
DC Direct current
ess Steady-stade error
R Armature resistance
L Armature self-inductance
TL Load torque
Km Mechanical constant
Ke Electrical constant
B Friction coefficient
J Moment of inertia
K The equivalent value of both the electrical and the mechanical constant.
τ(t) Motor torque
E(t) Back electromotive force
ω(t) Angular velocity of rotor



Sensors 2022, 22, 4050 21 of 22

v(t) Voltage
i(t) Current
vss Voltage in steady-state
iss Current in steady-state
ωss Angular velocity in steady-state
max(i) Maximum current
ω(tmax(i)) Time in which the maximum current occurs
f fitness/cost function
Ub Upper boundary
Lb Lower boundary
i Current response to the step of motor
is Current response to the step of the parameters proposed in a simulation
ω Angular velocity response to the step of motor
ωs Angular velocity response to the step of the parameters proposed in a simulation
max( dω

dt ) Maximum angular acceleration
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