1,516 research outputs found

    On waveform multigrid method

    Get PDF
    Waveform multigrid method is an efficient method for solving certain classes of time dependent PDEs. This paper studies the relationship between this method and the analogous multigrid method for steady-state problems. Using a Fourier-Laplace analysis, practical convergence rate estimates of the waveform multigrid iterations are obtained. Experimental results show that the analysis yields accurate performance prediction

    Parallelization and visual analysis of multidimensional fields: Application to ozone production, destruction, and transport in three dimensions

    Get PDF
    Atmospheric modeling is a grand challenge problem for several reasons, including its inordinate computational requirements and its generation of large amounts of data concurrent with its use of very large data sets derived from measurement instruments like satellites. In addition, atmospheric models are typically run several times, on new data sets or to reprocess existing data sets, to investigate or reinvestigate specific chemical or physical processes occurring in the earth's atmosphere, to understand model fidelity with respect to observational data, or simply to experiment with specific model parameters or components

    Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical Mean-Field Theory

    Full text link
    We study the Hubbard model using the Cellular Dynamical Mean-Field Theory (CDMFT) with quantum Monte Carlo (QMC) simulations. We present the algorithmic details of CDMFT with the Hirsch-Fye QMC method for the solution of the self-consistently embedded quantum cluster problem. We use the one- and two-dimensional half-filled Hubbard model to gauge the performance of CDMFT+QMC particularly for small clusters by comparing with the exact results and also with other quantum cluster methods. We calculate single-particle Green's functions and self-energies on small clusters to study their size dependence in one- and two-dimensions.Comment: 14 pages, 18 figure

    Human brain distinctiveness based on EEG spectral coherence connectivity

    Full text link
    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of current analysis rely on the extraction of features characterizing the activity of single brain regions, like power-spectrum estimates, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherencebased connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N=108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performances show that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.41% is obtained in EC (96.26% in EO) when fusing power spectrum information from centro-parietal regions. Taken together, these results suggest that functional connectivity patterns represent effective features for improving EEG-based biometric systems.Comment: Key words: EEG, Resting state, Biometrics, Spectral coherence, Match score fusio

    Parallelized Inference for Gravitational-Wave Astronomy

    Full text link
    Bayesian inference is the workhorse of gravitational-wave astronomy, for example, determining the mass and spins of merging black holes, revealing the neutron star equation of state, and unveiling the population properties of compact binaries. The science enabled by these inferences comes with a computational cost that can limit the questions we are able to answer. This cost is expected to grow. As detectors improve, the detection rate will go up, allowing less time to analyze each event. Improvement in low-frequency sensitivity will yield longer signals, increasing the number of computations per event. The growing number of entries in the transient catalog will drive up the cost of population studies. While Bayesian inference calculations are not entirely parallelizable, key components are embarrassingly parallel: calculating the gravitational waveform and evaluating the likelihood function. Graphical processor units (GPUs) are adept at such parallel calculations. We report on progress porting gravitational-wave inference calculations to GPUs. Using a single code - which takes advantage of GPU architecture if it is available - we compare computation times using modern GPUs (NVIDIA P100) and CPUs (Intel Gold 6140). We demonstrate speed-ups of ∼50×\sim 50 \times for compact binary coalescence gravitational waveform generation and likelihood evaluation and more than 100×100\times for population inference within the lifetime of current detectors. Further improvement is likely with continued development. Our python-based code is publicly available and can be used without familiarity with the parallel computing platform, CUDA.Comment: 5 pages, 4 figures, submitted to PRD, code can be found at https://github.com/ColmTalbot/gwpopulation https://github.com/ColmTalbot/GPUCBC https://github.com/ADACS-Australia/ADACS-SS18A-RSmith Add demonstration of improvement in BNS spi
    • …
    corecore