6 research outputs found

    An Efficient and Cost Effective FPGA Based Implementation of the Viola-Jones Face Detection Algorithm

    Get PDF
    We present an field programmable gate arrays (FPGA) based implementation of the popular Viola-Jones face detection algorithm, which is an essential building block in many applications such as video surveillance and tracking. Our implementation is a complete system level hardware design described in a hardware description language and validated on the affordable DE2-115 evaluation board. Our primary objective is to study the achievable performance with a low-end FPGA chip based implementation. In addition, we release to the public domain the entire project. We hope that this will enable other researchers to easily replicate and compare their results to ours and that it will encourage and facilitate further research and educational ideas in the areas of image processing, computer vision, and advanced digital design and FPGA prototyping

    Binary object recognition system on FPGA with bSOM

    Get PDF
    Tri-state Self Organizing Map (bSOM), which takes binary inputs and maintains tri-state weights, has been used for classification rather than clustering in this paper. The major contribution here is the demonstration of the potential use of the modified bSOM in security surveillance, as a recognition system on FPGA

    Fast Face Detector Training Using Tailored Views

    Full text link
    Face detection is an important task in computer vision and often serves as the first step for a variety of applications. State-of-the-art approaches use efficient learning algorithms and train on large amounts of manually labeled imagery. Acquiring appropriate training images, however, is very time-consuming and does not guarantee that the collected training data is representative in terms of data variability. Moreover, available data sets are often acquired under con-trolled settings, restricting, for example, scene illumination or 3D head pose to a narrow range. This paper takes a look into the automated generation of adaptive training samples from a 3D morphable face model. Using statistical insights, the tailored training data guarantees full data variability and is enriched by arbitrary facial attributes such as age or body weight. Moreover, it can automatically adapt to environmental constraints, such as illumination or viewing angle of recorded video footage from surveillance cameras. We use the tailored imagery to train a new many-core imple-mentation of Viola Jones ’ AdaBoost object detection frame-work. The new implementation is not only faster but also enables the use of multiple feature channels such as color features at training time. In our experiments we trained seven view-dependent face detectors and evaluate these on the Face Detection Data Set and Benchmark (FDDB). Our experiments show that the use of tailored training imagery outperforms state-of-the-art approaches on this challenging dataset. 1

    RASW: A run-time adaptive sliding window to improve Viola-Jones object detection

    Full text link
    Abstract—In recent years accurate algorithms for detecting objects in images have been developed. Among these algorithms, the object detection scheme proposed by Viola and Jones gained great popularity, especially after the release of high-quality face classifiers by the OpenCV group. However, as any other slidingwindow based object detector, it is affected by a strong increase in the computational cost as the size of the scene grows. Especially in real-time applications, a search strategy based on a sliding window can be computationally too expensive. In this paper, we propose an efficient approach to adapt at run time the sliding window step size in order to speed-up the detection task without compromising the accuracy. We demonstrate the effectiveness of the proposed Run-time Adaptive Sliding Window (RASW) in improving the performance of Viola-Jones object detection by providing better throughput-accuracy tradeoffs. When comparing our approach with the OpenCV face detection implementation, we obtain up to 2.03x speedup in frames per second without any loss in accuracy

    Parallelized Architecture of Multiple Classifiers for Face Detection

    Get PDF
    This paper presents a parallelized architecture of multiple classifiers for face detection based on the Viola and Jones object detection method. This method makes use of the AdaBoost algorithm which identifies a sequence of Haar classifiers that indicate the presence of a face. We describe the hardware design techniques including image scaling, integral image generation, pipelined processing of classifiers, and parallel processing of multiple classifiers to accelerate the processing speed of the face detection system. Also we discuss the parallelized architecture which can be scalable for configurable device with variable resources. We implement the proposed architecture in Verilog HDL on a Xilinx Virtex-5 FPGA and show the parallelized architecture of multiple classifiers can have 3.3times performance gain over the architecture of a single classifier and an 84times performance gain over an equivalent software solution

    Data driven analysis of faces from images

    Get PDF
    This thesis proposes three new data-driven approaches to detect, analyze, or modify faces in images. All presented contributions are inspired by the use of prior knowledge and they derive information about facial appearances from pre-collected databases of images or 3D face models. First, we contribute an approach that extends a widely-used monocular face detector by an additional classifier that evaluates disparity maps of a passive stereo camera. The algorithm runs in real-time and significantly reduces the number of false positives compared to the monocular approach. Next, with a many-core implementation of the detector, we train view-dependent face detectors based on tailored views which guarantee that the statistical variability is fully covered. These detectors are superior to the state of the art on a challenging dataset and can be trained in an automated procedure. Finally, we contribute a model describing the relation of facial appearance and makeup. The approach extracts makeup from before/after images of faces and allows to modify faces in images. Applications such as machine-suggested makeup can improve perceived attractiveness as shown in a perceptual study. In summary, the presented methods help improve the outcome of face detection algorithms, ease and automate their training procedures and the modification of faces in images. Moreover, their data-driven nature enables new and powerful applications arising from the use of prior knowledge and statistical analyses.In der vorliegenden Arbeit werden drei neue, datengetriebene Methoden vorgestellt, die Gesichter in Abbildungen detektieren, analysieren oder modifizieren. Alle Algorithmen extrahieren dabei Vorwissen ĂŒber Gesichter und deren Erscheinungsformen aus zuvor erstellten Gesichts- Datenbanken, in 2-D oder 3-D. ZunĂ€chst wird ein weit verbreiteter monokularer Gesichtsdetektions- Algorithmus um einen zweiten Klassifikator erweitert. In Echtzeit wertet dieser stereoskopische Tiefenkarten aus und fĂŒhrt so zu nachweislich weniger falsch detektierten Gesichtern. Anschließend wird der Basis-Algorithmus durch Parallelisierung verbessert und mit synthetisch generierten Bilddaten trainiert. Diese garantieren die volle Nutzung des verfĂŒgbaren Varianzspektrums. So erzeugte Detektoren ĂŒbertreffen bisher prĂ€sentierte Detektoren auf einem schwierigen Datensatz und können automatisch erzeugt werden. Abschließend wird ein Datenmodell fĂŒr Gesichts-Make-up vorgestellt. Dieses extrahiert Make-up aus Vorher/Nachher-Fotos und kann Gesichter in Abbildungen modifizieren. In einer Studie wird gezeigt, dass vom Computer empfohlenes Make-up die wahrgenommene AttraktivitĂ€t von Gesichtern steigert. Zusammengefasst verbessern die gezeigten Methoden die Ergebnisse von Gesichtsdetektoren, erleichtern und automatisieren ihre Trainingsprozedur sowie die automatische VerĂ€nderung von Gesichtern in Abbildungen. Durch Extraktion von Vorwissen und statistische Datenanalyse entstehen zudem neuartige Anwendungsfelder
    corecore