3 research outputs found

    Batch Scheduling with Proportional-Linear Deterioration and Outsourcing

    Get PDF
    We consider the bounded parallel-batch scheduling with proportional-linear deterioration and outsourcing, in which the actual processing time is pj=αj(A+Dt) or pj=αjt. A job is either accepted and processed in batches on a single machine by manufactures themselves or outsourced to the third party with a certain penalty having to be paid. The objective is to minimize the maximum completion time of the accepted jobs and the total penalty of the outsourced jobs. For the pj=αj(A+Dt) model, when all the jobs are released at time zero, we show that the problem is NP-hard and present a pseudo-polynomial time algorithm, respectively. For the pj=αjt model, when the jobs have distinct m (<n) release dates, we provide a dynamic programming algorithm, where n is the number of jobs

    Parallel-Batch Scheduling with Two Models of Deterioration to Minimize the Makespan

    Get PDF
    We consider the bounded parallel-batch scheduling with two models of deterioration, in which the processing time of the first model is pj=aj+αt and of the second model is pj=a+αjt. The objective is to minimize the makespan. We present O(n log n) time algorithms for the single-machine problems, respectively. And we propose fully polynomial time approximation schemes to solve the identical-parallel-machine problem and uniform-parallel-machine problem, respectively
    corecore