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We consider the bounded parallel-batch scheduling with proportional-linear deterioration and outsourcing, in which the actual
processing time is𝑝𝑗 = 𝛼𝑗(𝐴+𝐷𝑡) or𝑝𝑗 = 𝛼𝑗𝑡. A job is either accepted and processed in batches on a singlemachine bymanufactures
themselves or outsourced to the third party with a certain penalty having to be paid. The objective is to minimize the maximum
completion time of the accepted jobs and the total penalty of the outsourced jobs. For the 𝑝𝑗 = 𝛼𝑗(𝐴+𝐷𝑡)model, when all the jobs
are released at time zero, we show that the problem is NP-hard and present a pseudo-polynomial time algorithm, respectively. For
the 𝑝𝑗 = 𝛼𝑗𝑡 model, when the jobs have distinct 𝑚 (<𝑛) release dates, we provide a dynamic programming algorithm, where 𝑛 is
the number of jobs.

1. Introduction

The parallel-batch scheduling is motivated by burn-in oper-
ations in semiconductor manufacturing; see Lee et al. [1] for
more details of the background. By Brucker et al. [2], there
are two distinct models: the bounded model, in which the
bound 𝑏 for each batch size is effective, that is, 𝑏 < 𝑛, and
the unbounded model, in which there is effectively no limit
on the size of batch, that is, 𝑏 ≥ 𝑛. The extensive survey of
different models and results was provided both by Potts and
Kovalyov [3] and Zhang and Cao [4].

Scheduling with deterioration was first considered by J.
N. D. Gupta and S. K. Gupta [5], and Browne and Yechiali
[6]. From then on, this schedulingmodel has been extensively
studied. The monograph by Gawiejnowicz [7] presents this
scheduling from different perspectives and covers results and
examples. Ji and Cheng [8], Liu et al. [9], and Miao [10] gave
some new results for this scheduling.

In classical scheduling literatures, all jobs must be pro-
cessed. In the practical applications, however, this may not be
true. Due to the limited resources, the scheduler can have the
option to outsource or reject some jobs. However, outsourced

jobs will incur penalties. The scheduling with outsourcing
was first considered by Bartal et al. [11].They studied both the
offline and the online versions of schedulingwith outsourcing
on identical parallel machines, the objective is to minimize
the maximum completion time of the accepted jobs and the
total penalty of the outsourced jobs.

Cao and Yang [12] presented a PTAS for the combined
model of the parallel-batch and rejection where jobs arrive
dynamically. The objective is to minimize the maximum
completion time of the accepted jobs and the total penalty
of the outsourced ones. Lu et al. ([13, 14]) considered the
unbounded and bounded parallel-batch scheduling problems
with outsourcing on a single machine. Cheng and Sun [15]
considered the scheduling with linear deteriorating jobs and
rejection on a single machine; they gave the proofs of the NP-
hardness and presented some pseudo-polynomial time algo-
rithms and FPTASs for some objectives.Miao [16] considered
the bounded parallel-batch schedulingwith rejection in theV
chapter of her thesis.

In this paper, we consider the bounded parallel-batch
scheduling with proportional-linear deterioration and out-
sourcing on a singlemachine.Theobjective is tominimize the
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maximum completion time of the accepted jobs and the total
penalty of the outsourced jobs. We analyze the NP-hardness
and present pseudo-polynomial time dynamic programming
algorithms for two deterioration models

2. Problem Description and Preliminaries

There are 𝑛 independent nonpreemptive deteriorating jobs𝐽 = {𝐽1, . . . , 𝐽𝑛} to be processed on a single batch machine.
The actual processing time of job 𝐽𝑗 (𝑗 = 1, . . . , 𝑛) is 𝑝𝑗 =𝛼𝑗𝑡 or 𝑝𝑗 = 𝛼𝑗(𝐴 + 𝐷𝑡), where 𝐴,𝐷 > 0, 𝛼𝑗 (≥0), and 𝑡
denote the deteriorating rate and starting time, respectively.𝐽𝑗 has release date 𝑟𝑗 and outsourced penalty 𝑒𝑗. Without
loss of generality, we assume that the jobs’ parameters are
integral, unless stated otherwise. Each job 𝐽𝑗 is either accepted
to be processed on the machine in batches or outsourced
with a penalty 𝑒𝑗 having to be paid. The machine can process
up to 𝑏 jobs simultaneously as a batch, and the processing
time of the batch is equal to the longest time of the job
in the batch; in the deterioration model, the deteriorating
rate of the batch is equal to the largest deteriorating rate of
the job in the batch. Following Gawiejnowicz [7], we denote
our problems as 1 | 𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗(𝐴 + 𝐷𝑡), 𝑟𝑗 =0, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔, 𝑏 < 𝑛 | 𝐶max(𝑆) + ∑𝑆 𝑒𝑗 and 1 | 𝑝 −𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗𝑡, 𝑟𝑗, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔, 𝑏 < 𝑛 | 𝐶max(𝑆) + ∑𝑆 𝑒𝑗.
Lemma 1 (see [7]). Problem 1 | 𝑝𝑗 = 𝛼𝑗(𝐴 + 𝐷𝑡) | 𝐶max
is solvable in 𝑂(𝑛) time if 𝐴,𝐷 > 0, 𝛼𝑗 > 0 for 1 ≤ 𝑗 ≤ 𝑛,
and the completion time of the 𝑗th job and the maximum
completion time are 𝐶𝑗 = (𝐴/𝐷)∏𝑗𝑖=1(1 + 𝐷𝛼𝑖) − 𝐴/𝐷 and
𝐶max = (𝐴/𝐷)∏𝑛𝑗=1(1 + 𝐷𝛼𝑗) − 𝐴/𝐷, respectively.

Lemma 2 (see [15]). Problem 1 | 𝑝𝑗 = 𝛼𝑗𝑡, 𝑟𝑗 = 𝑡0, 𝑟𝑒𝑗 |𝐶max(𝑆) + ∑𝑆 𝑒𝑗 is NP-hard.
Lemma 3 (see [17]). For the single machine scheduling prob-
lem 1 | 𝑝𝑗 = 𝛼𝑗𝑡 | 𝐶max, if a schedule 𝜋 = {𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]},
and the starting time of job 𝐽[1] is 𝑡0, then the makespan is

𝐶max (𝜋) = 𝑡0
𝑛∏
𝑗=1

(1 + 𝛼[𝑗]) . (1)

We list the following useful algorithm stated inMiao et al.
[18].

Algorithm FBLDR (fully batching longest deteriorating rate)

Step 1. Reindex jobs in nonincreasing order of their deterio-
rating rates such that 𝛼1 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑛.
Step 2. Form batches by placing jobs 𝐽𝑗𝑏+1 through 𝐽(𝑗+1)𝑏
together in the same batch, for 𝑗 = 0, 1, . . . , ⌊𝑛/𝑏⌋.
Step 3. Schedule the batches in any arbitrary order.

The schedule contains at most ⌊𝑛/𝑏⌋ + 1 batches and
all batches are full except possibly the last one, where ⌊𝑛/𝑏⌋
denotes the largest integer less than 𝑛/𝑏.

3. The Case with Identical Release Dates

In this section, we discuss problem 1 | 𝑝−𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗(𝐴+𝐷𝑡), 𝑟𝑗 = 0, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔, 𝑏 < 𝑛 | 𝐶max(𝑆) + ∑𝑆 𝑒𝑗.
3.1. NP-Hardness. From Lemma 2 and Zhang and Miao [19],
we can get the following theorem.

Theorem 4. Problem 1 | 𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗(𝐴 + 𝐷𝑡), 𝑟𝑗 =0, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔, 𝑏 < 𝑛 | 𝐶max(𝑆) + ∑𝑆 𝑒𝑗 is NP-hard.
3.2. Pseudo-Polynomial Time Algorithm

Theorem5. For problem 1 | 𝑝−𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗(𝐴+𝐷𝑡), 𝑟𝑗 =0, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔, 𝑏 < 𝑛 | 𝐶max(𝑆)+∑𝑆 𝑒𝑗, there exists an optimal
schedule in which the accepted jobs are assigned to the machine
by Algorithm FBLDR.

Assume that the jobs have been indexed so that 𝛼1 ≥ ⋅ ⋅ ⋅ ≥𝛼𝑛.
Let𝐹𝑗(𝑏𝑗, 𝐸) be the optimal value of the objective function

satisfying the following conditions for problem 1 | 𝑝 −𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗(𝐴 + 𝐷𝑡), 𝑟𝑗 = 0, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔, 𝑏 < 𝑛 |𝐶max(𝑆) + ∑𝑆 𝑒𝑗:
(i) The jobs in consideration are 𝐽1, . . . , 𝐽𝑗.
(ii) The number of processed jobs in the last batch is 𝑏𝑗. If

there is no such batch, we set 𝑏𝑗 = 0.
(iii) The total penalty of outsourced jobs is 𝐸.
We design an algorithm as follows.

AlgorithmDP1

Step 1 (initialization)

𝐹1(1, 0) = 𝐴𝛼1 and 𝐹𝑗(𝑏𝑗, 𝐸) = +∞ for (𝑏𝑗, 𝐸) ̸= (1, 0).
𝐹1(0, 𝑒1) = 𝑒1 and 𝐹𝑗(𝑏𝑗, 𝐸) = +∞ for (𝑏𝑗, 𝐸) ̸= (0, 𝑒1).

Step 2 (iteration)

If 𝑏𝑗 = 1,
𝐹𝑗(𝑏𝑗, 𝐸) = min{(1 + 𝐷𝛼𝑗)(𝐹𝑗−1(𝑏, 𝐸) − 𝐸) − 𝐴𝛼𝑗 +𝐸, 𝐹𝑗−1(𝑏𝑗, 𝐸 − 𝑒𝑗) + 𝑒𝑗}.
If 𝑏𝑗 > 1,
𝐹𝑗(𝑏𝑗, 𝐸) = min{𝐹𝑗−1(𝑏𝑗 − 1, 𝐸), 𝐹𝑗−1(𝑏𝑗, 𝐸 − 𝑒𝑗) + 𝑒𝑗}.

Step 3 (solution)

Define the optimal value:
𝐹∗ = min{𝐹𝑛(𝑏𝑛, 𝐸) : 0 ≤ 𝑏𝑛 ≤ 𝑏, 0 ≤ 𝐸 ≤ ∑𝑛𝑗=1 𝑒𝑗}.

In Step 2, when job 𝐽𝑗 is accepted and 𝑏𝑗 = 1, 𝐽𝑗 has
to start a new batch, combining with Lemma 1, we have𝐹𝑗(𝑏𝑗, 𝐸) = (1+𝐷𝛼𝑗)(𝐹𝑗−1(𝑏, 𝐸)−𝐸)−𝐴𝛼𝑗+𝐸, when 𝑏𝑗 > 1, 𝐽𝑗
should be assigned to the last batchwhich has existed, and the
makespan does not change; therefore, 𝐹𝑗(𝑏𝑗, 𝐸) = 𝐹𝑗−1(𝑏𝑗 −1, 𝐸). When job 𝐽𝑗 is outsourced, 𝐹𝑗(𝑏𝑗, 𝐸) = 𝐹𝑗−1(𝑏𝑗, 𝐸 − 𝑒𝑗) +𝑒𝑗.
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Theorem 6. Algorithm DP1 solves problem 1 | 𝑝 −𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗(𝐴 + 𝐷𝑡), 𝑟𝑗 = 0, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔, 𝑏 < 𝑛 |
𝐶max(𝑆) + ∑𝑆 𝑒𝑗 in 𝑂(𝑛𝑏(∑𝑛𝑗=1 𝑒𝑗)) time.

4. The Case with 𝑚 Distinct Release Dates

In this section, we present a dynamic programming algo-
rithm for the case where the jobs have a constant number of
release dates.

From Theorem 4, we have that 1 | 𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 =
𝛼𝑗𝑡, 𝑟𝑗, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔, 𝑏 < 𝑛 | 𝐶max(𝑆) + ∑𝑆 𝑒𝑗 is NP-hard.
Assume that jobs have been indexed so that 𝛼1 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑛
and there are 𝑚 distinct release dates denoted by 𝑡0 = 𝑅1 <𝑅2 < ⋅ ⋅ ⋅ < 𝑅𝑚, where 𝑚 is a constant. We divide [𝑅1, +∞)
into𝑚 time intervals [𝑅1, 𝑅2), [𝑅2, 𝑅3), . . . , [𝑅𝑚, 𝑅𝑚+1), where𝑅𝑚+1 = +∞.

Given a schedule 𝜋, let 𝐽 = ⋃𝑚𝑖=1𝐻𝑖(𝜋) and 𝐻𝑖(𝜋) ∩𝐻𝑗(𝜋) = 𝜙 for 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑚 such that jobs in 𝐻𝑖(𝜋) are
started at or after 𝑅𝑖 but strictly before 𝑅𝑖+1.

We can locally rearrange the schedule of each subset𝐻𝑖(𝜋), without increasing its makespan, so that it follows
Algorithm FBLDR as the following lemma.

Lemma 7. For any schedule 𝜋 for 𝐽 to minimize 𝐶max, there
exists a schedule 𝜋 for 𝐽 with 𝐶max, such that 𝐶max(𝜋) ≤
𝐶max(𝜋), and 𝐻𝑖(𝜋) = 𝐻𝑖(𝜋), and the schedule for 𝐻𝑖(𝜋)
according to 𝜋 follows Algorithm FBLDR for 𝑖 = 1, 2, . . . , 𝑚.

Reindex jobs in nonincreasing order of their deteriorating
rates so that 𝛼1 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑛. By the above lemma, we partition
all jobs into a sequence of𝑚 disjoint subsets𝐻1, . . . , 𝐻𝑚 and
can assume that each subset 𝐻𝑖 is scheduled in time interval[𝑅𝑖, 𝑅𝑖+1) according to algorithmFBLPT. If𝐻𝑖 ̸= 𝜙, then there
is a starting time 𝑡 ≥ 𝑅𝑖 at which the first batch of𝐻𝑖 is started.
When the last batch of 𝐻𝑖−1 is delay, that is, being finished
after 𝑅𝑖 (even though it is started before time 𝑅𝑖), then 𝑡 > 𝑅𝑖.

Let 𝐹𝑗(𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) be the optimal
value of the objective function satisfying the following condi-
tions:

(i) The jobs in consideration are 𝐽1, . . . , 𝐽𝑗.
(ii) 𝑑𝑖(1 ≤ 𝑖 ≤ 𝑚) is the delay time of the first batch

starting in [𝑅𝑖, 𝑅𝑖+1) which is caused by the last batch
starting in [𝑅𝑖−1, 𝑅𝑖). Without loss of generality, we set𝑑1 = 0.

(iii) 𝑃𝑖(1 ≤ 𝑖 ≤ 𝑚) is the total length of batches starting in[𝑅𝑖, 𝑅𝑖+1). If there is no batch starting in [𝑅𝑖, 𝑅𝑖+1), we
set 𝑃𝑖 = 0.

(iv) 𝑏𝑖(1 ≤ 𝑖 ≤ 𝑚) is the number of jobs in the last batch
starting in [𝑅𝑖, 𝑅𝑖+1). If there is no batch starting in
time [𝑅𝑖, 𝑅𝑖+1), then we set 𝑏𝑖 = 0.

(v) The total penalty of the outsourced jobs is 𝐸.
Finally, we define the makespan of a schedule 𝜋 for jobs𝐽1, . . . , 𝐽𝑗 as 𝑅𝑚 + 𝑑𝑚 + 𝑃𝑚. Hence, the makespan is always at

least 𝑅𝑚.

Now, we distinguish two cases.

Case 1 (job 𝐽𝑗 is outsourced). In this case, we have

𝐹𝑗 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸)
= 𝐹𝑗−1 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸 − 𝑒𝑗)

+ 𝑒𝑗.
(2)

Case 2 (job 𝐽𝑗 is accepted). In this case, without loss of
generality, we assume that 𝑟𝑗 = 𝑅𝑖; then it can be scheduled
in time interval [𝑅𝑘, 𝑅𝑘+1) (𝑖 ≤ 𝑘 ≤ 𝑚). We distinguish two
subcases in the following.

Case 2.1 (𝑏𝑘 = 1). In this subcase, the last batch starting in[𝑅𝑘, 𝑅𝑘+1) is either full or does not exist at all before inserting𝐽𝑗. Without loss of generality, we assume that the batch is full.
For 𝑖 ≤ 𝑘 ≤ 𝑚, let 𝑥 be the increasing time by inserting

job 𝐽𝑗 in [𝑅𝑘, 𝑅𝑘+1). Then we have (𝑅𝑘 + 𝑑𝑘 + 𝑃𝑘 − 𝑥)𝛼𝑗 = 𝑥;
then 𝑥 = (𝑅𝑘 + 𝑑𝑘 + 𝑃𝑘)𝛼𝑗/(1 + 𝛼𝑗). Thus, the total length of
batches starting in [𝑅𝑘, 𝑅𝑘+1) before inserting 𝐽𝑗 is 𝑃𝑘 − 𝑥 =𝑃𝑘 − (𝑅𝑘 + 𝑑𝑘 + 𝑃𝑘)𝛼𝑗/(1 + 𝛼𝑗).

Therefore, for 𝑖 ≤ 𝑘 < 𝑚, if (𝑅𝑘 +𝑑𝑘 +𝑃𝑘)𝛼𝑗/(1 +𝛼𝑗) ∈ 𝑍+
and 𝑃𝑘 ≥ (𝑅𝑘 + 𝑑𝑘 + 𝑃𝑘)𝛼𝑗/(1 + 𝛼𝑗), we have
𝐹𝑗 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) = 𝐹𝑗−1 (𝑑1,

. . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑘−1, (𝑃𝑘 − (𝑅𝑘 + 𝑑𝑘 + 𝑃𝑘) 𝛼𝑗
1 + 𝛼𝑗 ) , 𝑃𝑘+1,

. . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑘−1, 𝑏, 𝑏𝑘+1, . . . , 𝑏𝑚; 𝐸) .

(3)

If (𝑅𝑘+𝑑𝑘+𝑃𝑘)𝛼𝑗/(1+𝛼𝑗)∈𝑍+ or𝑃𝑘 < (𝑅𝑘+𝑑𝑘+𝑃𝑘)𝛼𝑗/(1+𝛼𝑗), we have 𝐹𝑗(𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) = +∞.
For 𝑘 = 𝑚, (𝑅𝑚 + 𝑑𝑚 + 𝑃𝑚)𝛼𝑗/(1 + 𝛼𝑗) ∈ 𝑍+ and 𝑃𝑚 ≥(𝑅𝑚 + 𝑑𝑚 + 𝑃𝑚)𝛼𝑗/(1 + 𝛼𝑗), we have

𝐹𝑗 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸)
= 𝐹𝑗−1 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚−1, 𝑃𝑚

− (𝑅𝑚 + 𝑏𝑚 + 𝑃𝑚) 𝛼𝑗
1 + 𝛼𝑗 ; 𝑏1, . . . , 𝑏𝑚−1, 𝑏; 𝐸)

+ (𝑅𝑚 + 𝑑𝑚 + 𝑃𝑚) 𝛼𝑗
1 + 𝛼𝑗 .

(4)

Otherwise, 𝐹𝑗(𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) = +∞.

Case 2.2 (𝑏𝑘 > 1). In this subcase, 𝐽𝑗 can be assigned to the
last batch starting in [𝑅𝑘, 𝑅𝑘+1). Therefore, we have

𝐹𝑗 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) = 𝐹𝑗−1 (𝑑1, . . . ,
𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑘−1, (𝑏𝑘 − 1) , 𝑏𝑘+1, . . . , 𝑏𝑚; 𝐸) .

(5)
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Suppose that 𝑟1 = 𝑅𝑖 for some 𝑖, if it is accepted, it can only
be scheduled at or after𝑅𝑖.Without loss of generality, suppose
that it is scheduled at time interval [𝑅𝑘, 𝑅𝑘+1), 𝑖 ≤ 𝑘 ≤ 𝑚;
then, 𝐶1 = (𝑅𝑘 + 𝑑𝑘)(1 + 𝛼1).

Combining the above discussion, we design Algorithm
DP2 as follows.

AlgorithmDP2

Step 1 (initialization)

𝐹1 (0, . . . , 0, 𝑑𝑘, 0, . . . , 0; 0, . . . , 0, (𝑅𝑘 + 𝑑𝑘) 𝛼1, 0, . . . , 0; 0, . . . , 0, 1, 0, . . . , 0; 0) = max {𝑅𝑚, (𝑅𝑘 + 𝑏𝑘) (1 + 𝛼1)} ,
𝐹1 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) = +∞

for (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) ̸= (0, . . . , 0, 𝑑𝑘, 0, . . . , 0; 0, . . . , 0, (𝑅𝑘 + 𝑑𝑘) 𝛼1, 0, . . . , 0; 0, . . . , 0, 1, 0, . . . , 0; 0) ,
𝐹1 (0, . . . , 0; 0, . . . , 0, . . . , 0; 0, . . . , 0; 𝑒1) = 𝑅𝑚 + 𝑒1,
𝐹1 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) = +∞

for (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) ̸= (0, . . . , 0; 0, . . . , 0, . . . , 0; 0, . . . , 0; 𝑒1) .

(6)

Step 2 (iteration)

𝐹𝑗 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸)
= min {𝐹𝑗−1 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸
− 𝑒𝑗) + 𝑒𝑗,min {𝐹𝑘 (𝑗)}} ,

(7)

where 𝐹𝑘(𝑗) is defined as follows:

𝐹𝑘 (𝑗) = 𝐹𝑗−1 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑘−1, (𝑏𝑘 − 1) ,
𝑏𝑘+1, . . . , 𝑏𝑚; 𝐸)

(8)

for 𝑏𝑘 > 1 and 𝑖 ≤ 𝑘 ≤ 𝑚.

𝐹𝑘 (𝑗) = 𝐹𝑗−1 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑘−1,

(𝑃𝑘 − (𝑅𝑘 + 𝑑𝑘 + 𝑃𝑘) 𝛼𝑗
1 + 𝛼𝑗 ) , 𝑃𝑘+1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑘−1, 𝑏,

𝑏𝑘+1, . . . , 𝑏𝑚; 𝐸)

(9)

for 𝑏𝑘 = 1, 𝑖 ≤ 𝑘 < 𝑚, (𝑅𝑘 + 𝑑𝑘 + 𝑃𝑘)𝛼𝑗/(1 + 𝛼𝑗) ∈ 𝑍+, and𝑃𝑘 ≥ (𝑅𝑘 + 𝑑𝑘 + 𝑃𝑘)𝛼𝑗/(1 + 𝛼𝑗).
Otherwise, 𝐹𝑘(𝑗) = +∞,

𝐹𝑚 (𝑗) = 𝐹𝑗−1 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚−1, 𝑃𝑚

− (𝑅𝑚 + 𝑏𝑚 + 𝑃𝑚) 𝛼𝑗
1 + 𝛼𝑗 ; 𝑏1, . . . , 𝑏𝑚−1, 𝑏; 𝐸)

+ (𝑅𝑚 + 𝑑𝑚 + 𝑃𝑚) 𝛼𝑗
1 + 𝛼𝑗 ,

(10)

for 𝑏𝑘 = 1, 𝑘 = 𝑚, (𝑅𝑚 + 𝑑𝑚 + 𝑃𝑚)𝛼𝑗/(1 + 𝛼𝑗) ∈ 𝑍+ and𝑃𝑚 ≥ (𝑅𝑚 + 𝑑𝑚 + 𝑃𝑚)𝛼𝑗/(1 + 𝛼𝑗).

Otherwise, 𝐹𝑚(𝑗) = +∞.

Step 3 (optimal value)
Define the optimal value

𝐹∗ = min
{{{
𝐹𝑛 (𝑑1, . . . , 𝑑𝑚; 𝑃1, . . . , 𝑃𝑚; 𝑏1, . . . , 𝑏𝑚; 𝐸) : 0

≤ 𝑑𝑖 ≤ 𝑅𝑖𝛼max, 0 ≤ 𝑃𝑖 ≤ (𝑅𝑖 + 𝑑𝑖) (𝑇 − 1) , 1 ≤ 𝑏𝑖 ≤ 𝑏,

𝑖 = 1, . . . , 𝑚; 0 ≤ 𝐸 ≤ 𝑛∑
𝑗=1

𝑒𝑗}}}
,

(11)

where 𝑇 = ∏𝑛𝑗=1(1 + 𝛼𝑗).
Theorem 8. Algorithm DP2 solves problem 1 | 𝑝 −𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗𝑡, 𝑟𝑗 ∈ {𝑅𝑖 : 1 ≤ 𝑖 ≤ 𝑚}, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑐𝑖𝑛𝑔, 𝑏 <
𝑛 | 𝐶max(𝑆) + ∑𝐽𝑗∈𝑆 𝑒𝑗 with the running time of 𝑂(𝑚𝑛𝑅2(𝑏(1 +
𝛼max)𝛼max𝑇)𝑚), where 𝑅 = 𝑅1𝑅2 ⋅ ⋅ ⋅ 𝑅𝑚.
Proof. The correctness of the dynamic programming algo-
rithm DP2 is guaranteed by the above discussion. Clearly,
we have 1 ≤ 𝑏𝑖 ≤ 𝑏, 0 ≤ 𝑑𝑖 ≤ 𝑅𝑖𝛼max for 𝑖 = 1, . . . , 𝑚 and 0 ≤𝐸 ≤ ∑𝑛𝑗=1 𝑒𝑗. Then, 0 ≤ 𝑃𝑖 ≤ (𝑅𝑖 + 𝑑𝑖)(𝑇 − 1) ≤ 𝑅𝑖(1 + 𝛼max)𝑇.
Therefore, there is𝑂(𝑛𝑅2(𝑏(1+𝛼max)𝛼max𝑇)𝑚) set of possible
input value. For each set, it takes 𝑂(𝑚) time to compute the
value of objective.Thus, the running time of algorithmDP2
is 𝑂(𝑚𝑛𝑅2(𝑏(1 + 𝛼max)𝛼max𝑇)𝑚).
5. Conclusion

In this paper, we presented a pseudo-polynomial time algo-
rithm for 1 | 𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝛼𝑗(𝐴 + 𝐷𝑡), 𝑟𝑗 =0, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔, 𝑏 < 𝑛 | 𝐶max(𝑆) + ∑𝑆 𝑒𝑗 and a dynamic
programming algorithm for the case where jobs have 𝑚
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distinct release dates of problem 1 | 𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 =𝛼𝑗𝑡, 𝑟𝑗, 𝑜𝑢𝑡𝑠𝑜𝑢𝑟𝑖𝑛𝑔, 𝑏 < 𝑛 | 𝐶max(𝑆) + ∑𝑆 𝑒𝑗. For future
research, it is worth considering other objectives.
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