48 research outputs found

    The Peano software---parallel, automaton-based, dynamically adaptive grid traversals

    Get PDF
    We discuss the design decisions, design alternatives, and rationale behind the third generation of Peano, a framework for dynamically adaptive Cartesian meshes derived from spacetrees. Peano ties the mesh traversal to the mesh storage and supports only one element-wise traversal order resulting from space-filling curves. The user is not free to choose a traversal order herself. The traversal can exploit regular grid subregions and shared memory as well as distributed memory systems with almost no modifications to a serial application code. We formalize the software design by means of two interacting automata—one automaton for the multiscale grid traversal and one for the application-specific algorithmic steps. This yields a callback-based programming paradigm. We further sketch the supported application types and the two data storage schemes realized before we detail high-performance computing aspects and lessons learned. Special emphasis is put on observations regarding the used programming idioms and algorithmic concepts. This transforms our report from a “one way to implement things” code description into a generic discussion and summary of some alternatives, rationale, and design decisions to be made for any tree-based adaptive mesh refinement software

    Parallel ODETLAP for terrain compression and reconstruction

    Full text link
    We introduce a parallel approximation of an Over-determined Laplacian Partial Differential Equation solver (ODETLAP) applied to the compression and restoration of terrain data used for Geographical Information Systems (GIS). ODET-LAP can be used to reconstruct a compressed elevation map, or to generate a dense regular grid from airborne Light Detection and Ranging (LIDAR) point cloud data. With previous methods, the time to execute ODETLAP does not scale well with the size of the input elevation map, resulting in running times that are prohibitively long for large data sets. Our algorithm divides the data set into patches, runs ODET-LAP on each patch, and then merges the patches together. This method gives two distinct speed improvements. First, we provide scalability by reducing the complexity such that the execution time grows almost linearly with the size of the input, even when run on a single processor. Second, we are able to calculate ODETLAP on the patches concurrently in a parallel or distributed environment. Our new patchbased implementation takes 2 seconds to run ODETLAP on an 800 Ă— 800 elevation map using 128 processors, while the original version of ODETLAP takes nearly 10 minutes on a single processor (271 times longer). We demonstrate the effectiveness of the new algorithm by running it on data sets as large as 16000 Ă— 16000 on a cluster of computers. We also discuss our preliminary results from running on an IBM Blue Gene/L system with 32,768 processors

    SFC-based Communication Metadata Encoding for Adaptive Mesh

    Get PDF
    This volume of the series “Advances in Parallel Computing” contains the proceedings of the International Conference on Parallel Programming – ParCo 2013 – held from 10 to 13 September 2013 in Garching, Germany. The conference was hosted by the Technische Universität München (Department of Informatics) and the Leibniz Supercomputing Centre.The present paper studies two adaptive mesh refinement (AMR) codes whose grids rely on recursive subdivison in combination with space-filling curves (SFCs). A non-overlapping domain decomposition based upon these SFCs yields several well-known advantageous properties with respect to communication demands, balancing, and partition connectivity. However, the administration of the meta data, i.e. to track which partitions exchange data in which cardinality, is nontrivial due to the SFC’s fractal meandering and the dynamic adaptivity. We introduce an analysed tree grammar for the meta data that restricts it without loss of information hierarchically along the subdivision tree and applies run length encoding. Hence, its meta data memory footprint is very small, and it can be computed and maintained on-the-fly even for permanently changing grids. It facilitates a forkjoin pattern for shared data parallelism. And it facilitates replicated data parallelism tackling latency and bandwidth constraints respectively due to communication in the background and reduces memory requirements by avoiding adjacency information stored per element. We demonstrate this at hands of shared and distributed parallelized domain decompositions.This work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre “Invasive Computing (SFB/TR 89). It is partially based on work supported by Award No. UK-c0020, made by the King Abdullah University of Science and Technology (KAUST)

    Geometry–aware finite element framework for multi–physics simulations: an algorithmic and software-centric perspective

    Get PDF
    In finite element simulations, the handling of geometrical objects and their discrete representation is a critical aspect in both serial and parallel scientific software environments. The development of codes targeting such envinronments is subject to great development effort and man-hours invested. In this thesis we approach these issues from three fronts. First, stable and efficient techniques for the transfer of discrete fields between non matching volume or surface meshes are an essential ingredient for the discretization and numerical solution of coupled multi-physics and multi-scale problems. In particular L2-projections allows for the transfer of discrete fields between unstructured meshes, both in the volume and on the surface. We present an algorithm for parallelizing the assembly of the L2-transfer operator for unstructured meshes which are arbitrarily distributed among different processes. The algorithm requires no a priori information on the geometrical relationship between the different meshes. Second, the geometric representation is often a limiting factor which imposes a trade-off between how accurately the shape is described, and what methods can be employed for solving a system of differential equations. Parametric finite-elements and bijective mappings between polygons or polyhedra allow us to flexibly construct finite element discretizations with arbitrary resolutions without sacrificing the accuracy of the shape description. Such flexibility allows employing state-of-the-art techniques, such as geometric multigrid methods, on meshes with almost any shape.t, the way numerical techniques are represented in software libraries and approached from a development perspective, affect both usability and maintainability of such libraries. Completely separating the intent of high-level routines from the actual implementation and technologies allows for portable and maintainable performance. We provide an overview on current trends in the development of scientific software and showcase our open-source library utopia

    Matrixfreie voxelbasierte Finite-Elemente-Methode fĂĽr Materialien mit komplizierter Mikrostruktur

    Get PDF
    Modern image detection techniques such as micro computer tomography (μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis. However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm. This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.Moderne bildgebende Verfahren wie Mikro-Computertomographie (μCT), Magnetresonanztomographie (MRT) und Rasterelektronenmikroskopie (SEM) liefern nicht-invasiv hochauflösende Bilder der Mikrostruktur von Materialien. Sie bilden die Grundlage der geometrischen Modelle der hochauflösenden bildbasierten Analysis. Allerdings erreichen vor allem in 3D die Diskretisierungen dieser Modelle leicht die Größe von 100 Mill. Freiheitsgraden und erfordern umfangreiche Hardware-Ressourcen in Bezug auf Hauptspeicher und Rechenleistung, um das numerische Modell zu lösen. Der Fokus dieser Arbeit liegt daher darin, numerische Lösungsmethoden zu kombinieren und anzupassen, um den Speicherplatzbedarf und die Rechenzeit zu reduzieren und damit eine Ausführung der bildbasierten Analyse auf modernen Computer-Desktops zu ermöglichen. Daher ist als numerisches Modell eine einfache Gitterdiskretisierung der voxelbasierten (Pixel mit der Tiefe als dritten Dimension) Geometrie gewählt, die die Oberflächenerstellung weglässt und eine reduzierte Speicherung der finiten Elementen und einen matrixfreien Lösungsalgorithmus ermöglicht. Dies wiederum verringert den Aufwand von fast allen angewandten gitterbasierten Lösungsverfahren und führt zu Speichereffizienz und numerisch stabilen Algorithmen für die Mikrostrukturmodelle. Es werden zwei Varianten der Anpassung der matrixfreien Lösung präsentiert, die Element-für-Element Methode und eine Knoten-Kanten-Variante. Die Methode der konjugierten Gradienten in Kombination mit dem Mehrgitterverfahren als sehr effizienten Vorkonditionierer wird für den matrixfreien Lösungsalgorithmus adaptiert. Der stufige Verlauf der Materialgrenzen durch die voxelbasierte Diskretisierung wird durch Elemente geglättet, die am Integrationspunkt unterschiedliche Materialinformationen enthalten und über Teilzellen integriert werden (embedded boundary elements). Die Effizienz der matrixfreien Verfahren bleibt erhalten
    corecore