42,961 research outputs found

    GlobalTrait: Personality Alignment of Multilingual Word Embeddings

    Full text link
    We propose a multilingual model to recognize Big Five Personality traits from text data in four different languages: English, Spanish, Dutch and Italian. Our analysis shows that words having a similar semantic meaning in different languages do not necessarily correspond to the same personality traits. Therefore, we propose a personality alignment method, GlobalTrait, which has a mapping for each trait from the source language to the target language (English), such that words that correlate positively to each trait are close together in the multilingual vector space. Using these aligned embeddings for training, we can transfer personality related training features from high-resource languages such as English to other low-resource languages, and get better multilingual results, when compared to using simple monolingual and unaligned multilingual embeddings. We achieve an average F-score increase (across all three languages except English) from 65 to 73.4 (+8.4), when comparing our monolingual model to multilingual using CNN with personality aligned embeddings. We also show relatively good performance in the regression tasks, and better classification results when evaluating our model on a separate Chinese dataset.Comment: Submitted and accepted to AAAI 2019 conferenc

    High-performance Kernel Machines with Implicit Distributed Optimization and Randomization

    Full text link
    In order to fully utilize "big data", it is often required to use "big models". Such models tend to grow with the complexity and size of the training data, and do not make strong parametric assumptions upfront on the nature of the underlying statistical dependencies. Kernel methods fit this need well, as they constitute a versatile and principled statistical methodology for solving a wide range of non-parametric modelling problems. However, their high computational costs (in storage and time) pose a significant barrier to their widespread adoption in big data applications. We propose an algorithmic framework and high-performance implementation for massive-scale training of kernel-based statistical models, based on combining two key technical ingredients: (i) distributed general purpose convex optimization, and (ii) the use of randomization to improve the scalability of kernel methods. Our approach is based on a block-splitting variant of the Alternating Directions Method of Multipliers, carefully reconfigured to handle very large random feature matrices, while exploiting hybrid parallelism typically found in modern clusters of multicore machines. Our implementation supports a variety of statistical learning tasks by enabling several loss functions, regularization schemes, kernels, and layers of randomized approximations for both dense and sparse datasets, in a highly extensible framework. We evaluate the ability of our framework to learn models on data from applications, and provide a comparison against existing sequential and parallel libraries.Comment: Work presented at MMDS 2014 (June 2014) and JSM 201

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    A Digital Neuromorphic Architecture Efficiently Facilitating Complex Synaptic Response Functions Applied to Liquid State Machines

    Full text link
    Information in neural networks is represented as weighted connections, or synapses, between neurons. This poses a problem as the primary computational bottleneck for neural networks is the vector-matrix multiply when inputs are multiplied by the neural network weights. Conventional processing architectures are not well suited for simulating neural networks, often requiring large amounts of energy and time. Additionally, synapses in biological neural networks are not binary connections, but exhibit a nonlinear response function as neurotransmitters are emitted and diffuse between neurons. Inspired by neuroscience principles, we present a digital neuromorphic architecture, the Spiking Temporal Processing Unit (STPU), capable of modeling arbitrary complex synaptic response functions without requiring additional hardware components. We consider the paradigm of spiking neurons with temporally coded information as opposed to non-spiking rate coded neurons used in most neural networks. In this paradigm we examine liquid state machines applied to speech recognition and show how a liquid state machine with temporal dynamics maps onto the STPU-demonstrating the flexibility and efficiency of the STPU for instantiating neural algorithms.Comment: 8 pages, 4 Figures, Preprint of 2017 IJCN
    corecore