332 research outputs found

    Big Geospatial Data processing in the IQmulus Cloud

    Get PDF
    Remote sensing instruments are continuously evolving in terms of spatial, spectral and temporal resolutions and hence provide exponentially increasing amounts of raw data. These volumes increase significantly faster than computing speeds. All these techniques record lots of data, yet in different data models and representations; therefore, resulting datasets require harmonization and integration prior to deriving meaningful information from them. All in all, huge datasets are available but raw data is almost of no value if not processed, semantically enriched and quality checked. The derived information need to be transferred and published to all level of possible users (from decision makers to citizens). Up to now, there are only limited automatic procedures for this; thus, a wealth of information is latent in many datasets. This paper presents the first achievements of the IQmulus EU FP7 research and development project with respect to processing and analysis of big geospatial data in the context of flood and waterlogging detection

    Modelling of Spatial Big Data Analysis and Visualization

    Get PDF
    Today’s advanced survey tools open new approaches and opportunities for Geoscience researchers to create new Models, Systems and frameworks to support the lifecycle of special big data. Mobile Mapping Systems use LIDAR technology to provide efficient and accurate way to collect geographic features and its attribute from field, whichhelps city planning departments and surveyors to design and update city GIS maps with a high accuracy. It is not only about heterogenic increase in the volume of point cloud data, but also it refers to several other characteristics such as its velocity and variety. However,the vast amount of Point Cloud data gathered by Mobile Mapping Systemleads to new challenges for researches, innovation and business development to solve its five characters: Volume, Velocity, Variety, and Veracity then achievethe Value of SBD. Cloud Computing has provided a new paradigm to publish and consume new spatial models as a service plus big data utilities , services which can be utilized to overcome Point Cloud data analysis and visualization challenges. This paper presentsa model With Cloud-Based Spatial,big data Services,using spatial joinservices capabilities to relate the analysis results to its location on map,describe how Cloud Computing supports the visualizing and analyzing spatial big data and review the related scientific model’s examples

    A Language-centered Approach to support environmental modeling with Cellular Automata

    Get PDF
    Die Anwendung von Methodiken und Technologien aus dem Bereich der Softwaretechnik auf den Bereich der Umweltmodellierung ist eine gemeinhin akzeptierte Vorgehensweise. Im Rahmen der "modellgetriebenen Entwicklung"(MDE, model-driven engineering) werden Technologien entwickelt, die darauf abzielen, Softwaresysteme vorwiegend auf Basis von im Vergleich zu Programmquelltexten relativ abstrakten Modellen zu entwickeln. Ein wesentlicher Bestandteil von MDE sind Techniken zur effizienten Entwicklung von "domänenspezifischen Sprachen"( DSL, domain-specific language), die auf Sprachmetamodellen beruhen. Die vorliegende Arbeit zeigt, wie modellgetriebene Entwicklung, und insbesondere die metamodellbasierte Beschreibung von DSLs, darüber hinaus Aspekte der Pragmatik unterstützen kann, deren Relevanz im erkenntnistheoretischen und kognitiven Hintergrund wissenschaftlichen Forschens begründet wird. Hierzu wird vor dem Hintergrund der Erkenntnisse des "modellbasierten Forschens"(model-based science und model-based reasoning) gezeigt, wie insbesondere durch Metamodelle beschriebene DSLs Möglichkeiten bieten, entsprechende pragmatische Aspekte besonders zu berücksichtigen, indem sie als Werkzeug zur Erkenntnisgewinnung aufgefasst werden. Dies ist v.a. im Kontext großer Unsicherheiten, wie sie für weite Teile der Umweltmodellierung charakterisierend sind, von grundsätzlicher Bedeutung. Die Formulierung eines sprachzentrierten Ansatzes (LCA, language-centered approach) für die Werkzeugunterstützung konkretisiert die genannten Aspekte und bildet die Basis für eine beispielhafte Implementierung eines Werkzeuges mit einer DSL für die Beschreibung von Zellulären Automaten (ZA) für die Umweltmodellierung. Anwendungsfälle belegen die Verwendbarkeit von ECAL und der entsprechenden metamodellbasierten Werkzeugimplementierung.The application of methods and technologies of software engineering to environmental modeling and simulation (EMS) is common, since both areas share basic issues of software development and digital simulation. Recent developments within the context of "Model-driven Engineering" (MDE) aim at supporting the development of software systems at the base of relatively abstract models as opposed to programming language code. A basic ingredient of MDE is the development of methods that allow the efficient development of "domain-specific languages" (DSL), in particular at the base of language metamodels. This thesis shows how MDE and language metamodeling in particular, may support pragmatic aspects that reflect epistemic and cognitive aspects of scientific investigations. For this, DSLs and language metamodeling in particular are set into the context of "model-based science" and "model-based reasoning". It is shown that the specific properties of metamodel-based DSLs may be used to support those properties, in particular transparency, which are of particular relevance against the background of uncertainty, that is a characterizing property of EMS. The findings are the base for the formulation of an corresponding specific metamodel- based approach for the provision of modeling tools for EMS (Language-centered Approach, LCA), which has been implemented (modeling tool ECA-EMS), including a new DSL for CA modeling for EMS (ECAL). At the base of this implementation, the applicability of this approach is shown

    Map Room to Data and GIS Services: Five University Libraries Evolving to Meet Campus Needs and Changing Technologies

    Get PDF
    Programs for geospatial support at academic libraries have evolved over the past decade in response to changing campus needs and developing technologies. Geospatial applications have matured tremendously in this time, emerging from specialty tools to become broadly used across numerous disciplines. At many universities, the library has served as a central resource allowing students and faculty across academic departments access to GIS resources. Today, as many academic libraries evaluate their spaces and services, GIS and data services are central in discussions on how to further engage with patrons and meet increasingly diverse researcher needs. As library programs evolve to support increasingly technical data and GIS needs, many universities are faced with similar challenges and opportunities. To explore these themes, data and GIS services librarians and GIS specialists from five universities—the University of North Carolina at Chapel Hill, Texas A&M, New York University, North Carolina State University, and California Polytechnic State University—with different models of library geospatial and data support, describe their programs to help identify common services, as well as unique challenges, opportunities, and future plans

    Susceptibility Modeling and Mission Flight Route Optimization in a Low Threat, Combat Environment

    Get PDF
    Movement and transportation systems are a primary topic in the study of humans and their relationship with the environment. Only a few modes of transportation allow for nearly full freedom of movement that is unconstrained by rigid nodes and networks. Individual human travel (walking, climbing, swimming, etc.) is one example while rotorcraft travel is another. Although other criteria constrain movement, independence from a network allows for a unique examination of human spatial decision-making and choice behavior. This research analyzes helicopter flight route planning in a low threat combat environment with respect to geography. The particular problem addressed, which ultimately concerns the quantitative representation and mapping of helicopter susceptibility in a low threat, combat environment, is assisted by a Geographic Information System (GIS). Prior susceptibility research on helicopters is combined with the spatial analytical functions of a GIS to cartographically model three dimensional flight corridors and routes across four separate areas. GIS optimized flight routing plans that minimize helicopter susceptibility (maximize capability to avoid threats) are then compared to the conventional routes produced by human flight route planners using existing techniques. Findings indicate that although the GIS routes reduce susceptibility costs, they concomitantly decrease route diversity. There was no significant evidence that experience, expertise, landscape familiarity, age, or the amount of time taken to plan had any effect on the spatial character of the routes. Several spatial similarities between conventionally planned routes and GIS optimized routes were revealed that expose potential perceptual limitations imposed by the conventional flight planning paradigm. Implementation of geospatial technology could help eliminate these restrictions

    A grid-enabled Web Map server

    Get PDF
    Today Geographic Information Systems (GIS) provide several tools for studying and analyzing varied human and natural phenomena, therefore GIS and geospatial data has grown so much in both public and private organizations. A Challenge is the integration of these data to get innovative and exhaustive knowledge about topics of interest. In this paper we describe the design of a Web Map Service (WMS) OGC-compliant, through the use of grid computing technology and demonstrate how this approach can improve, w.r.t. security, performance, efficiency and scalability, the integration of geospatial multi-source data. End users, with a single sign-on, securely and transparently, gets maps whose data are distributed on heterogeneous data sources belonging to one o more Virtual Organizations via distributed queries in a grid computing environment

    Innovative approaches to urban data management using emerging technologies

    Get PDF
    Many characteristics of Smart cities rely on a sufficient quantity and quality of urban data. Local industry and developers can use this data for application development that improves life of all citizens. Therefore, the handling and usability of this data is a big challenge for smart cities. In this paper we investigate new approaches to urban data management using emerging technologies and give an insight on further research conducted within the EC-funded smarticipate project. Geospatial data cannot be handled well in classical relational database environments. Either they are just put in as binary large objects or have to be broken down into elementary types which can be handled by the database, in many cases resulting in a slow system, since the database technology is not really tuned for delivery on mass data as classical relational databases are optimized for online transaction processing and not analytic processing. Document-based databases provide a better performance, but still struggle with the challenge of large binary objects. Also the heterogeneity of data requires a lot of mapping and data cleansing, in some cases replication can’t be avoided. Another approach is to use Semantic Web technologies to enhance the data and build up relations and connections between entities. However, data formats such as RDF use a different approach and are not suitable for geospatial data leading to a lack on usability. Search engines are a good example of web applications with a high usability. The users must be able to find the right data and get information of related or close matches. This allows information retrieval in an easy to use fashion. The same principles should be applied to geospatial data, which would improve the usability of open data. Combined with data mining and big data technologies those principles would improve the usability of open geospatial data and even lead to new ways to use it. By helping with the interpretation of data in a certain context data is transformed into useful information. In this paper we analyse key features of open geodata portals such as linked data and machine learning in order to show ways of improving the user experience. Based on the Smarticipate projects we show afterwards as open data and geo data online and see the practical application. We also give an outlook on piloting cases where we want to evaluate, how the technologies presented in this paper can be combined to a usefull open data portal. In contrast to the previous EC-funded project urbanapi, where participative processes in smart cities where created with urban data, we go one step further with semantic web and open data. Thereby we achieve a more general approach on open data portals for spatial data and how to improve their usability. The envisioned architecture of the smarticipate project relies on file based storage and a no-copy strategy, which means that data is mostly kept in its original format, a conversion to another format is only done if necessary (e.g. the current format has limitations on domain specific attributes or the user requests a specific format). A strictly functional approach and architecture is envisioned which allows a massively parallel execution and therefore is predestined to be deployed in a cloud environment. The actual search interface uses a domain specific vocabulary which can be customised for special purposes or for users that consider their context and expertise, which should abstract from technology specific peculiarities. Also application programmers will benefit form this architecture as linked data principles will be followed extensively. For example, the JSON and JSON-LD standards will be used, so that web developers can use results of the data store directly without the need for conversion. Also links to further information will be provided within the data, so that a drill down is possible for more details. The remainder of this paper is structured as follows. After the introduction about open data and data in general we look at related work and existing open data portals. This leads to the main chapter about the key technology aspects for an easy-to-use open data portal. This is followed by Chapter five, an introduction of the EC-funded project smarticipate, in which the key technology aspects of chapter four will be included
    • …
    corecore