10,263 research outputs found

    QCDGPU: open-source package for Monte Carlo lattice simulations on OpenCL-compatible multi-GPU systems

    Full text link
    The multi-GPU open-source package QCDGPU for lattice Monte Carlo simulations of pure SU(N) gluodynamics in external magnetic field at finite temperature and O(N) model is developed. The code is implemented in OpenCL, tested on AMD and NVIDIA GPUs, AMD and Intel CPUs and may run on other OpenCL-compatible devices. The package contains minimal external library dependencies and is OS platform-independent. It is optimized for heterogeneous computing due to the possibility of dividing the lattice into non-equivalent parts to hide the difference in performances of the devices used. QCDGPU has client-server part for distributed simulations. The package is designed to produce lattice gauge configurations as well as to analyze previously generated ones. QCDGPU may be executed in fault-tolerant mode. Monte Carlo procedure core is based on PRNGCL library for pseudo-random numbers generation on OpenCL-compatible devices, which contains several most popular pseudo-random number generators.Comment: Presented at the Third International Conference "High Performance Computing" (HPC-UA 2013), Kyiv, Ukraine; 9 pages, 2 figure

    Performance evaluation of an open distributed platform for realistic traffic generation

    Get PDF
    Network researchers have dedicated a notable part of their efforts to the area of modeling traffic and to the implementation of efficient traffic generators. We feel that there is a strong demand for traffic generators capable to reproduce realistic traffic patterns according to theoretical models and at the same time with high performance. This work presents an open distributed platform for traffic generation that we called distributed internet traffic generator (D-ITG), capable of producing traffic (network, transport and application layer) at packet level and of accurately replicating appropriate stochastic processes for both inter departure time (IDT) and packet size (PS) random variables. We implemented two different versions of our distributed generator. In the first one, a log server is in charge of recording the information transmitted by senders and receivers and these communications are based either on TCP or UDP. In the other one, senders and receivers make use of the MPI library. In this work a complete performance comparison among the centralized version and the two distributed versions of D-ITG is presented

    Mining large-scale human mobility data for long-term crime prediction

    Full text link
    Traditional crime prediction models based on census data are limited, as they fail to capture the complexity and dynamics of human activity. With the rise of ubiquitous computing, there is the opportunity to improve such models with data that make for better proxies of human presence in cities. In this paper, we leverage large human mobility data to craft an extensive set of features for crime prediction, as informed by theories in criminology and urban studies. We employ averaging and boosting ensemble techniques from machine learning, to investigate their power in predicting yearly counts for different types of crimes occurring in New York City at census tract level. Our study shows that spatial and spatio-temporal features derived from Foursquare venues and checkins, subway rides, and taxi rides, improve the baseline models relying on census and POI data. The proposed models achieve absolute R^2 metrics of up to 65% (on a geographical out-of-sample test set) and up to 89% (on a temporal out-of-sample test set). This proves that, next to the residential population of an area, the ambient population there is strongly predictive of the area's crime levels. We deep-dive into the main crime categories, and find that the predictive gain of the human dynamics features varies across crime types: such features bring the biggest boost in case of grand larcenies, whereas assaults are already well predicted by the census features. Furthermore, we identify and discuss top predictive features for the main crime categories. These results offer valuable insights for those responsible for urban policy or law enforcement

    Multi-Architecture Monte-Carlo (MC) Simulation of Soft Coarse-Grained Polymeric Materials: SOft coarse grained Monte-carlo Acceleration (SOMA)

    Full text link
    Multi-component polymer systems are important for the development of new materials because of their ability to phase-separate or self-assemble into nano-structures. The Single-Chain-in-Mean-Field (SCMF) algorithm in conjunction with a soft, coarse-grained polymer model is an established technique to investigate these soft-matter systems. Here we present an im- plementation of this method: SOft coarse grained Monte-carlo Accelera- tion (SOMA). It is suitable to simulate large system sizes with up to billions of particles, yet versatile enough to study properties of different kinds of molecular architectures and interactions. We achieve efficiency of the simulations commissioning accelerators like GPUs on both workstations as well as supercomputers. The implementa- tion remains flexible and maintainable because of the implementation of the scientific programming language enhanced by OpenACC pragmas for the accelerators. We present implementation details and features of the program package, investigate the scalability of our implementation SOMA, and discuss two applications, which cover system sizes that are difficult to reach with other, common particle-based simulation methods

    State-of-the-Art in Parallel Computing with R

    Get PDF
    R is a mature open-source programming language for statistical computing and graphics. Many areas of statistical research are experiencing rapid growth in the size of data sets. Methodological advances drive increased use of simulations. A common approach is to use parallel computing. This paper presents an overview of techniques for parallel computing with R on computer clusters, on multi-core systems, and in grid computing. It reviews sixteen different packages, comparing them on their state of development, the parallel technology used, as well as on usability, acceptance, and performance. Two packages (snow, Rmpi) stand out as particularly useful for general use on computer clusters. Packages for grid computing are still in development, with only one package currently available to the end user. For multi-core systems four different packages exist, but a number of issues pose challenges to early adopters. The paper concludes with ideas for further developments in high performance computing with R. Example code is available in the appendix
    corecore