2,188 research outputs found

    Thermodynamic Conditions in Quenching Chamber of Low Voltage Circuit Breaker

    Get PDF
    Práce se zabývá studiem procesů probíhajících při zhášení silnoproudého oblouku ve zhášecí komoře jističe. Je zaměřena na výpočet dynamiky tekutin a teplotního pole v okolí elektrického oblouku. V práci je dále popsán vliv vzdálenosti plechů v komoře a vliv tvarů plechů z hlediska aerodynamických podmínek uvnitř komory. Dalším cílem dosaženým touto prací je poskytnutí informací o vlivu polohy elektrického oblouku na termodynamické vlastnosti uvnitř komory. Toto je důležité, zejména pokud je oblouk do komory vtahován jinými silami, např. elektromagnetickými a během tohoto vtahovacího procesu mění svůj tvar i polohu. Za účelem co nejjednoduššího, ale zároveň co nejefektivnějšího řešení úkolu, byl vyvinut software určen speciálně pro výpočet dynamiky tekutin numerickou metodou konečných objemů (FVM). Tato metoda je, v porovnání s rozšířenější metodou konečných prvků (FEM), vhodnější pro výpočet dynamiky tekutin (CFD) zejména proto, že režie na výpočet jedné iterace jsou menší v porovnání s ostatními numerickými metodami. Další výhodou tohoto softwarového řešení je jeho modularita a rozšiřitelnost. Cely koncept softwaru je postaven na tzv. zásuvných modulech. Díky tomuto řešení můžeme využít výpočtové jádro pro další numerické analýzy, např. strukturální, elektromagnetickou apod. Jediná potřeba pro úspěšné používání těchto analýz je napsáni solveru pro konečné prvky (FEM). Jelikož je software koncipován jako multi–thread aplikace, využívá výkon současných vícejádrových procesorů naplno. Tato vlastnost se ještě více projeví, pokud se výpočet přesune z CPU na GPU. Jelikož současné grafické karty vyšších tříd mají několik desítek až stovek výpočetních jader a pracují s mnohem rychlejšími pamětmi, než CPU, je výpočetní výkon několikanásobně vyšší.Work deals with the study of processes that attend the electric arc extinction inside the quenching chamber of a circuit breaker. It is focused on several areas. The first one is concerned to fluid dynamics calculations (CFD) and the second one is aimed at thermal field calculations. In this work effects of metal plates distance together with metal plates shapes are described from aerodynamical point of view. Another objective solved by this work is to give information about influence of an electric arc position in a quenching chamber, which changed its shape due to forces acting on it during extinction process. For purpose of this work a new software solution for CFD was developed. Whole software concept is based on plug-ins. Due to this solution, the software§s calculation core can be used for other numerical analyses, like structural, electromagnetic, etc. The only requirement is to write a plug-in for these analyses. Because the software is designed as multi-threaded application, it can use the fully performance of current multi-core processors. Above mentioned property can be especially shown off, when a calculation is moved from CPU to GPU (Graphics Processing Units). Current high-end graphic cards have tens to hundreds cores and work with faster memories than CPU. Due to this fact, the simulation performance can raised manifold.

    Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach

    Get PDF
    Alloy dendrite growth during solidification with coupled thermal-solute-convection fields has been studied by phase field modeling and simulation. The coupled transport equations were solved using a novel parallel-multigrid numerical approach with high computational efficiency that has enabled the investigation of dendrite growth with realistic alloy values of Lewis number ∼104 and Prandtl number ∼10−2. The detailed dendrite tip shape and character were compared with widely recognized analytical approaches to show validity, and shown to be highly dependent on undercooling, solute concentration and Lewis number. In a relatively low flow velocity regime, variations in the ratio of growth selection parameter with and without convection agreed well with theory

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Efficient implicit FEM simulation of sheet metal forming

    Get PDF
    For the simulation of industrial sheet forming processes, the time discretisation is\ud one of the important factors that determine the accuracy and efficiency of the algorithm. For\ud relatively small models, the implicit time integration method is preferred, because of its inherent\ud equilibrium check. For large models, the computation time becomes prohibitively large and, in\ud practice, often explicit methods are used. In this contribution a strategy is presented that enables\ud the application of implicit finite element simulations for large scale sheet forming analysis.\ud Iterative linear equation solvers are commonly considered unsuitable for shell element models.\ud The condition number of the stiffness matrix is usually very poor and the extreme reduction\ud of CPU time that is obtained in 3D bulk simulations is not reached in sheet forming simulations.\ud Adding mass in an implicit time integration method has a beneficial effect on the condition number.\ud If mass scaling is used—like in explicit methods—iterative linear equation solvers can lead\ud to very efficient implicit time integration methods, without restriction to a critical time step and\ud with control of the equilibrium error in every increment. Time savings of a factor of 10 and more\ud can easily be reached, compared to the use of conventional direct solvers.\ud

    Structure and pressure drop of real and virtual metal wire meshes

    Get PDF
    An efficient mathematical model to virtually generate woven metal wire meshes is presented. The accuracy of this model is verified by the comparison of virtual structures with three-dimensional images of real meshes, which are produced via computer tomography. Virtual structures are generated for three types of metal wire meshes using only easy to measure parameters. For these geometries the velocity-dependent pressure drop is simulated and compared with measurements performed by the GKD - Gebr. Kufferath AG. The simulation results lie within the tolerances of the measurements. The generation of the structures and the numerical simulations were done at GKD using the Fraunhofer GeoDict software

    Finite element simulation of three-dimensional free-surface flow problems

    Get PDF
    An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet
    corecore