1,752 research outputs found

    Algorithms for Extracting Frequent Episodes in the Process of Temporal Data Mining

    Get PDF
    An important aspect in the data mining process is the discovery of patterns having a great influence on the studied problem. The purpose of this paper is to study the frequent episodes data mining through the use of parallel pattern discovery algorithms. Parallel pattern discovery algorithms offer better performance and scalability, so they are of a great interest for the data mining research community. In the following, there will be highlighted some parallel and distributed frequent pattern mining algorithms on various platforms and it will also be presented a comparative study of their main features. The study takes into account the new possibilities that arise along with the emerging novel Compute Unified Device Architecture from the latest generation of graphics processing units. Based on their high performance, low cost and the increasing number of features offered, GPU processors are viable solutions for an optimal implementation of frequent pattern mining algorithmsFrequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, Temporal Data Mining, CUDA, GPU, Fermi, Thread

    FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search

    Full text link
    We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for \textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2Dn^2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results

    Enhancing FP-Growth Performance Using Multi-threading based on Comparative Study

    Get PDF
    The time required for generating frequent patterns plays an important role in mining association rules, especially when there exist a large number of patterns and/or long patterns. Association rule mining has been focused as a major challenge within the field of data mining in research for over a decade. Although tremendous progress has been made, algorithms still need improvements since databases are growing larger and larger. In this research we present a performance comparison between two frequent pattern extraction algorithms implemented in Java, they are the Recursive Elimination (RElim) and FP-Growth, these algorithms are used in finding frequent itemsets in the transaction database. We found that FP-growth outperformed RElim in term of execution time. In this context, multithreading is used to enhance the time efficiency of FP-growth algorithm. The results showed that multithreaded FP-growth is more efficient compared to single threaded FP-growth

    Approximate TF-IDF based on topic extraction from massive message stream using the GPU

    Get PDF
    The Web is a constantly expanding global information space that includes disparate types of data and resources. Recent trends demonstrate the urgent need to manage the large amounts of data stream, especially in specific domains of application such as critical infrastructure systems, sensor networks, log file analysis, search engines and more recently, social networks. All of these applications involve large-scale data-intensive tasks, often subject to time constraints and space complexity. Algorithms, data management and data retrieval techniques must be able to process data stream, i.e., process data as it becomes available and provide an accurate response, based solely on the data stream that has already been provided. Data retrieval techniques often require traditional data storage and processing approach, i.e., all data must be available in the storage space in order to be processed. For instance, a widely used relevance measure is Term Frequency–Inverse Document Frequency (TF–IDF), which can evaluate how important a word is in a collection of documents and requires to a priori know the whole dataset. To address this problem, we propose an approximate version of the TF–IDF measure suitable to work on continuous data stream (such as the exchange of messages, tweets and sensor-based log files). The algorithm for the calculation of this measure makes two assumptions: a fast response is required, and memory is both limited and infinitely smaller than the size of the data stream. In addition, to face the great computational power required to process massive data stream, we present also a parallel implementation of the approximate TF–IDF calculation using Graphical Processing Units (GPUs). This implementation of the algorithm was tested on generated and real data stream and was able to capture the most frequent terms. Our results demonstrate that the approximate version of the TF–IDF measure performs at a level that is comparable to the solution of the precise TF–IDF measure
    corecore