
Approximate TF-IDF based on Topic Extraction from
Massive Message Stream using the GPU

Ugo Erra

Dipartimento di Matematica, Informatica ed Economia,

Universitá della Basilicata, Potenza, Italy

Sabrina Senatore∗

Dipartimento di Informatica

Universitá degli Studi di Salerno, 84084 Fisciano (SA), Italy

Fernando Minnella

Dipartimento di Matematica, Informatica ed Economia,

Universitá della Basilicata, Potenza, Italy

Giuseppe Caggianese

Scuola di Ingegneria, Universitá della Basilicata, Potenza, Italy

Abstract

The Web is a constantly expanding global information space that includes
disparate types of data and resources. Recent trends demonstrate the urgent
need to manage the large amounts of data stream, especially in specific domains
of application such as critical infrastructure systems, sensor networks, log file
analysis, search engines and more recently, social networks. All of these applica-
tions involve large-scale data-intensive tasks, often subject to time constraints
and space complexity. Algorithms, data management and data retrieval tech-
niques must be able to process data stream, i.e., process data as it becomes
available and provide an accurate response, based solely on the data stream
that has already been provided. Data retrieval techniques often require tradi-
tional data storage and processing approach, i.e., all data must be available in
the storage space in order to be processed. For instance, a widely used relevance
measure is Term Frequency-Inverse Document Frequency (TF-IDF), which can
evaluate how important a word is in a collection of documents and requires to
a priori know the whole dataset.

To address this problem, we propose an approximate version of the TF-IDF

∗Corresponding author
Email addresses: ugo.erra@unibas.it (Ugo Erra), ssenatore@unisa.it (Sabrina

Senatore), fernando.minnella@unibas.it (Fernando Minnella),
giuseppe.caggianese@unibas.it (Giuseppe Caggianese)

Preprint submitted to Elsevier September 4, 2014

The published version of this manuscript is available at https://doi.org/10.1016/j.ins.2014.08.062 © 2014.
This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

measure suitable to work on continuous data stream (such as the exchange of
messages, tweets, sensor-based log files, etc.). The algorithm for the calculation
of this measure makes two assumptions: a fast response is required, and memory
is both limited and infinitely smaller than the size of the data stream. In
addition, to face the great computational power required to process massive
data stream, we present also a parallel implementation of the approximate TF-
IDF calculation using Graphical Processing Units (GPUs).

This implementation of the algorithm was tested on generated and real data
stream and was able to capture the most frequent terms. Our results demon-
strate that the approximate version of the TF-IDF measure performs at a level
that is comparable to the solution of the precise TF-IDF measure.

1. Introduction

Over the past twenty years technological advances in communication in-
frastructure, the miniaturization of computing devices, and Web networking
platforms have led to the growth of data at an astonishing rate. Data comes
from various sources: Internet-based companies acquire vast amounts of infor-
mation about their customers and suppliers, network sensors are embedded in
physical devices such as smart phones and capture physical or environmental
information, and more recently, user-generated content is growing faster than
ever. This explosive increase in information is most evident on the Web: every
day, millions of new documents, posts, messages, and web pages are added by
users to the data space.

The management of large pools of information is becoming crucial for sev-
eral sectors of the global economy. The challenge is to capture, aggregate, store,
and analyze this huge amount of data that exceeds available storage space (vol-
ume), comes from different sources (variety) and requires immediate, real-time
solutions (velocity). For example, data from sensor networks or monitoring sys-
tems must be processed, and the correct action provided, as soon as possible,
especially in critical situations. Recent studies predict that in the future, the
behavior of individual customers will be tracked by Internet click streams, used
to update their preferences, and predict their behavior in real time [21]. The
term ’big data’ is widely used to refer to the explosion in the amount of digital
data that is increasing in terms of volume, variety and velocity worldwide. Big
data offers new opportunities that affect how the global economy makes deci-
sions, how it responds to customers’ requests, and how it identifies new markets
and monitors operations. Hence, big data mining relates to the extraction of
knowledge structures represented by continuous streams of information. The
real-time consumption of data streams is increasingly important and requires
continuously updated data processing; an example is data from the last hour’s
news feed, which must be made available and ranked at the top of the results
that search engines provide to users’ queries.

In the data mining domain, a well-known measure that is often used for
scoring and ranking the relevance of documents is the term frequency-inverse

2

document frequency, commonly referred to as the TF-IDF measure [30]. It
provides a simple model to evaluate the relevance of keywords within a corpus
or large collection of documents. Although the TF-IDF measure is a relatively
old weighting factor, its simplicity makes it a popular starting point for more
sophisticated ranking algorithms. It is widely used in information retrieval and
text mining, and its variants are used in many other domains of application
where it is important to know the relevance of a term. A recent use of the TF-
IDF measure is in business and content marketing for advertising campaigns
and return on investment tracking [34]. However, the TF-IDF measure requires
a traditional data storage and processing approach, i.e. the whole corpus must
be available in the storage space in order to be processed. The problem is that
big data often takes the form of massive data streams that require real-time
computation, i.e., data can only be examined in a few passes (typically just
one) and then it is no longer available.

Stream processing has recently been recognized as an emerging paradigm in
data-intensive applications. Data is modeled as a transient stream consisting of
relational tuples [3]. This paradigm forces us to rethink traditional algorithms
and introduces new challenges. Input data streams arrive at a very high rate;
they require intense computation and consume high levels of resources. The rate
at which data must be produced means that it must be temporarily captured
and consumed at the same rate it arrives, as the cost of archiving it on a long-
term basis is usually prohibitive. One way to build workable systems that can
meet these challenges is to use parallelism. As computations can be performed
independently for each data item in the stream, a high degree of parallelism is
possible, i.e., the same function can be applied to all items of an input stream
simultaneously. Stream processing has increased in recent years thanks to new
programmable processors such as Graphics Processing Units (GPUs) [5] and
Field Programmable Gate Arrays (FPGAs) [19], which make it easy to exploit
the characteristics of data stream using low-cost parallel architectures.

This paper describes a parallel implementation of an algorithm to process
massive data streams using GPUs. The algorithm takes its inspiration from
the TF-IDF measure, and provides an approximate ranking of terms from a
continuous stream in real-time. In nutshell, our contribution is twofold:

• An approximate TF-IDF measure for streamed data processing.

• A parallel implementation of the calculation of this measure based on
programmable Graphics Processing Units.

The proposal has been tested on generated and real datasets. Particularly,
the real dataset is composed of a large Twitter collection. The results of the
case studies are used to assess the speed up with respect to the sequential imple-
mentation. We then compare the results of the approximate TF-IDF measure
with its exact counterpart, and demonstrate that our implementation is both
efficient and effective.

The remainder of the paper is structured as follows. Section 2 provides an
overview of related work; it addresses the role of the TF-IDF measure (and its

3

variants) in information retrieval and data mining. Section 3 presents the the-
oretical background and the formalization of the problem. Section 4 describes
the approximate version of the TF-IDF measure. Implementation and configu-
ration details are given in Section 5. A comparison of the performance of GPUs
vs. CPUs is presented in Section 6, which also provides details of the experi-
ments. We end our paper with some final remarks and future directions for our
research.

2. Related Work

Automatic topic/term extraction is a crucial activity in many knowledge-
based processes such as automatic indexing, knowledge discovery, text mining,
and monitoring. Other emerging domains such as biomedicine or news broad-
casting also have an interest, as new terms emerge continuously.

Most research on topic extraction takes two distinctive approaches: the first
looks at the distributional properties of terms, such as frequency and the TF-
IDF measure, and the second aims for a deeper textual analysis based on Natural
Language Processing (NLP) principles [22]. Our work reflects the first approach,
as it returns the most relevant terms found in the data stream through the
modeling of an approximate version of the TF-IDF measure.

The following work has similarities to our algorithm (particularly with re-
spect to the use of the TF-IDF measure). To the best of our knowledge, there
has been no other work that aims to compute the TF-IDF measure from a
massive data stream.

The approach described in [6] shares certain similarities with our work, al-
though the research goals are different. It provides a weekly summary of the
main topics found in archived newswire sources on the Web. The approach can
analyze as many channels as there are newswire sources. It uses a modified ver-
sion of the TF-IDF measure, called the TF-PDF (Term Frequency-Proportional
Document Frequency) that gives significant weight to terms related to the hot
topics carried by the main channels. The measure reflects the weight of a term
taken from a data channel; it is linearly proportional to the frequency of the
term in the channel, and exponentially proportional to the ratio of documents
containing the term found in the channel. Unlike our approximate TF-IDF
measure, the TF-PDF measure depends on the number of channels: the more
channels, the more accurately the TF-PDF measure is able to recognize terms
that reflect emerging topics. The TF-PDF is a precise measure, computed from
the entire data stream composed of all channels. Once the TF-PDF measure
has been computed, the approach builds sentence clusters in order to create a
summary of the relevant topics. Experiments were carried out on samples of
around a thousand news documents, and performed well in terms of recall and
precision.

An approach closer to deep textual analysis is described in [36]. Linguistic
and temporal features are exploited to extract topic-level conversations in text
message streams; the approach uses the cosine measure to calculate the degree
of content similarity between messages. It demonstrates that when the TF-IDF

4

measure is used to represent message content, similarities between messages may
be lost because of the sparsity of terms. The approach was tested on a sample
of around ten thousand instant messages, subject to limited memory and CPU
resources. The results were good in terms of the F-measure.

An interesting approach is described in [28], which addresses a real-time
unsupervised document clustering problem. The computation of the TF-IDF
measure on streamed documents is translated into a new term weighting scheme,
called the TF-ICF measure (where C stands for Corpus) that takes advantage
of empirical evidence. The authors demonstrate that the document frequency
distribution derived from a training dataset can be approximated to that of an
unknown data stream; consequently, the IDF (in this case, the ICF) computa-
tion can be applied to a carefully chosen static corpus that makes it possible to
approximate information about unknown documents. At the same time, bene-
fits are derived in terms of algorithmic and computational complexity. However,
the traditional IDF computation needs a priori knowledge of the entire static
collection of documents; the authors overcome this problem by defining an ICF
measure that is not dependent on any of the global features of the set. We ad-
dress the same issue in our work, but in our case, we compute an approximate
TF-IDF measure from a continuous, dynamic data stream.

There are other notable examples in the literature that exploit the TF-IDF
measure (or variants thereof) to achieve different results: in [35] two parallel
streaming algorithms are used to classify HTTP requests in order to detect at-
tacks on websites. Their algorithms are based on machine learning techniques,
and implement a real-time document similarity classifier that is based on the TF-
IDF measure to separate malicious HTTP requests from normal ones. They are
shown to be highly accurate and achieve optimal throughput. Other algorithms,
implemented on a GPU, exploit the TF-IDF measure to achieve massive docu-
ment clustering [37], [33] and document searching [10]. For example, the latter
implements an algorithm that, along with the TF-IDF measure, exploits La-
tent Semantic Analysis (LSA), Multi-objective algorithms, Genetic algorithms
and Quad Tree Pareto Dominance techniques. Notably, it is able to parallelize
mathematical operations typically used in the TF-IDF and LSA techniques, as
a result of its CUDA-based implementation.

Although most of these approaches have some similarities with our method,
in that they address research issues using the TF-IDF measure (or variants), the
evaluation of the measure is accurate and requires a priori knowledge of the data.
In the era of big data, handling streaming high-rate data as well as real-time
(or at least rapid) interactions with large datasets is an open problem which
requires a rethinking of traditional data storage approaches to fit data-intensive
applications, which nowadays are increasingly widespread.

3. Background

This section introduces the frequent items problem and briefly presents the
algorithm detailed in [11] that, like well-known counter-based algorithms, pro-
vides an approximate solution with a preset memory size.

5

3.1. Frequent Items Problem

The frequent items problem [7] is one of the most studied questions in data
stream mining. It is a popular and interesting problem that is simple to explain
informally: given a sequence of items, find those items that occur most fre-
quently. It can be more formally expressed, according to [7] as: given a stream
S of n items t1 . . . tn, the frequency of an item i is fi = |{tj = i}|. The exact
φ-frequent items comprise the set {i|fi > φn}, where the parameter φ is called
the frequency threshold. For example, given a stream S = (w, x,w, u, y, w, x, u),
we have fw = 3, fx = 2, fy = 1, and fu = 2. If we set φ = 0.2, the exact
φ-frequent items is the set {w, x, u}. Since the frequent items problem requires
a space that is proportional to the length of the stream [7], an approximate
version is defined, based on an error tolerance ε. The ε-approximate problem
returns a set F of items so that ∀i ∈ F, fi > (φ − ε)n and there is no i 6∈ F
such that fi > φn. As a consequence, there can be false positives but no false
negatives.

Most algorithms for frequent items in data stream mining are classified as
counter-based algorithms. Frequent and SpaceSaving [7] are two well-known
examples. They maintain a small subset of items together with relative coun-
ters that store the approximate frequency of these items in the stream. For each
new, incoming item the algorithm decides whether to store the item or not, and
if so, what counter value to associate with it. Both algorithms maintain a set
T entries that represent the most frequent items computed so far. Specifically,
given a data stream of n items, the set T stores k−1 < item, counter > pairs in
the Frequent algorithm and k < item, counter > pairs in the SpaceSaving
algorithm, while processing all incoming items. At runtime, each new item is
compared against the stored items in T . If the item exists, the corresponding
counter is incremented by 1. Otherwise, the new item is stored and the corre-
sponding counter is set to 1. If the set T is full, the two algorithms take different
strategies. The Frequent algorithm decrements all counters by 1, while in the
SpaceSaving algorithm, the < item, counter > pair with the smallest count is
replaced by the new item, whose counter is incremented by 1.

3.2. Sort-Based Frequent Items

In order to provide a comprehensive view of our approach, first we briefly
present the approach outlined in [11] that inspired the solution to the problem
described in this paper. The pseudo-code of the Sort-based Frequent Items
algorithm (Algorithm 1) provides an approximate solution to the discovery of
frequent items, when buffer memory is limited. It must be emphasized that
simply counting the number of items is not feasible with limited memory; as we
stated before, the frequent items problem requires a space proportional to the
length of the stream [7].

The algorithm processes the continuous stream of data as blocks of sub-
stream S. In order to compute the frequency of each item, a buffer B is created
to contain the < item, counter > pairs where, counter is the number of times
that the item has appeared. The buffer B is split into two parts. The first part

6

Algorithm 1 Sort-Based Frequent Items(k)

1: B ← ∅
2: for all S do
3: for i← 1 to |S| do
4: Bk+i.item← Si.item
5: Bk+i.counter ← 1
6: end for
7: min← Bk.counter
8: for i← 1 to k do
9: Bi.counter ← Bi.counter −min

10: end for
11: Sort by key(B.item)

12: Reduce by key(B.item)

13: Sort by key(B.counter)
14: for i← 1 to k do
15: Bi.counter ← Bi.counter +min
16: end for
17: end for

of size k holds the most frequent items found in the items received so far and
the number of occurrences. The second part of size |S| contains the incoming
sub-stream S to be processed. For each new sub-stream S that is received, its
items are copied into the buffer B, starting from position k+1 (line 4). As each
new incoming item occurs exactly once, each relative counter value is initialized
to 1 (line 5).

Next, the item with minimum counter value (that is in the k-th position of
buffer B) is selected (line 7). This value is subtracted from the first k items (lines
8-10). Sorting and reduction by key operations, called respectively Sort by key

and Reduce by key are used to update the current k most-frequent items (lines
11-13). The reduction operation brings together identical elements and sums
their counter values. Consequently, buffer B is ordered in descending order and
reduced with respect to the item (lines 11-12). Then, in order to calculate the
k most-frequent items, a further descending sort operation is applied on buffer
B, with respect to the counter (line 13). Finally, the previously subtracted
minimum is added to all items in the first k positions (lines 14-16).

Therefore, while previously the minimum was subtracted from the first k-
items, by allowing new items to be candidates for the first k most-frequent items,
the last for loop (lines 14-16) restores the correct values of the counter once new
items in the incoming sub-stream S have been evaluated. Specifically, the basic
idea behind the algorithm is that the frequency of new items is overestimated
by the minimum value min of all counters of items in the first k positions. Each
new item could have already occurred anywhere between 0 and min times. This
is true because if it has occurred more than min times, the second Sort by key

operation places it in a position such that is not substituted by new items,

7

and thus cannot be a new item. As we do not know the exact number of
occurrences in the range [0,min], we overestimate the frequency by choosing
the value min. By overestimating frequencies, the genuinely frequent items
satisfy the condition counter > εn. As demonstrated by [11], the frequency
estimation error is negligible.

3.3. Term Frequency - Inverse Document Frequency

TF-IDF (Term Frequency - Inverse Document Frequency) [30] is a well-
known measure that is often used to construct a vector space model in infor-
mation retrieval. It evaluates the importance of a word in a document. The
importance increases proportionally with the number of times that a word ap-
pears in a document, compared to the inverse proportion of the same word in
the whole collection of documents. Roughly speaking, the TF-IDF measure
associated with a term t takes:

• a higher value when the term t appears several times within a small number
of documents;

• a lower value when the term t occurs fewer times in a document, or occurs
in many documents;

• a lower value if the term t appears in almost all documents.

More formally, let D = {d1, d2, . . . , dn} be a comprehensive collection of
documents and t a term in the collection. The term frequency-inverse document
measure is computed as follows:

tf − idf(t, d,D) = tf(t, d) ∗ idf(t,D) (1)

Specifically, tf(t, d) represents the frequency of term t in a document d (i.e., the
number of times a term occurs in a document), expressed by:

tf(t, d) =
f(t, d)

|d|
(2)

where f(t, d) is the number of times the term t appears in the document d and
the denominator is the dimension of d, expressed as the cardinality of its own
terms. The inverse document frequency idf(t,D) is described as follows:

idf(t,D) = log
|D|

|{d|t ∈ d}|
(3)

where the denominator represents the number of documents in which the term
t appears.

8

4. The Approximate TF-IDF Measure

The definition of the TF-IDF measure described in the previous section
requires a complete knowledge of the number of documents to process and con-
sequently all the terms appearing in those documents. In real data stream
problems, these conditions are not always practicable due to environmental
constraints. Limitations on the size of memory available to store the stream of
terms prevent the computation of the exact TF-IDF measure, and requires an
approximate solution. This section introduces the formal implementation of the
calculation of the approximate TF-IDF measure on a continuous data stream.

4.1. A High Level Abstraction Description

The Sort-Based Frequent Items algorithm (Algorithm 1) is the first step of
our implementation. It is described in [11], where it is used in the frequent
items computation. However, different constrains led to a different design. The
main difference is in how the item is represented. The calculation of the TF-IDF
measure requires each item in a data stream to be composed of two elements:
the term and the document in which it appears (rather than a simple numeric
stream). Consequently, Algorithm 1 was revised to work with buffer B that con-
tains pairs of the form < (t, id), counter >, where (t, id) represents the “atomic”
item, composed of the document identifier id and the term t that appears in
the document id; the counter represents the number of times that the item has
appeared so far. In practice, B contains triples. Thus, the first step of the
TF-IDF implementation is to compute the most frequent k items, as shown in
Figure 1, assuming that B already contains ordered pairs.

Let us notice that the pseudocode presented in Algorithm 1 has been thought
to be easily translated in a parallel implementation code. Moreover, there are
many parallel implementations of the two algorithms that we named Sort by key

and Reduce by key, such as, for example, the parallel implementation available
in the Thrust library (that will be described in Section 5) .

We assume that at time τ , we have the most frequent pairs (ti, dj) with i =
1, . . . , n and j = 1, . . . ,m, computed by Algorithm 1 . Let D′ = {d1, d2, . . . , dn}
and T ′ = {t1, t2, . . . , tm} be the set of documents and terms from these pairs,
with D′ ⊆ D and T ′ ⊆ T , where D and T are respectively the comprehensive
collection of documents and the set of all the terms that are in D. We note that
memory size constraints mean that we can only maintain a part of the data
flow.

Let count be a function that associates a numeric value with each (term,
document) pair. Expressed more formally: count : T ′ × D′ → N, such that
∀(t, d) with t ∈ T ′ and d ∈ D′, count(t, d) ≥ 0. The value count(t, d) represents
the number of occurrences of term t in a document d: count(t, d) is equal to 0
when the term t does not appear in the document d. We note that count(t, d)
corresponds to the numerator of the ratio in Equation 2. Therefore, taking the
approximate version of the TF-IDF measure, Equations 2 and 3 can be rewritten
respectively in the following form:

9

A− tf(t, d) =
count(t, d)∑m

i=1 count(ti, d)
(4)

A− idf(t,D′) = log
|D′|∑n
j=1 δj

(5)

where

δj =

{
1 if count(t, dj) > 0
0 otherwise

(6)

Equation 4 is the ratio between the occurrence of term t in document d and
the total number of terms that appear in the document (in other words, its
cardinality). Equation 5 differs from Equation 3 in the denominator: the set of
all the documents containing the term t in Equation 3 is computed by summing
the value (0 or 1) returned by the binary function δ that determines whether a
term t appears (or not) in a certain document.

Algorithm 2 Approximate TF-IDF(B, k)

1: V ← Sort by key(B.id)
2: C ← Reduce by key(V.id)
3: for i← 1 to k do

4: id = Bi.id
5: TFi = Bi.counter / Get total(C, id)
6: end for

7: for i← 1 to k do

8: Ci.total = 1
9: end for

10: D ← Count(C.id)

11: V ← Sort by key(B.t)
12: for i← 1 to k do

13: Ci.t = Vi.t
14: Ci.total = 1
15: end for

16: C ← Reduce by key(C.t)

17: for i← 1 to k do

18: t = Bi.t
19: IDFi = log(D / Get total(C, t))
20: end for

21: for i← 1 to k do

22: TFIDFi ← TFi ∗ IDFi

23: end for

10

id3,t1

id1,t2

id2,t2

id2,t1

id1,t1

id1,t3

id2,t3

id3,t2

× 3

× 2

× 1

× 4

× 5

× 3

× 3

× 2

id1,t2

id1,t1

id1,t3

id2,t2

id2,t1

id2,t3

id3,t1

id3,t2

× 2

× 5

× 3

× 1

× 4

× 2

× 3

× 3

id1

id2

id3

× 10

× 7

× 9

id3,t1

id1,t2

id2,t2

id2,t1

id1,t1

id1,t3

id2,t3

id3,t2

= 3/9

= 2/10

= 1/7

= 4/7

= 5/10

= 3/10

= 3/9

= 2/7

Calcolo TF

Sort_by_key(B.id)

Reduce_by_key(B.id)

B B

C

TF

Bi.counter/Get_total(C,id)Reduce_by_key(V.id)

B V

C

TF

t1 id3
× 5

t2 id1
× 5

t2 id2
× 4

t1 id2
× 3

t1 id1
× 3

t3 id1
× 3

t3 id2
× 2

t2 id3
× 1

t2 id1
× 5

t1 id1
× 3

t3 id1
× 3

t2 id2
× 4

t1 id2
× 3

t3 id2
× 2

t1 id3
× 5

t2 id3
× 1

id1
× 11

id2
× 9

id3
× 6

t1 id3
=5/6

t2 id1
=5/11

t2 id2
=4/9

t1 id2
=3/9

t1 id1
=3/11

t3 id1
=3/11

t3 id2
=2/9

t2 id3
=1/6

Figure 1: Example computation of approximate term frequency values A− tf(t, d).

Sort_by_key(B.id) Reduce_by_key(V.id)

B V

C C

D = 3

Count(C.id)

Sort_by_key(B.t)

V C

Ci.t = Vi.t

Ci.total = 1 Reduce_by_key(C.t)

C

IDF

log
D

Get_total(C,t)

Ci.total = 1
id1

× 11

id2
× 9

id3
× 6

id1
× 1

id2
× 1

id3
× 1

B

t1 id3
× 5

t1 id2
× 2

t1 id1
× 3

t2 id1
× 5

t2 id2
× 4

t2 id3
× 1

t3 id1
× 3

t3 id2
× 2

t1 × 1

t1 × 1

t1 × 1

t2 × 1

t2 × 1

t2 × 1

t3 × 1

t3 × 1

t1 × 3

t2 × 3

t3 × 2

t1 id3
× 5

t2 id1
× 5

t2 id2
× 4

t1 id2
× 3

t1 id1
× 3

t3 id1
× 3

t3 id2
× 2

t2 id3
× 1

t1 id3
× 5

t2 id1
× 5

t2 id2
× 4

t1 id2
× 3

t1 id1
× 3

t3 id1
× 3

t3 id2
× 2

t2 id3
× 1

t2 id1
× 5

t1 id1
× 3

t3 id1
× 3

t2 id2
× 4

t1 id2
× 3

t3 id2
× 2

t1 id3
× 5

t2 id3
× 1

t1 id3
=3/3

t2 id1
=3/3

t2 id2
=3/3

t1 id2
=3/3

t1 id1
=3/3

t3 id1
=3/2

t3 id2
=3/2

t2 id3
=3/3

Figure 2: Example computation of inverse document frequency values. The top part of the
figure shows the approach used to count the total number of documents contained in buffer B.
This value is used in the bottom part of the figure to compute the inverse document frequency
value A− idf(t,D).

4.2. Computing the Approximate TF-IDF Measure

Algorithm 2 shows the pseudo-code for computing the approximate TF-IDF
measure. Like Algorithm 1, the approximate TF-IDF measure is created on-
demand in buffer B and returns the k items (t, id) with the highest TF-IDF
values in the given data stream. The algorithm has two phases. In the first
phase, it computes A − tf and in the second phase A − idf . These values are
used to compute A − tf − idf . Note that the pseudo-code assumes a parallel
implementation. We discuss this further in the implementation section, where
we use parallel foreach loops and parallel sorting and reduction.

Figure 1 shows the computation of A−tf . Initially, B is ordered with respect
to the document identifier (line 1) and saved in buffer V ; next, buffer C is created
to reduce V (line 2). Buffer C contains< id, total > pairs, where total represents
the number of terms found in the document identified by id. According to the

11

definition given in Equation 4, lines 3-6 compute the term frequency for the first
k items of buffer B. We note in particular that Get total(C, id) returns the
total number of terms associated with the document id. The frequency of the
term ti is given by Bi.counter that provides the number of occurrences of the
item (ti, id).

At this point, according to Equation 5, A− idf must be computed. Figure 2
shows the computation of A− idf : the top part of the figure shows an example
computation of the size of |D|, while the bottom half shows the computation of
A − idf . Lines 7-10 of Algorithm 2 calculate the whole number of documents
|D|. Lines 11-16 compute the denominator of the ratio in Equation 5. Buffer B
is ordered with respect to terms (line 11); then the loop (lines 12-15) generates
a buffer C composed of pairs < t, 1 >. At this point, the number of terms in
C is reduced, leaving only pairs < t, total > where, for each term t, total is the
number of documents in which t appears (see Figure 2). Like the term frequency
computation, lines 17-20 calculate the inverse document frequency. Finally, the
approximate TF-IDF measure for the first k items of buffer B is returned (lines
21-23). Like Algorithm 1, this algorithm has been designed to allow easily the
parallelization of some parts of it (i.e., most of the forcycles can be processed
in parallel).

5. Implementation

The implementation relies upon the computational capability of a modern
Graphics Processing Unit (GPU). Here we adopt NVIDIA’s GPU architecture
with its CUDA parallel programming model. This section starts by describing
the main features of NVIDIA’s GPU, in order to highlight the role of parallel
programming in our approach. Then, we introduce the parallel template library,
Thrust, and focus on the parallel and high performance operations used in our
implementation.

5.1. GPU Programming Model

Modern NVIDIA GPUs are fully programmable multi-core chips known as
CUDA processors [24]. In a GPU, a streaming multiprocessor (SMX) is a cluster
of streaming core processors. Each core can only execute one thread at a time,
but when a thread performs an operation with high latency it is put into a
waiting state and another thread executes. This feature, and the application of
a scheduling policy means that the core can run many threads at the same time.
In the current generation of GPUs (codenamed Kepler), the number of SMXs
ranges from 1 to 14. The GPU used in our experiments (GK110) consisted
of 14 SMXs, each containing 192 single-precision CUDA cores. Because each
SMX is capable of supporting up to 2048 threads, this GPU manages up to
28672 resident threads. All thread management, including creation, scheduling
and barrier synchronization is performed entirely in hardware by the SMX with
virtually zero overheads.

In terms of the software model, CUDA [25] provides software developers with
facilities to execute parallel programs on the GPU. To use CUDA, a programmer

12

needs to write their code as special functions called kernels, which are executed
across a set of parallel threads. The programmer organizes these threads into
a hierarchy of blocks and grids. A thread block is a set of concurrent threads
that can cooperate via shared memory (which has a latency similar to that of
registers) and can be coordinated using synchronization mechanisms. A thread
grid is a set of thread blocks executed independently. All threads have access to
the same global memory space. Each thread block is mapped to an SMX and
executes concurrently. SMX resources (registers and shared memory) are split
across the mapped thread block. As a consequence, this limits the number of
thread blocks that can be mapped onto one SMX.

5.2. Sorting on the GPU

We use a GPU in the implementation of our approach because of its excel-
lent performance in parallel sorting and reduction. Following the introduction
of programmable GPUs and NVIDIA’s CUDA framework, many sorting algo-
rithms have been successfully implemented on the GPU in order to exploit its
computational power. The first programmable GPUs were suited to implement
sorting algorithms [12], [27] although they were far from optimal in terms of
execution time O(n log2 n). Successive improvements in GPU technology have
enabled the implementation of other comparison sorts with algorithmic com-
plexity below O(n log n), such as the merge sort and the radix sort [31].

The radix sort is currently the fastest approach to sorting 32- and 64-bit keys
on both CPU and GPU processors [32]. It is based on a positional representation
of keys, where each key is an ordered sequence of digits. For a given input
sequence, this method produces a lexicographic ordering iteration over the digit-
places from the least significant to the most significant. Given an n-element
sequence, the algorithmic complexity of radix sorting is O(n). In [23], the
authors demonstrate a radix sorting approach that is able to exceed 1 billion
32-bit keys/sec on a single GPU microprocessor.

Reduction has also been successfully implemented on the GPU. In general,
reduction is any operation that computes a single result from a set of data.
Examples include min/max, average, sum, product, or any other user-defined
function. Several implementations has been developed in past years, such as
[14], and [29].

5.3. Detailed Implementation: the Thrust Library

Thrust [4] is a parallel template library that implements high performance
applications with minimal programming effort. It is based on CUDA and the
Standard Template Library (STL).Thanks to Thrust, developers can take ad-
vantage of a collection of fundamental high-level parallel algorithms such as
scan, sort, and reduction. For instance, the radix sort discussed above has been
implemented. One of the greatest benefits of Thrust is that it exploits the com-
putational capability of the GPU without making fine-grained decisions about
how computations are decomposed into parallel threads, and how they are ex-
ecuted on the target architecture. Moreover, its parallel algorithms are generic

13

and can be used with arbitrary user-defined types and operators. There are
many features in the Thrust Library; here we only explain those functions that
are directly relevant to our implementation.

According to the description of the algorithm for the approximate TF-
IDF measure, the main structures to maintain the data stream are vector
containers. Thrust provides two types of vector container: host vector and
device vector. Declaring a container as a host vector means that it resides
on the CPU host memory; otherwise, the device vector container is resident
in the GPU device memory. These vectors are generic containers that are able
to store any data type and can be resized dynamically, simplifying the data
exchange process between the CPU and the GPU. Depending on which vector
containers the algorithms use, Thrust can automatically map computational
tasks onto the CPU or the GPU. In this way, changing the type of the container
enables developers to write executable code for either the GPU or the CPU with
minimal effort.

In our implementation, each item in the data stream corresponds to a pair
< (id, t), count >; we store these values in three separate containers using a
Structure of Arrays (SoA) layout. The SoA is a parallel design pattern that
promotes the optimization of parallel data access inside the arrays, by using
separate arrays for each element of a data structure. The advantage of the
SoA technique is that it gives all threads access to contiguous global memory
addresses, in order to maximize memory bandwidth [24]. Thrust provides a
design pattern that can traverse one or more containers that exploit the SoA
layout. In our approach, the aforementioned buffer B (see Algorithm 2) is
allocated on the GPU device memory as an SoA layout, and each incoming sub-
stream is copied to GPU memory. Therefore, the CPU manages each sub-stream
as three separate arrays before the host-to-device memory transfer.

A Thrust program acts on the containers by adopting the STL convention
of describing a vector position through an iterator. The iterator works like a
pointer that can point to any element in the array. Each algorithm typically
takes a pair of iterators as arguments that define the range on which the algo-
rithm must act. Thrust provides some standard iterators, that are defined as
primitive types (e.g., char, int, float, and double).

As we have three separate ints containers, we need three iterators. Two
of these iterators must have simultaneous access to the key (t, id) (through the
SoA layout); therefore, we need a way to parallel-iterate over the two contain-
ers. To achieve this, Thrust provides a zip iterator, which is composed of a
tuple of iterators and enables it to parallel-iterate over two or more containers
simultaneously. Thus, by increasing the zip iterator, all the iterators in the
tuple are increased in parallel. We note that through using the zip iterator

design pattern, we logically encapsulate the elements of each container into a
single entity. It is clear that our key (id, t) is implemented by the zip-iterator.

Thrust’s functionality is derived from four fundamental parallel algorithms:
for each, reduce, scan and sort. In our implementation we use the sort by key

algorithm to perform a key-value sort and a reduce by key algorithm to ob-
tain, for each group of consecutive keys, a single value reduction by using a

14

sum operator over the corresponding values. As for sorting, Thrust statically
selects a highly optimized radix sort algorithm for sorting primitive types, while
it uses a general merge sort algorithm for user-defined data types. We also use
a Count algorithm, which is an additional Thrust function based on the reduce

algorithm: it returns the number of occurrences of a specific value in a given
sequence (e.g., we used Count to obtain the total number of documents in buffer
B, see Algorithm 2).

Moreover, Thrust provides several algorithms that can perform parallel op-
erations over each element of one or more input containers. For instance, the
sequence algorithm is designed to fill a container with a sequence of numbers,
while a more general transform operation applies a binary function to each
pair of elements from two input containers. These algorithms are generic in
both the type of data to be processed, and the operations to be applied to the
input containers. They can easily handle all the loop iterators presented in
the pseudo-code of Algorithm 2; moreover, they can be efficiently executed in
parallel.

6. Evaluation

In order to evaluate the performance of our algorithm, we have performed
the experimentation on a generated and a real dataset. Precisely, we assess the
quality of the approximate TF-IDF measure for both the datasets. In partic-
ular, for the real dataset, we consider the performance when applied to topic
extraction from a Twitter data stream. Moreover, on the real dataset we also
evaluate the CPU vs. GPU performance. To the best of our knowledge, there
is no standardized benchmark.

The quality of our approximate TF-IDF measure has been estimated by
comparing the results of the exact TF-IDF and our approximate version. Pre-
cisely, we compared the most frequent term-document pairs < t, id > ranked by
our approach with those calculated by the brute force approach.

For this purpose, we consider two measures: the Kendall rank correlation
coefficient [15] and the recall measure.

The Kendall coefficient, also referred to as Kendall’s tau (τ) coefficient is
a statistical measure that evaluates the degree of similarity between two sets
of ranked data. Specifically, it considers all possible pairwise combinations of
a first set of values, and compares them with a second set of values. Given
two sets of size n, the Kendall coefficient measures the difference between the
number nc of concordant pairs and the number nd of discordant pairs, as a ratio
of the total number of possible pairings, based on the following formula:

τ =
nc − nd

n(n− 1)/2

Kendall’s coefficient τ ranges from [−1, 1]. The value is 1 if the agreement be-
tween the two rankings is perfect (perfect positive correlation). On the other
hand, a value of −1 means there is total disagreement (perfect negative cor-
relation). This coefficient allows us to assess the correlation between the most

15

frequent pairs < t, id >, resulting from our approximate solution and those from
the brute force approach.

A typical measure of Information Retrieval is instead, the recall: it returns
the retrieved pairs that are relevant, from the returned pairs. In our context it
measures the number of coincidences of the top-k terms.

More formally, we define recall(k) as the intersection between the top-k
terms, defined as follows:

recall(k) = top(k)tf−idf ∩ top(k)A−tf−idf

where top(k)tf−idf and top(k)A−tf−idf are the top-k terms computed by the
exact TF-IDF algorithm and the approximate TF-IDF algorithm, respectively.

These two measures supply two different criteria to estimate how much the
results provided by our approximate TF-IDF version are comparable to that
exact.

The hardware configuration was based on a CPU Intel Core i7-3820@3.6Ghz
(quad-core HT) with 16GB of RAM and a GPU NVIDIA GeForce GTX TITAN
(2688 CUDA cores) with 6GB of RAM running Microsoft Windows 8.1. The
code was compiled using Microsoft’s Visual Studio 2012 and the NVIDIA CUDA
Toolkit 5.5. Thrust version 1.7.0 was used.

6.1. Generated Datasets

The generated data stream has been designed as a sequence of term-document
pairs < t, id >. Specifically, we have considered a maximum number of unique
documents and unique terms: 100 documents and 100 terms. This way, The
maximum number of possible distinct pairs < t, id > is 10,000. Without loss
of generality, we have assumed a uniform distribution for the documents. For
the terms generation instead , a Zipf distribution has been used. It is shown
that the distribution of word frequencies for randomly generated texts is very
similar to Zipf’s law observed in natural languages such as English [18]. More-
over Zipf’s law governs many others domains: email archives, newsgroups [16],
caching [13], hypermedia-based communication [17], web accesses [9] and many
other Internet features [2]. In addition, massive data streams are rarely uni-
form, and real data sources typically exhibit significant skewness. They lend
themselves well to be modeled by Zipf distributions, which are characterized by
a parameter that captures the amount of skew [8].

6.1.1. Methodology and Evaluation

We have generated several datasets, by considering three different sizes: 10K,
100K, and 1,000K; then, the terms have been generated from a skewed distribu-
tion, varying the skew from 0.8 to 2 (in order to obtain meaningful distributions
that produce at least one heavy hitter per run), with a step equal to 0.2. In
total, we had 21 datasets (7 for each dataset size).

The dataset size affects the input stream size: with the dataset of size 10K,
we consider a stream size s = 1K; with the dataset of size 100K, we consider
two streams with size s = 1K and 10K. Finally, with a 1,000K dataset, the

16

0

10

20

30

40

50

60

70

80

90

100

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Recall (s=1K)

k=50 k=100 k=1,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Kendall (s=1K)

k=50 k=100 k=1,000

Figure 3: Recall and Kendall for a generated dataset of size 10K. The input streams is of size
1K and is tested on the 50, 100, and 1,000 most frequent items.

0

10

20

30

40

50

60

70

80

90

100

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Recall (s=1K)

k=50 k=100 k=1,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Kendall (s=1K)

k=50 k=100 k=1,000

0

10

20

30

40

50

60

70

80

90

100

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Recall (s=10K)

k=50 k=100 k=1,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Kendall (s=10K)

k=50 k=100 k=1,000

Figure 4: Recall and Kendall for a generated dataset of size 100K. The input streams are of
size 1K and 10K. Each input stream is tested on the 50, 100, and 1,000 most frequent items.

conceivable stream sizes are s = 1K, 10K, and 100K. In total, there are six
different (dataset, stream) size-configurations.

For each (dataset, stream) size-configurations, there are 7 datasets (by vary-
ing the skew value); consequently, there are 42 (7 datasets × 6 (dataset, stream)
size-configurations) experiments. Finally, since for each experiment, we use
three different sizes for the most k frequent items: 50, 100, and 1, 000, we have
in total as many as 126 (42 experiments × 3 k-size) experiments.

Figures 3-5 show the performance of our algorithm in terms of recall measure
(on the left) and Kendall coefficient (on the right). Fixed the size of the dataset
and the input stream, each figure describes 21 experiments, by varying the skew
from 0.8 to 2 and the size of k among 50, 100 and 1, 000. By analyzing the
recall, when k is lower than s, the recall is generally good. Our algorithm
indeed, computes the k most frequent items, by processing a stream of size s.

17

0

10

20

30

40

50

60

70

80

90

100

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Recall (s=1K)

k=50 k=100 k=1,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Kendall (s=1K)

k=50 k=100 k=1,000

0

10

20

30

40

50

60

70

80

90

100

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Recall (s=10K)

k=50 k=100 k=1,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Kendall (s=10K)

k=50 k=100 k=1,000

0

10

20

30

40

50

60

70

80

90

100

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Recall (s=100K)

k=50 k=100 k=1,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Kendall (s=100K)

k=50 k=100 k=1,000

Figure 5: Recall and Kendall for a generated dataset of size 1,000K. The input streams are of
size 1K, 10K, and 100K. Each input stream is tested on the 50, 100, and 1,000 most frequent
items.

When a new stream arrives, it preserves the most k frequent items computed so
far and discards the remaining items in the current stream in order to process
the incoming stream. When the input stream s is greater than the value of k,
the algorithm has more chances to accurately compute the most frequent items,
since the size of s provides a wider ”window” to seek candidate frequent items.
Just to give an example, when s = 1K and the dataset size is 10K (Figure
3), the best recall values are obtained for k = 100. In any case, the recall for
k = 50 is better than for k = 1, 000 (i.e., the same order of magnitude of the
input stream), demonstrating that k = 50 is more selective in identifying the
most frequent elements. Similar observations are also for Figures 4 and 5, when
s = 1K. When the input size is greater, i.e., s = 10K, (see Figures 4 and 5),
the best recall is still for k = 100, even also k = 1, 000 provides good recall
(quite close to k = 100 for some skew value). By increasing the input stream
size indeed, the algorithm handles a window with more items, for each incoming
stream; then it can select more frequent items. In these cases, k = 50 becomes
too small to guarantee a good recall. Again, with s = 100K (Figure 5), the

18

best recall value is for k = 100 and k = 1, 000. In general, k = 100 is the best
compromise among all the data streams in all the datasets generated, since it
provides the better results in the experimentation. Moreover, from the analysis
of the results, it is evident that the best recall values can be obtained with the
increase of the skew value. (i.e., when only the frequency of a small number of
pairs with respect to the dataset size, tends to increase).

The Kendall coefficient τ values show an equally good rank correlation be-
tween the most k frequent items from the exact and the approximate TF-IDF
measure. From the analysis of the results, τ seems to be affected by the input
stream size. When the input stream is small (i.e., s = 1K), the returned τ val-
ues are slightly lower: it is due to the fact that probably, after some processed
streams, an item that was a candidate frequent item, because it appeared many
times, does not still appear in the next incoming streams and thus, at one point,
it is eliminated from the candidate frequent items. But, in the successive in-
coming streams, it reappear and goes into the most frequent item. This way,
the frequency of that item will be lower that the actual value, and then it will
get lower rank position.

In general, with the higher input stream size, τ reveals a good level of rank
correlation, especially when the skew value is greater than 1.4. Like in the recall
measurement, the results confirm that τ assumes higher value when k = 100
and k = 1, 000 provided that k < s.

6.2. Real Dataset

Other experiments were carried out on a Twitter dataset1. Twitter is a social
network that connects people through the exchange of tweets, which are small
messages of up to 140 characters. Its popularity has increased dramatically in
recent years, and it has become one of most well-known ways to chat, microblog
and discuss current topics. Each tweet can contain one or more hashtags i.e.,
the # symbol used to mark keywords or topics. Through this mechanism, a
conversation about a specific topic can be identified by one or more hashtags
associated with a message.

We extracted a dataset composed of 4 million public tweets posted by users
from August 2012 to September 2012 in the cities of Washington, New York,
and San Francisco. The dataset was transferred to a local machine using the
command line tool cURL [1].

All tweets were in English and could have one or more hashtags. Tweets
with the same hashtag were grouped to represent a document about a specific
topic, identified by the hashtag. Consequently, tweets without hashtags were
discarded because they could not be associated with a document. The dataset
was preprocessed to discard “noise” using simple NLP principles [20]. We used
the Porter stemming algorithm [26] to obtain the stem or base forms of each
term, then stop-words were removed. Irregular syntactic slang and non-standard

1Source and data are available at http://graphics.unibas.it/atfidf

19

@Tony has a nice #job
and a bad #car!!!

@Tony nice #job bad #car

23456 3572 56995 2598 117522

56995 23456

56995 3572

56995 2598

117522 23456

117522 3572

117522 2598

Stemming and stop words

Hashing

Tuples generation

Figure 6: Tuple generation from a tweet. The green label represents the document and the
blue label the word.

vocabulary (widespread in phone text messaging due to the necessary brevity)
was not discarded and was included in the data to be processed.

Finally, to facilitate data processing, a hash function was defined in order to
map each hashtag to a numeric identifier (as shown in Figure 6). Likewise, all
the terms that remained following text processing were mapped into a numeric
identifier. The pair, composed of the document identifier and the term identifier
(Figure 6) represents the minimal unit to process. A total of 40 million <
term, document > pairs were generated.

6.2.1. Methodology and Evaluation

The analysis of the dataset led to the creation of 40 million pairs. These
pairs were split into four batches of input stream of size s = 1M, 5M, 10M,
and 20M. For each of these batches, k (the number of most frequent items)
was varied with k = 1K, 10K, 100K, and 1,000K. Once we had computed the
most frequent items for all s and all k, we applied the approximate TF-IDF
algorithm. In total, we performed 16 experiments.

We assessed our approach on three criteria:

• Speed up and memory footprint: the CPU implementation was compared
with the GPU implementation. We exploited the Thrust portability be-
tween GPUs and multicore CPUs to obtain a running version of the ap-
proximate TF-IDF measure for both architectures.

20

s k Times (sec.) Memory (MB)

1M

1,000 1.062 30.54
10,000 0.982 30.82
100,000 1.070 33.56

1,000,000 1.342 61.03

5M

1,000 0.773 152.61
10,000 0.814 152.89
100,000 0.795 155.64

1,000,000 0.886 183.10

10M

1,000 0.802 305.20
10,000 0.768 305.48
100,000 0.801 308.22

1,000,000 0.857 335.69

20M

1,000 0.788 610.38
10,000 0.774 610.65
100,000 0.827 613.40

1,000,000 0.791 640.86

Table 1: GPU performance for input streams of size s, and k most frequent items. In all
experiments, we measured the total time to process all 40M document-term pairs. Times
include CPU to GPU data transfers (and vice-versa).

• Frequent items similarity: the output of the CPU brute force approach was
compared with the output of the approximate TF-IDF measure. In partic-
ular, we compared the most highly ranked term, document pairs resulting
from our approximate solution to those of the brute force approach.

• TF-IDF quality: the TF-IDF measure calculated using the approximate
solution was compared with values calculated using the brute force ap-
proach, which provides the exact frequency of each pair. For all k, we
compared the output of a percentage of the overall corpus of tweets.

GPU vs CPU performance. We analyzed performance in two steps. In the
first step, we measured the total time and the amount of memory required to
process all of the 40M document-term pairs, based on input streams of size s
and a calculation of the k most frequent items, as illustrated in Table 1. These
times include both memory transfer time (CPU to GPU) and Thrust execution
time. The results show that execution times were not affected by the size of
the input stream. In particular, execution time remained stable when the input
stream was equal to or greater than 5M, and was independent on its size. In the
second step, we measured the time required to compute the approximate TF-
IDF measure with different values of k. We evaluated the performance of GPU
and CPU implementations by comparing how long each call to the approximate
TF-IDF algorithm took on buffer B returned by the Sort-Based Frequent Item
of the previous step. Figure 7 compares performance with different sizes of k.
With k greater than 10, 000 the GPU implementation is more efficient than the

21

0

20

40

60

80

100

120

140

160

180

1K 10K 100K 1,000K

Ti
m

e
in

 m
s

Top frequent k-items

GPU CPU

Figure 7: GPU vs CPU scalability with varying sizes of most frequent k items.

CPU implementation. With lower values of k the CPU implementation is more
efficient due to overheads that dominate overall performance.

Finally, in Figure 8 we report the total GPU speed up compared to the CPU
implementation, by summing the times obtained in the two steps. For a 1M
input stream, the speed up ranges from 5× to 8×, and when it is equal to or
greater than 5M it is around 10×.

0

2

4

6

8

10

12

1K 10K 100K 1,000K 1K 10K 100K 1,000K 1K 10K 100K 1,000K 1K 10K 100K 1,000K

Sp
e

ed
 U

p

Total Time Speed Up: GPU vs CPU

1M

5M

10M

20M

Figure 8: GPU speed up compared to the CPU implementation with input streams of 1M,
5M, 10M, and 20M. Each input stream is tested on the 1K, 10K, 100K, and 1,000K most
frequent items.

Let us observe that the size of input stream is very important for guaran-
teeing a high speed up: in our experiments, when the input stream size is 1M,
there are many “CPU to GPU” data transfers; precisely, on our dataset com-
posed of 40M document-term pairs, there are as many as 40 data transfers. As
stated above, the high number of transfers produces high overhead, penalizing
the GPU performance. The number of data transfers required for the input
streams of 5M, 10M and 20M, instead considerably drops to 8, 4, and 2 respec-
tively, guaranteeing an high speed up (around 10×). Therefore, when input
streams are large, the GPU offers stable and better performance than the CPU.

22

s k Kendall coefficient

1M

1,000 0.9582
10,000 0.8986
100,000 0.8392

1,000,000 0.7796

5M

1,000 0.9446
10,000 0.8853
100,000 0.8257

1,000,000 0.7659

10M

1,000 0.9340
10,000 0.8749
100,000 0.8144

1,000,000 0.7557

20M

1,000 0.9230
10,000 0.8634
100,000 0.8022

1,000,000 0.7443

Table 2: Change in Kendall coefficient as the input stream size s and the k most frequent
items increase.

This is due to the fact that GPUs perform better on repetitive tasks using large
data blocks, and when data transfers are limited.

The importance of these results is twofold. First, the time to compute the
approximate TF-IDF measure on the GPU is not affected by the type of data
source (it may be a stream of tweets, a news feed, etc.) and second, the parallel
implementation works well when GPU or graphic card memory is limited. In
general, with input stream size equals or greater than 5M, our GPU implemen-
tation fully exploits the benefits of the data buffering and performs much better
than the CPU implementation. Moreover, the GPU performance evidences a
good scalability with varying the input data stream. The obtained values of
speed up indeed, outline the validity of our parallel implementation for the cal-
culation of the approximate TF-IDF, when the data collection is a real-time
continuous data stream.

Rank Correlation. As stated above, we use the Kendall coefficient to assess
the correlation between the most frequent pairs < t, id >, resulting from our
approximate solution and those from the brute force approach.

Table 2 shows the results computed for different sizes of input stream s, and
the k most frequent items. The table shows that our approach performs well:
its accuracy in identifying the most frequent items is comparable with that of
the brute force approach. In particular, we note that when k = 1, 000, the
τ coefficient is very close to 1 (i.e., greater than 0.9), even as the size of the
input data stream grows to 20M. We also note that as k increases, the Kendall
coefficient tends to decrease.

23

1M 5M 10M 20M
k ρ recall ρ recall ρ recall ρ recall

1K 0.9331 81.50% 0.9913 84.00% 0.9928 86.00% 0.9964 99.00%
10K 0.9513 75.05% 0.9850 79.40% 0.9621 79.90% 0.9981 99.20%
100K 0.9854 96.89% 0.9879 67.35% 0.9883 68.31% 0.9994 71.17%

1,000K 0.9994 93.50% 0.9876 59.07% 0.9764 61.73% 0.9301 61.18%

Table 3: Top 20% of terms.

1M 5M 10M 20M
k ρ recall ρ recall ρ recall ρ recall

1K 0.9331 67.75% 0.9872 78.25% 0.9865 81.25% 0.9965 99.50%
10K 0.9529 59.45% 0.9821 71.85% 0.9732 74.23% 0.9945 94.83%
100K 0.9742 62.27% 0.9700 33.67% 0.9780 67.37% 0.9984 93.27%

1,000K 0.9789 56.13% 0.9689 55.34% 0.9745 53.44% 0.9923 64.34%

Table 4: Top 40% of terms.

1M 5M 10M 20M
k ρ recall ρ recall ρ recall ρ recall

1K 0.9055 68.67% 0.9812 78.50% 0.9500 82.00% 0.9919 95.83%
10K 0.9566 48.73% 0.9824 65.25% 0.9768 70.38% 0.9947 90.60%
100K 0.9655 60.15% 0.9700 22.45% 0.9718 66.83% 0.9970 91.00%

1,000K 0.9673 63.56% 0.9712 47.63% 0.9612 88.35% 0.9832 86.12%

Table 5: Top 60% of terms.

1M 5M 10M 20M
k ρ recall ρ recall ρ recall ρ recall

1K 0.9015 66.38% 0.9675 75.50% 0.9409 76.63% 0.9894 91.50%
10K 0.9579 44.48% 0.9821 61.75% 0.9786 68.50% 0.9945 86.25%
100K 0.9596 57.86% 0.9655 64.79% 0.9670 66.90% 0.9956 89.07%

1,000K 0.9689 56.40% 0.9612 63.20% 0.9611 64.19% 0.9913 87.28%

Table 6: Top 80% of terms.

1M 5M 10M 20M
k ρ recall ρ recall ρ recall ρ recall

1K 0.8996 61.60% 0.9630 70.40% 0.9423 71.60% 0.9881 87.60%
10K 0.9577 43.23% 0.9807 59.14% 0.9785 66.34% 0.9941 81.94%
100K 0.9566 54.23% 0.9639 63.86% 0.9667 66.30% 0.9944 87.77%

1,000K 0.9632 56.42% 0.9523 62.84% 0.9632 56.09% 0.9432 79.83%

Table 7: Top 100% of terms.

24

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Top 20% Top 40% Top 60% Top 80% Top 100%

k=1K

s=1M s=5M s=10M s=20M

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Top 20% Top 40% Top 60% Top 80% Top 100%

k=10K

s=1M s=5M s=10M s=20M

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Top 20% Top 40% Top 60% Top 80% Top 100%

k=100K

s=1M s=5M s=10M s=20M

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Top 20% Top 40% Top 60% Top 80% Top 100%

k=1,000K

s=1M s=5M s=10M s=20M

Figure 9: Recall computed for the top 20%, 40%, 60%, 80% and 100%, for the sizes of the
input streams s = 1M, 5M, 10M, and 20M, by varying k = 1K, 10K, 100K, and 1,000K.

TF-IDF quality. As stated, the analysis of TD-IDF quality is based on a com-
parison of the approximate TF-IDF values returned by our implementation and
the exact values returned by the brute force algorithm. We use the Spear-
man’s rank correlation coefficient ρ, to measure the strength of the relationship
between the two variables. This coefficient provides a nonparametric measure
of statistical dependence between paired data, in our case, the TD-IDF values
computed by the two algorithms. Thus, we calculate the number of coincidences
of the k most frequent terms obtained by the exact brute force algorithm with
those found using the approximate TF-IDF measure.

We exploit the recall defined in Section 6, to compute the top-k terms com-
mon to the exact and approximate TF-IDF version. Once the top-k common
terms are obtained, Spearman’s rank correlation coefficient ρ can be computed.

Tables 3-7 illustrate the results from the Twitter dataset, with the 20%, 40%,
60%, 80%, and 100% of the k most frequent terms. In total, 16 experiments
have been carried out. Given k and s, each experiment has been analyzed for
the 20%, 40%, 60%, 80%, and 100% of the k most frequent terms. Just to give
an example, with k = 1, 000 and s=1M, the results (expressed in terms of recall
and ρ) of the corresponding experiment is described by the first column and the
first row of the each of the five tables (with varying the percentage). Increasing
the percentage allows enlarging the “window” of the top terms from the most
k frequent items, in order to better evaluate how many terms are in common
with the exact TF-IDF, with varying the dimension of the window.

We note in general, that, given k, the recall value tends to decrease with
the increase of the percentage of terms taken into account. Figure 9 shows the
recall trend for each input stream size s, by varying the k frequent items. It is

25

a summary view of the recall values described in Tables 3-7.
Moreover, we also note that in general, recall is lower for smaller sizes of s

(i.e., s equal to 1M and 5M), compared to 10M and 20M. This result is due to
the fact that the accurate identification of frequent items is affected by the size
of the input stream. Our algorithm computes the k most frequent items, by
processing a stream of size s. As stated, when a new stream arrives, it discards
the items in the current stream in order to process the incoming stream. For
small input streams, it is probable that some items that are discarded from
the current stream also appear in the following stream, but in both cases, the
occurrence is not high enough to included in the k most frequent items. By
increasing the size of the stream, it is possible that these items appear in the
same stream; in this case, the number of occurrences make them appropriate
candidates to one of the top k items. In other words, when the input stream is
large, the exact item count may be more accurate, because more items are kept
in memory before they are discarded. Therefore, when s is small, the algorithm
can only accurately count a few items. The recall indeed, is very good in the
top 20% of the terms (see Table 3). As this percentage increases, recall values
tend to decrease, as shown in Tables 4-7. Increasing the size of the input stream
overcomes this problem for streams of size 10M or 20M.

There is some result that deserves to be further explored: the output gen-
erated by the experiment with input stream s =5M and k = 100, 000 (Tables
3-7: second column, third row) shows a decreasing recall value, from the initial
discrete recall value (67.35% on 20% of terms) until to get a very low recall,
at 40% and 60% of the top terms (Tables 4, 5). It seems that by enlarging
the percentage of the top k terms, the recall is lower, i.e., the common terms
are dispersed. In other words, the common terms are mainly concentrate in
the first 20%. The recall improves when the top percentage of terms is close
to k = 100, 000 (i.e., 80%, 100% of the top terms). From the analysis of the
recall results of this experiment, it seems that the top most frequent items are
accurately computed. Perhaps due to an unhappy sequence of data stream, the
recall degrades (with middle percentages) and then back to acceptable values
when it is calculated on the whole k size.

It also is interesting to notice that, fixed the input stream s = 20M, the recall
tends to decrease, by varying the size of k (Tables 3-7). This fact outlines that,
in general, the algorithm can correctly identify the most frequent items that
appear in the top portion of the k frequent items. Yet, when the size of k is big
(i.e., k = 1,000,000), the first 20% of terms is not enough to gather the most
frequent items, that are in common with the precise TF-IDF measure. Just
increase the percentage of k, in order to improve the recall (Tables 4 - 7). This
situation emphasizes the fact that when k < s, the recall values are generally
more accurate. Completely opposite situation happens for s=1M: the recall
tends to increase by varying k (for example, see Table 3, but it hold also for
Tables 4-7).

Tables 3-7 show also the values of the Spearman correlation coefficient ρ. It
is always around 0.90, evidencing that a good positive correlation exists between
the exact and approximate TF-IDF measure. In particular, for input stream

26

hashtag terms

#VMA
tweet mtv vote lead video
shareworthi

#bing
tweet mtv vote lead video
shareworthi

#votebieber
justinbieb time hit bed button
difficult morn

#rageofbahamut tweet card ref code free
friend

#voteonedirection home daniellepeaz
#StopChildAbuse donat tweet join campaign twitter
#Gameinsight play start paradis island
#Kiss excit list track reveal carlyraejepsen
#fashion show largest voguemagazin
#votebeyonce tweet vote mtv lead

Table 8: From top to bottom: the most frequent hashtags contained in tweets for the period
August 2012 to September 2012. From left to right: the terms used most often in tweets with
same hashtags.

size s = 20M , iρ is close to 1, showing a strong correlation.
Additionally, Tables 3-7 seem to show that bigger recall values cause better

correlation value. To confirm this, we have assessed how the correlation varies
using different recall values. For each experiment of the top-k common terms,
we take into account the minimum and maximum recall. Using this data, we
have performed a Wilcoxon rank sum test to check if the differences are or
not significant. The test yields a p-value of 1.8165e-04, thus rejecting the null
hypothesis (the medians are equal) and confirming the alternative hypothesis
at the default 5% significance level, i.e., bigger recall values result in a better
correlation.

The experiments confirm the validity of our implementation of the approxi-
mate TF-IDF measure, evidencing that, in general, the algorithm works well by
varying the size s of input stream (as stated, the results are better for larger s).
Moreover, the results computed for the different execution of the approximate
TF-IDF outlines the effectiveness of our implementation choices (parallel GPU
computation), supported also by a good efficacy.

6.2.2. Analysis of Trending Topics

Table 8 shows an ordered list of the most frequent document-term pairs.
Hashtags represent documents. For each hashtag in the first column of Table 8,
the second column shows the associated terms. Their order reflects the ranking
of the most frequent hashtag-term pairs. It is interesting to note that the same
terms often appear in the top positions of the ranked list, although they are
associated with different hashtags. This is seen most clearly at the top of the
list; they become more scattered as they appear lower down.

27

The tweets dataset was posted in the period August 2012 to September 2012
in the cities of Washington, New York, and San Francisco. We note that the
most frequent hashtags were VMA (Video Music Awards), bing, votebieber,
etc., these correspond to the 2012 MTV Video Music Awards that took place in
the United States at the time. This emphasizes the coherence and relevance of
our results. For example, our analysis showed that the hashtags VMA and bing
always appeared together in tweets. This is clearly shown in Table 8, where
these hashtags appear in the first two positions with the same terms (second
column of the table).

Our results so far are rough, and our experiments could be improved with
further textual processing and refinements.

7. Conclusions

The exact TF-IDF measure is typically used to retrieve relevant terms from
a corpus of documents, given that the contents of the entire corpus are a pri-
ori known for the purposes of the calculation. This paper presents a revised
TF-IDF measure, which can be used for processing continuous data streams.
Specifically, our contribution is twofold: we provide 1) an approximate TF-IDF
measure and 2) a parallel implementation of the calculation of the approximate
TF-IDF, based on GPUs. The parallel GPU architecture meets fast response
requirements and overcomes storage constraints when processing a continuous
flow of data stream in real time.

The proposal was tested on both generated and real datasets. The generated
dataset is composed of pairs < t, id > and it has been created from a skewed
and uniform distribution in order to study in details how our approximate TF-
IDF works under a know distribution of terms and documents, respectively.
The real dataset instead, was composed of a large Twitter collection, where it
detected trending topics in the data stream. Both experimentations evidence
that the approximate version of TF-IDF yields good results. We notice that
the best results are when k is smaller (some order of magnitude) than the input
stream size. We think that this is due to the frequency of distinct pairs inside
the datasets. From the analyze of generated and real datasets, we think that
when the data distribution presents a skew value close to 2 (a few pairs that
appear many times, with respect to the dataset size), it preferable to choose a
small k, in order to capture all the actual frequent items. For a large k, the
most k frequent items will enclose also terms with a low frequency, that, in the
successive input streams have been encountered, but are not effectively relevant.

In terms of performance, our approximate TF-IDF measure performs sat-
isfactorily. One interesting aspect is the GPU implementation is stable and
performs well even with limited memory. We found good scalability and a
significant speed up of the GPU over the CPU implementation in computing
the approximate TF-IDF. Furthermore, the time to compute the approximate
TF-IDF measure on the GPU is not affected by the data source. In terms of
quality, we correlated our results with those computed using the exact TF-IDF

28

measure. Here again, the approximate solution is reasonably good when used
in data mining scenarios.

With respect to future developments, we are working on an implementation
using multiple GPUs. This may provide many benefits, although it is not imme-
diately possible as the Thrust library is designed for a single GPU. To achieve
this requires a complete software architecture redesign, in order to exploit mul-
tiple GPUs during the computation of the approximate measure.

In a nutshell, our approximate TF-IDF measure can be considered as an
extension of the exact version. It can be applied in data stream data contexts:
for instance, from sophisticated sensors, batch query processing in search en-
gines, and in text stream classification techniques applied to social networks,
news feeds, chat, and e-mail.

References

[1] cURL and libcurl. http://http://curl.haxx.se/.

[2] L. A. Adamic and B. A. Huberman. Zipf’s Law and the Internet. Glotto-
metrics, 3:143–150, 2002.

[3] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. Models and issues in data stream systems. In Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, PODS ’02, pages 1–16, New York, NY, USA,
2002. ACM.

[4] Nathan Bell and Jared Hoberock. Thrust: A Productivity-Oriented Library
for CUDA. in GPU Computing Gems Jade Edition, 2:359–371, 2011.

[5] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. Brook for GPUs: stream computing on
graphics hardware. ACM Transactions on Graphics (TOG), 23(3):777–786,
August 2004.

[6] Khoo Khyou Bun and Mitsuru Ishizuka. Topic Extraction from News
Archive Using TF*PDF Algorithm. In Proceedings of the 3rd International
Conference on Web Information Systems Engineering, WISE ’02, pages
73–82, Washington, DC, USA, 2002. IEEE Computer Society.

[7] Graham Cormode and Marios Hadjieleftheriou. Finding the frequent items
in streams of data. Communications of the ACM, 52:97–105, October 2009.

[8] Graham Cormode and S. Muthukrishnan. Summarizing and mining skewed
data streams. In SIAM Conference on Data Mining (SDM), pages 44–55,
2005.

[9] Mark E. Crovella, Murad S. Taqqu, and Azer Bestavros. A Practical Guide
to Heavy Tails. chapter Heavy-tailed Probability Distributions in the World

29

Wide Web, pages 3–25. Birkhauser Boston Inc., Cambridge, MA, USA,
1998.

[10] Jason P. Duran and Sathish A. P. Kumar. CUDA Based Multi Objective
Parallel Genetic Algorithms: Adapting Evolutionary Algorithms for Doc-
ument Searches. In Proceedings of the 2011 Intl Conf on Information and
Knowledge Engineering, (IKE 2011), volume 52 (29), pages 36–49, 2011.

[11] Ugo Erra and Bernardino Frola. Frequent Items Mining Acceleration Ex-
ploiting Fast Parallel Sorting on the GPU. Procedia Computer Science,
9(0):86 – 95, 2012. Proceedings of the International Conference on Com-
putational Science, ICCS 2012.

[12] Naga K. Govindaraju, Nikunj Raghuvanshi, and Dinesh Manocha. Fast
and approximate stream mining of quantiles and frequencies using graph-
ics processors. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, SIGMOD ’05, pages 611–622, New
York, NY, USA, 2005. ACM.

[13] Raffaella Grieco, Delfina Malandrino, and Vittorio Scarano. A Scalable
Cluster-based Infrastructure for Edge-computing Services. World Wide
Web, 9(3):317–341, 2006.

[14] Daniel Horn. Stream Reduction Operations for GPGPU Applications. In
Matt Pharr, editor, GPU Gems 2. Addison-Wesley, 2005.

[15] M. G. Kendall. A New Measure of Rank Correlation. Biometrika,
30(1/2):81–93, 1938.

[16] Mark Kot, Emily Silverman, and Celeste A. Berg. Zipf’s law and the
diversity of biology newsgroups. Scientometrics, 56(2):247–257, 2003.

[17] V.V. Kryssanov, K. Kakusho, E.L. Kuleshov, and M. Minoh. Modeling
hypermedia-based communication. Information Sciences, 174(12):37 – 53,
2005.

[18] W. Li. Random texts exhibit Zipf’s-law-like word frequency distribution.
Information Theory, IEEE Transactions on, 38(6):1842–1845, Nov 1992.

[19] K.F. Lysakov and M.Yu. Shadrin. FPGA-based hardware accelerator for
high-performance data-stream processing. Pattern Recognition and Image
Analysis, 23(1):26–34, 2013.

[20] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, New York,
NY, USA, 2008.

[21] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard
Dobbs, Charles Roxburgh, and Angela Hung Byers. Big Data: The Next
Frontier for Innovation, Competition, and Productivity. Technical report,
McKinsey Global Institute, June 2011.

30

[22] Diana Maynard, Yaoyong Li, and Wim Peters. NLP Techniques for Term
Extraction and Ontology Population. In Proceedings of the 2008 Con-
ference on Ontology Learning and Population: Bridging the Gap Between
Text and Knowledge, pages 107–127, Amsterdam, The Netherlands, The
Netherlands, 2008. IOS Press.

[23] Duane Merrill and Andrew Grimshaw. High Performance and Scalable
Radix Sorting: A case study of implementing dynamic parallelism for GPU
computing. Parallel Processing Letters, 21(02):245–272, 2011.

[24] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Fermi. Technical report, Nvidia Corporation, 2009.

[25] NVIDIA Corporation. NVIDIA CUDA C Programming Guide 5.5.
NVIDIA Corporation, 2010.

[26] Martin F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–
137, 1980.

[27] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen,
and Pat Hanrahan. Photon mapping on programmable graphics hardware.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, HWWS ’03, pages 41–50, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[28] Joel W. Reed, Yu Jiao, Thomas E. Potok, Brian A. Klump, Mark T. El-
more, and Ali R. Hurson. TF-ICF: A New Term Weighting Scheme for
Clustering Dynamic Data Streams. In Proceedings of the 5th International
Conference on Machine Learning and Applications, ICMLA ’06, pages 258–
263, Washington, DC, USA, 2006. IEEE Computer Society.

[29] David Roger, Ulf Assarsson, and Nicolas Holzschuch. Efficient Stream Re-
duction on the GPU. In David Kaeli and Miriam Leeser, editors, Workshop
on General Purpose Processing on Graphics Processing Units, 2007.

[30] Gerard Salton and Christopher Buckley. Term-weighting Approaches
in Automatic Text Retrieval. Information Processing & Management,
24(5):513–523, August 1988.

[31] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient
sorting algorithms for manycore GPUs. In Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing, IPDPS ’09,
pages 1–10, Washington, DC, USA, 2009. IEEE Computer Society.

[32] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen,
Victor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast sort on CPUs
and GPUs: a case for bandwidth oblivious SIMD sort. In Proceedings of
the 2010 international conference on Management of data, SIGMOD ’10,
pages 351–362, New York, NY, USA, 2010. ACM.

31

[33] Benjamin E. Teitler, Jagan Sankaranarayanan, Hanan Samet, and
Marco D. Adelfio. Online Document Clustering Using GPUs. In Bar-
bara Catania, Tania Cerquitelli, Silvia Chiusano, Giovanna Guerrini, Mirko
Kmpf, Alfons Kemper, Boris Novikov, Themis Palpanas, Jaroslav Pokorn,
and Athena Vakali, editors, New Trends in Databases and Information Sys-
tems, volume 241 of Advances in Intelligent Systems and Computing, pages
245–254. Springer International Publishing, 2014.

[34] S. Thomaidou and M. Vazirgiannis. Multiword Keyword Recommendation
System for Online Advertising. In Advances in Social Networks Analysis
and Mining (ASONAM), 2011 International Conference on, pages 423–427,
2011.

[35] Craig Ulmer, Maya Gokhale, Brian Gallagher, Philip Top, and Tina Eliassi-
Rad. Massively parallel acceleration of a document-similarity classifier
to detect web attacks. Journal of Parallel and Distributed Computing,
71(2):225 – 235, 2011. Data Intensive Computing.

[36] Le Wang, Yan Jia, and Yingwen Chen. Conversation Extraction in Dy-
namic Text Message Stream. JCP, 3(10):86–93, 2008.

[37] Yongpeng Zhang, Frank Mueller, Xiaohui Cui, and Thomas Potok. Data-
intensive document clustering on graphics processing unit (GPU) clusters.
Journal of Parallel and Distributed Computing, 71(2):211 – 224, 2011. Data
Intensive Computing.

32

