2,286 research outputs found

    Polynomial-Time Space-Optimal Silent Self-Stabilizing Minimum-Degree Spanning Tree Construction

    Full text link
    Motivated by applications to sensor networks, as well as to many other areas, this paper studies the construction of minimum-degree spanning trees. We consider the classical node-register state model, with a weakly fair scheduler, and we present a space-optimal \emph{silent} self-stabilizing construction of minimum-degree spanning trees in this model. Computing a spanning tree with minimum degree is NP-hard. Therefore, we actually focus on constructing a spanning tree whose degree is within one from the optimal. Our algorithm uses registers on O(logn)O(\log n) bits, converges in a polynomial number of rounds, and performs polynomial-time computation at each node. Specifically, the algorithm constructs and stabilizes on a special class of spanning trees, with degree at most OPT+1OPT+1. Indeed, we prove that, unless NP == coNP, there are no proof-labeling schemes involving polynomial-time computation at each node for the whole family of spanning trees with degree at most OPT+1OPT+1. Up to our knowledge, this is the first example of the design of a compact silent self-stabilizing algorithm constructing, and stabilizing on a subset of optimal solutions to a natural problem for which there are no time-efficient proof-labeling schemes. On our way to design our algorithm, we establish a set of independent results that may have interest on their own. In particular, we describe a new space-optimal silent self-stabilizing spanning tree construction, stabilizing on \emph{any} spanning tree, in O(n)O(n) rounds, and using just \emph{one} additional bit compared to the size of the labels used to certify trees. We also design a silent loop-free self-stabilizing algorithm for transforming a tree into another tree. Last but not least, we provide a silent self-stabilizing algorithm for computing and certifying the labels of a NCA-labeling scheme

    Codes : unequal probabilities, unequal letter costs

    Get PDF
    The construction of alphabetic prefix codes with unequal letter costs and unequal probabilities is considered. A variant of the noiseless coding theorem is proved giving closely matching lower and upper bounds for the cost of the optimal code. Furthermore, an algorithm is described which constructs a nearly optimal code in linear time

    Optimal Prefix Codes for Infinite Alphabets with Nonlinear Costs

    Full text link
    Let P={p(i)}P = \{p(i)\} be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial PP for which known methods find a source code that is optimal in the sense of minimizing expected codeword length. For some applications, however, a source code should instead minimize one of a family of nonlinear objective functions, β\beta-exponential means, those of the form logaip(i)an(i)\log_a \sum_i p(i) a^{n(i)}, where n(i)n(i) is the length of the iith codeword and aa is a positive constant. Applications of such minimizations include a novel problem of maximizing the chance of message receipt in single-shot communications (a<1a<1) and a previously known problem of minimizing the chance of buffer overflow in a queueing system (a>1a>1). This paper introduces methods for finding codes optimal for such exponential means. One method applies to geometric distributions, while another applies to distributions with lighter tails. The latter algorithm is applied to Poisson distributions and both are extended to alphabetic codes, as well as to minimizing maximum pointwise redundancy. The aforementioned application of minimizing the chance of buffer overflow is also considered.Comment: 14 pages, 6 figures, accepted to IEEE Trans. Inform. Theor

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Hu-Tucker alogorithm for building optimal alphabetic binary search trees

    Get PDF
    The purpose of this thesis is to study the behavior of the Hu- Tucker algorithm for building Optimal Alphabetic Binary Search Trees (OABST), to design an efficient implementation, and to evaluate the performance of the algorithm, and the implementation. The three phases of the algorithm are described and their time complexities evaluated. Two separate implementations for the most expensive phase, Combination, are presented achieving 0(n2) and O(nlogn) time and 0(n) space complexity. The break even point between them is experimentally established and the complexities of the implementations are compared against their theoretical time complexities. The electronic version of The Complete Works of William Shakespeare is compressed using the Hu- Tucker algorithm and other popular compression algorithms to compare the performance of the different techniques. The experiments justified the price that has to be paid to implement the Hu- Tucker algorithm. It is shown that an efficient implementation can process extremely large data sets relatively fast and can achieve optimality close to the Optimal Binary Tree, built using the Huffman algorithm, however the OABST can be used in both encoding and decoding processes, unlike the OBT where an additional mapping mechanism is needed for the decoding phase
    corecore