45 research outputs found

    Scalable Parallel Numerical CSP Solver

    Full text link
    We present a parallel solver for numerical constraint satisfaction problems (NCSPs) that can scale on a number of cores. Our proposed method runs worker solvers on the available cores and simultaneously the workers cooperate for the search space distribution and balancing. In the experiments, we attained up to 119-fold speedup using 256 cores of a parallel computer.Comment: The final publication is available at Springe

    Scalable Parallel Numerical Constraint Solver Using Global Load Balancing

    Full text link
    We present a scalable parallel solver for numerical constraint satisfaction problems (NCSPs). Our parallelization scheme consists of homogeneous worker solvers, each of which runs on an available core and communicates with others via the global load balancing (GLB) method. The parallel solver is implemented with X10 that provides an implementation of GLB as a library. In experiments, several NCSPs from the literature were solved and attained up to 516-fold speedup using 600 cores of the TSUBAME2.5 supercomputer.Comment: To be presented at X10'15 Worksho

    Finding maximum k-cliques faster using lazy global domination

    Get PDF
    No abstract available

    Improvement of the Embarrassingly Parallel Search for Data Centers

    Get PDF
    International audienceWe propose an adaptation of the Embarrassingly Parallel Search (EPS) method for data centers. EPS is a simple but efficient method for parallel solving of CSPs. EPS decomposes the problem in many distinct subproblems which are then solved independently by workers. EPS performed well on multi-cores machines (40), but some issues arise when using more cores in a datacenter. Here, we identify the decomposition as the cause of the degradation and propose a parallel decomposition to address this issue. Thanks to it, EPS gives almost linear speedup and outperforms work stealing by orders of magnitude using the Gecode solver

    Embarrassingly Parallel Search

    Get PDF
    International audienceWe propose the Embarrassingly Parallel Search, a simple and efficient method for solving constraint programming problems in parallel. We split the initial problem into a huge number of independent subproblems and solve them with available workers (i.e., cores of machines). The decomposition into subproblems is computed by selecting a subset of variables and by enumerating the combinations of values of these variables that are not detected inconsistent by the propagation mechanism of a CP Solver. The experiments on satisfaction problems and on optimization problems suggest that generating between thirty and one hundred subproblems per worker leads to a good scalability. We show that our method is quite competitive with the work stealing approach and able to solve some classical problems at the maximum capacity of the multi-core machines. Thanks to it, a user can parallelize the resolution of its problem without modifying the solver or writing any parallel source code and can easily replay the resolution of a problem

    A Parallel and Distributed Framework for Constraint Solving

    Get PDF
    With the increased availability of affordable parallel and distributed hardware, programming models for these architectures has become the focus of significant attention. Constraint programming, which can be seen as the encoding of processes as a Constraint Satisfaction Problem, because of its data-driven and control-insensitive approach is a prime candidate to serve as the basis for a framework which effectively exploits parallel architectures. To effectually apply the power of distributed computational systems, there must be an effective sharing of the work involved in the search for a solution to a Constraint Satisfaction Problem (CSP) between all the participating agents, and it must happen dynamically, as it is hard to predict the effort associated with the exploration of some part of the search space. We describe and provide an initial experimental assessment of an implementation of a work stealing-based approach to distributed CSP solving, which relies on multiple back-ends for the distributed computing mechanisms -- from the multicore CPU to supercomputer clusters running MPI or other interprocess communication platforms

    SAT and CP: Parallelisation and Applications

    Get PDF
    This thesis is considered with the parallelisation of solvers which search for either an arbitrary, or an optimum, solution to a problem stated in some formal way. We discuss the parallelisation of two solvers, and their application in three chapters.In the first chapter, we consider SAT, the decision problem of propositional logic, and algorithms for showing the satisfiability or unsatisfiability of propositional formulas. We sketch some proof-theoretic foundations which are related to the strength of different algorithmic approaches. Furthermore, we discuss details of the implementations of SAT solvers, and show how to improve upon existing sequential solvers. Lastly, we discuss the parallelisation of these solvers with a focus on clause exchange, the communication of intermediate results within a parallel solver. The second chapter is concerned with Contraint Programing (CP) with learning. Contrary to classical Constraint Programming techniques, this incorporates learning mechanisms as they are used in the field of SAT solving. We present results from parallelising CHUFFED, a learning CP solver. As this is both a kind of CP and SAT solver, it is not clear which parallelisation approaches work best here. In the final chapter, we will discuss Sorting networks, which are data oblivious sorting algorithms, i. e., the comparisons they perform do not depend on the input data. Their independence of the input data lends them to parallel implementation. We consider the question how many parallel sorting steps are needed to sort some inputs, and present both lower and upper bounds for several cases

    Multi-objective Finite-Domain Constraint-Based Forest Management

    Get PDF
    This paper describes an implementation of a Constraint Programming approach to the problem of multi-criteria forest management optimization. The goal is to decide when to harvest each forest unit while striving to optimize several criteria under spatial restrictions. With a large number of management units, the optimization problem becomes computationally intractable. We propose an approach for deriving a set of efficient solutions for the entire region. The proposed methodology was tested for Vale do Sousa region in the North of Portugal
    corecore