
Finding Maximum k-Cliques Faster Using Lazy Global Domination

Ciaran McCreesh∗ and Patrick Prosser
University of Glasgow, Glasgow, Scotland

Abstract

A clique in a graph is a set of vertices, each of which is ad-
jacent to every other vertex in this set. A k-clique relaxes
this requirement, requiring vertices to be within a distance
k of each other, rather than directly adjacent. In theory, a
maximum clique algorithm can easily be adapted to solve the
maximum k-clique problem, although large sparse k-clique
graphs reduce to large dense clique graphs, which can be
computationally challenging. We adapt a state of the art max-
imum clique algorithm to show that this reduction is in fact
useful in practice, and introduce a lazy global domination rule
which sometimes vastly reduces the search space. We include
experimental results for a range of real-world and benchmark
graphs, and a detailed look at random graphs. We also use
thread-parallel search to solve some harder instances.

Introduction
A clique in a graph is a set of vertices, each of which is adja-
cent to every other vertex in the set. Finding a clique of max-
imum size in a graph is one of the basic NP-hard problems
(Garey and Johnson 1990); applications include geometry,
coding theory, computer vision and bioinformatics (Bomze
et al. 1999; Butenko and Wilhelm 2006). However, when
analysing real-world data, a clique may be too strong a re-
quirement. A k-clique (or sometimes n-clique or s-clique—
in an unfortunate clash of notation, “k-clique problem” is
sometimes used elsewhere for the decision version of the
clique problem, to distinguish it from the maximum clique
problem) is a relaxed form of clique, where instead of re-
quiring each pair of vertices to be directly adjacent, we only
require that they be connected by a path of length at most k
(Luce 1950). Thus a 1-clique is a clique, a 2-clique may be
thought of as “a group of people, all of whom either know
each other or have a mutual acquaintance”, and so on. We il-
lustrate this in Figure 1. Determining the size of a maximum
k-clique is NP-hard for any fixed k (Bourjolly, Laporte, and
Pesant 2002).

A related relaxation is a k-club, which tightens the re-
quirement of a k-clique as follows (Mokken 1979). In a k-
clique, each pair of vertices is connected by a path of length

∗This work was supported by the Engineering and Physical Sci-
ences Research Council [grant number EP/K503058/1]
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at most k, but that path may use any vertices in the original
graph. In a k-club, each pair of vertices must be connected
by a path of length at most k using only vertices that are
also in the club. Thus the 2-clique in Figure 1 is not a 2-club
(obviously, every k-club is a k-clique).

A recent survey by Shahinpour and Butenko (2013) dis-
cusses algorithms and results for k-clique and k-club prob-
lems. We adopt their notation of ω̃k for the size of a max-
imum k-clique; the use of ω for the size of a maximum
clique is standard. They note that “unlike the maximum
clique problem, the maximum s-clique problem has not been
the subject of extensive research and we are not aware of
any computational results for this problem to date”. This is
in contrast to the k-club problem, for which a wide range
of computational results are available (Bourjolly, Laporte,
and Pesant 2000; 2002; Mahdavi Pajouh and Balasundaram
2012; Hartung, Komusiewicz, and Nichterlein 2012; Chang
et al. 2013; Shahinpour and Butenko 2013; Wotzlaw 2014;
Picker 2015; Carvalho and Almeida 2016).

A maximum clique algorithm can easily be adapted to find
a maximum k-clique in a graph G by considering the graph
Gk: this graph has the same vertex set as G, and edges be-
tween any two distinct vertices v1 and v2 iff there is a path
of length at most k between v1 and v2 in G. It is easy to
see that maximum cliques in Gk correspond with maximum
k-cliques in G (Balasundaram, Butenko, and Trukhanov
2005). However, it is not obvious that this is a viable ap-
proach: even if G is sparse, Gk may not be, and the maxi-
mum clique problem on dense graphs can be very challeng-

1 2

3

4

56

7

8

1 2

3

4

56

7

8

Figure 1: On the left, a graph, with its unique maximum
clique {1, 2, 5, 8} of size 4 highlighted. On the right, the
same graph, with a maximum 2-clique {1, 2, 3, 4, 5, 6, 8} of
size 7 highlighted. This is not a 2-club, since the only path
of length 2 between vertices 3 and 6 goes through vertex 7.
A 3-clique covers the entire graph.

ing computationally. Here we take a state-of-the-art max-
imum clique algorithm which is suitable for use on dense
graphs (Prosser 2012), and investigate whether this approach
is feasible in practice. We modify the algorithm to include
a new lazy “global domination” inference step—this tech-
nique provides no benefit for typical maximum clique prob-
lems, but for maximum k-clique graphs it sometimes gives
improvements of several orders of magnitude. We present
computational results for the maximum k-clique problem on
a range of benchmark and real-world graphs. We finish with
a detailed look at random graphs.

Throughout, our graphs are finite, undirected, and contain
no loops. If G is a graph with vertex set V and edge set E,
we may write V (G) to mean V . The neighbourhood of a
vertex v in a graph G, written NG(v), is the set of vertices
adjacent to v. The degree of a vertex is the cardinality of its
neighbourhood. The density of a graph, denoted D, is the
proportion of distinct pairs of vertices which have an edge
between them. The subgraph induced by a set of vertices W
is the subgraph with vertex set W , and all edges from the
original graph that are between pairs of vertices in W . If
A and B are sets of vertices, we write A \ B for the set of
vertices which are in A but not B, and we write A + v and
A− v for A ∪ {v} and A \ {v} respectively.

Algorithms
Our approach for finding a maximum k-clique is presented
as Algorithm 1. Our first step (line 3) is to replace our in-
put graph G with Gk. We may construct this graph using a
bounded breadth-first search: we refer to Chang et al. (2013)
for how to implement this quickly in practice.

Colouring The current state-of-the-art for the maximum
clique problem on dense graphs, due to Tomita et al. (Tomita
and Kameda 2007; Tomita et al. 2010), is to use branch
and bound with a greedy graph colouring. A colouring of
a graph is an assignment of colours to vertices, such that ad-
jacent vertices are given different colours; if we can colour a
graph using c colours, then the graph cannot contain a clique
of size greater than c (each vertex in a clique must be given
a different colour).

Obtaining a minimal colouring is NP-hard, but we may
create a greedy colouring in polynomial time. This is done
by the colour routine: we start the first colour (line 28),
and while there are uncoloured vertices remaining (line 29),
we try to give each vertex in turn the current colour (lines 30
to 36). When we cannot colour any further vertices, we start
a new colour (line 37).

The key step in Tomita et al.’s algorithms is to produce a
constructive colouring—the colour routine does not just
return the number of colours used. Instead, it returns a pair
of arrays, order and bounds . The order array contains ver-
tices, in the order in which they were coloured. The ith entry
of the bounds array contains the colour number used for the
ith vertex in order . We illustrate this in Figure 2. Crucially,
bounds is non-decreasing (i.e. bounds[i+ 1] ≥ bounds[i]),
and we may colour the subgraph induced by the first i ver-
tices of order using bounds[i] colours.

Algorithm 1: Solving the maximum k-clique problem.

1 maxKClique :: (Graph G, Integer k)→ Vertex Set
2 begin
3 G← Gk

4 permute G into non-increasing degree order
5 global C? ← ∅
6 expand(∅, V (G))
7 return C? (unpermuted)

8 expand :: (Vertex Set C, Vertex Set P)
9 begin

10 (order , bounds)← colour(P)
11 vrej ← unset
12 for i← |P | downto 1 do
13 if |C| + bounds[i] ≤ |C?| then return
14 if vrej 6= unset then
15 P ← P \ dominated(vrej)
16 v← order [i]
17 if v ∈ P then
18 C ′ ← C + v
19 if |C ′| > |C?| then C?← C ′

20 P ′ ← P ∩ NG(v)
21 if P ′ 6= ∅ then expand(C ′, P ′)
22 P ← P − v

23 vrej ← v

24 colour :: (Vertex Set P)→ (Vertex Array, Int Array)
25 begin
26 (order , bounds)← ([], [])
27 uncoloured ← P
28 currentColour ← 1
29 while uncoloured 6= ∅ do
30 colourable ← uncoloured
31 while colourable 6= ∅ do
32 v← the first vertex of colourable
33 append v to order
34 append currentColour to bounds
35 uncoloured ← uncoloured − v
36 colourable ← colourable \NG(v)

37 currentColour ← currentColour + 1

38 return (order , bounds)

39 dominated :: (Vertex v)→ Vertex Set
40 begin
41 return {w ∈ V (G) : NG(w)− v ⊆ NG(v)− w}

The order in which vertices are selected for colouring can
have a large effect upon performance. Various initial ver-
tex orderings have been considered for the maximum clique
problem (Prosser 2012; Segundo, Lopez, and Batsyn 2014).
Here we will colour vertices in a static non-increasing de-
gree order, which we do by permuting the graph at the top of
search (line 4). We will not be using a dynamic tie-breaking
mechanism: although doing so can sometimes be beneficial
for small dense graphs in a maximum clique context (Tomita

et al. 2010), for the larger graphs we will be considering here
the cubic cost is prohibitively expensive. For the same rea-
son, and additionally because our colour classes typically
contain many vertices, we use a simple greedy colouring
and do not use a colour repair step (Tomita et al. 2010) or
stronger MaxSAT-based inference (Segundo, Nikolaev, and
Batsyn 2015; Li, Jiang, and Xu 2015).

Branching and recursing We may now describe the main
recursive part of the algorithm. If v is a vertex, then a clique
in Gk either contains only v and vertices adjacent to v, or
does not contain v. This allows us to grow cliques by re-
peatedly picking a vertex, and branching upon whether or
not to include it. Our growing clique is stored in the variable
C, which is initially empty (line 6). We also track which
vertices may still be added to C in the variable P , which
initially contains every vertex (line 6). The expand pro-
cedure picks a vertex v (line 16), then considers adding v
to C (lines 18 to 21): we create a new P ′ from P (line 20)
by rejecting vertices which are not adjacent to v (and thus
every vertex in P ′ is adjacent to every vertex in C). If ver-
tices remain in P ′, we recurse (line 21). We then take the
opposite branch choice, and consider rejecting from P and
C (line 22). We then loop, and pick a new v.

Integrating the colour bound We keep track of the best
solution we have found so far, which we call the incumbent;
this is stored in C?, which is initially empty (line 5). When-
ever we find a new clique, we compare its size to that of C?,
and if it is better, the incumbent is unseated (line 19). Now
we may make use of the colour bound. At the start of the
recursive procedure (line 10), we use colour to produce
a constructive greedy colouring of the subgraph induced by
P into the array order , with the colour numbers placed in
bounds . When selecting v, we iterate over bounds from
right to left (line 12). Now on line 13 we know that the
largest possible clique we could find at the current location
has size no greater than |C|+bounds[i], so if this cannot un-
seat the incumbent then we may abandon search and back-
track.

1 2

3

4

56

7

8 1 3 4 6 2 7 5 8

Vertices in colour order

1 1 1 1 2 2 3 4

Number of colours used

Figure 2: The graph on the left has been coloured greedily,
using four colours: vertices 1, 3, 4 then 6 were given the first
colour, then vertices 2 then 7 were given the second colour,
then vertex 5 was given the third colour, and vertex 8 the
fourth colour. The order array, on top, contains the vertices
in the order they were coloured; the ith entry of the bounds
array, below, contains the number of colours used to colour
the first i vertices of order .

Lazy global domination Aside from the Gk step, what
we have described so far is a standard maximum clique
algorithm, and all we have done is opted out of certain
more computationally expensive inference steps (more com-
plicated initial vertex orderings, and cubic colourings). If
we ignore the lines shown in blue, we obtain the maxi-
mum clique algorithm variation that Prosser (2012) calls
“MCSa1”. Now we will introduce a new lazy global dom-
ination rule which performs additional inference during
search. This rule is not specific to the maximum k-clique
problem, and is also valid for the maximum clique problem.

Let v and w be distinct vertices in a graph G. We say that
v dominates w if the neighbourhood of w, excluding v, is a
(possibly non-strict) subset of the neighbourhood of v, ex-
cluding w. From a maximum clique perspective, this means
that v is “better than” w. If v and w are adjacent, any clique
containing w may always be extended by the inclusion of v;
if v and w are non-adjacent, replacing w with v in any clique
containing w cannot reduce the amount by which the clique
may be grown.

Suppose a graph does contain one or more pairs of domi-
nating vertices. We could make use of this fact during search
in at least two ways. Firstly, when accepting a vertex w, we
may also unconditionally accept any vertex v which both
dominates and is adjacent to w. Secondly, when rejecting a
vertex v, we may also unconditionally reject any vertex w
which is dominated by v. We could also choose to calcu-
late domination globally (i.e. with respect to Gk, or even the
original G), or locally (i.e. with respect to the subgraph of
Gk induced by C ∪ P).

Detecting whether one vertex dominates another may be
done in linear time (we discuss this further below), but find-
ing all vertices dominated by a particular vertex is quadratic,
and finding all dominations is cubic. This is a heavy price
to pay, if there are no dominating vertices. This is why such
a rule has not previously been used in the maximum clique
context: in the authors’ experience, most graphs typically
considered for the maximum clique problem do not contain
dominating vertices, and those that do are too easy compu-
tationally for the step to be worthwhile.

However, some of the graphs we consider in the follow-
ing section do contain dominating vertices, and although the
maximum clique problem is trivial on these graphs, the max-
imum k-clique problem is not for some values of k. Prelimi-
nary experiments suggested that the use of a domination rule
could be extremely beneficial in certain circumstances, but
that in cases where it had little effect, doing such a calcu-
lation introduced a substantial penalty to runtimes. More-
over, even in graphs where dominating vertices are present,
knowing this fact is sometimes not useful: it is common for
an optimal solution to be found straight away, and for the
bound to be strong enough to prove optimality immediately,
so no branching occurs.

This motivates the design of a lazy global domination
rule. We perform our domination checks globally, with re-
spect to Gk (which may contain more dominating vertices
than G), and we remember and reuse the results of any dom-
ination checks we perform. We also only perform inference
on the “reject” case, to avoid introducing any cost when a

solution is found and proven optimal without branching.
The lines marked in blue in Algorithm 1 show how this is

done. When a vertex vrej is rejected, we remove from P any
vertex that is dominated (with respect to Gk) by vrej . This is
line 15; the set of dominated vertices calculated here should
be cached. One might expect that this calculation would
appear after line 22. However, this introduces a cost if the
bound allows the next choice of v to be eliminated. Thus
we simply remember that we have rejected v by storing it in
vrej (line 23), and lazily postpone the filtering until after the
bound has been checked.

Finally, note that we do not perform a new colouring when
we reject dominated vertices—doing so typically does not
lead to a smaller bound, since most colour classes contain
many vertices. Thus when we select a v from order , it is
now possible that v has already been rejected. We check for
this on line line 17.

Bitset encoding San Segundo et al. (2011; 2013) observed
that the performance of Tomita’s algorithms could be en-
hanced substantially by using a bitset encoding to obtain a
form of SIMD-like parallelism, without altering the steps
taken. We have taken such an approach here too, although
we do not describe it explicitly—when permuting G on line
line 4, the graph should be re-encoded as an array of adja-
cency bitsets. (It is not helpful to do this before constructing
Gk.) Now the intersection on line 20 becomes a simple bit-
wise “and” operation, and the intersection with complement
on line 36 is a bitwise “and not” operation. This is beneficial
when testing for dominance, too: each bit in the dominated
set on line 15 may be determined by a bitwise “and not”,
unsetting a bit, and testing whether the result is empty; the
set difference is again a bitwise “and not” operation.

Experimental Results
We now give experimental results on a range of standard
benchmarks, and on real-world and random graphs. Ex-
periments were run on a machine with dual 3.1GHz In-
tel E5-2687W v3 processors and 256GBytes RAM; single-
threaded runtimes are given, except in Table 5, where
20 threads were used (our machine does not have hyper-
threading enabled). Our software was implemented in C++,
using C++11 native threads, and was compiled using GCC
5.1.0. The time taken to read in the graph from a file is ex-
cluded, but preprocessing time (including the construction
of Gk and the bitset encoding) is included. We use the term
nodes to refer to the number of recursive calls made by the
branch-and-bound part of the algorithm.

Real-World Graphs
We begin with a selection of real-world and standard bench-
mark graphs. We look at k equal to 2, 3 and 4 in every
case—this is a standard practice for the k-club problem.

Erdős collaboration graphs In Table 1 we present experi-
mental results from Erdős collaboration graphs from the Pa-

Unmodified With Domination

Instance k D ω̃k Nodes Time Nodes Time

Erdos971 2 0.09 42 42 0.0 42 0.0
|V |=472 3 0.31 117 121 0.0 119 0.0
|E|=1314 4 0.56 235 468 0.0 468 0.0
Erdos972 2 0.01 258 258 0.5 258 0.5
|V |=5488 3 0.09 517 537 0.8 521 0.8
|E|=8972 4 0.35 1509 1.1×107 > 1 h 8197 3.8
Erdos981 2 0.09 43 43 0.0 43 0.0
|V |=485 3 0.31 123 358 0.0 354 0.0
|E|=1381 4 0.57 245 246 0.0 246 0.0
Erdos982 2 0.01 274 274 0.6 274 0.6
|V |=5822 3 0.09 547 555 0.9 547 0.9
|E|=9505 4 0.35 1594 1.1×107 > 1 h 618826 207.3
Erdos991 2 0.09 43 44 0.0 44 0.0
|V |=492 3 0.31 126 375 0.0 374 0.0
|E|=1417 4 0.57 246 491 0.0 491 0.0
Erdos992 2 0.01 277 277 0.6 277 0.6
|V |=6100 3 0.09 562 573 0.9 562 0.8
|E|=9939 4 0.35 1643 1.0×107 > 1 h 202543 69.4
Erdos02 2 0.02 508 508 0.8 508 0.8
|V |=6927 3 0.20 1014 1022 1.3 1015 1.3
|E|=11850 4 1.00 6927 6927 11.9 6927 10.9

Table 1: Experimental results for Erdős collaboration
graphs. For each graph, we consider k equal to 2, 3 and 4.
In each case we show the density of Gk, the size of a max-
imum k-clique, and then for both the unmodified algorithm
and the algorithm with our lazy global domination step, the
number of nodes required, and the runtime in seconds.

jek dataset by Vladimir Batagelj and Andrej Mrvar1. We
were able to solve all of these problems in under four min-
utes (and all but three in under four seconds) when using the
domination rule. However, using the unmodified maximum
clique algorithm, three of these results did not finish running
within one hour. Note that for k = 4, a k-clique covers all
of “Erdos02”.

In several cases, the algorithm found and proved an op-
timal solution immediately (ω̃k is equal to the number of
search nodes). This illustrates the necessity of laziness: if
we simply computed dominating pairs upfront, we would be
paying a cubic preprocessing cost for an algorithm which is
effectively quadratic in practice.

By comparing these results with the k-club results of
Chang et al. (2013), we see that in all but four cases the
k-clique and k-club numbers are equal; all of these differ-
ences occur when k = 4. (Chang et al. did not investigate
the “Erdos02” graph, but Wotzlaw confirmed privately that
the k-clique and k-club numbers are the same here too.) On
the other hand, the k-clique numbers are sometimes much
easier to find, both algorithmically and computationally.

Clique graphs In Table 2 we present results from the
“clique” graphs from the Second DIMACS implementation
challenge2. These graphs were designed to test maximum

1http://vlado.fmf.uni-lj.si/pub/networks/data/
2http://dimacs.rutgers.edu/Challenges/

Unmodified With Domination

Instance k D ω̃k Nodes Time Nodes Time

c-fat200-1 2 0.13 18 41 0.0 35 0.0
|V |=200 3 0.19 24 74 0.0 48 0.0
|E|=1534 4 0.24 30 134 0.0 65 0.0
c-fat200-2 2 0.27 35 35 0.0 35 0.0
|V |=200 3 0.39 46 488 0.0 102 0.0
|E|=3235 4 0.50 57 1496 0.0 128 0.0
c-fat200-5 2 0.71 87 11513 0.0 257 0.0
|V |=200 3 1.00 200 200 0.0 200 0.0
|E|=8473 4 1.00 200 200 0.0 200 0.0
c-fat500-1 2 0.06 21 52 0.0 43 0.0
|V |=500 3 0.09 28 28 0.0 28 0.0
|E|=4459 4 0.11 35 35 0.0 35 0.0
c-fat500-2 2 0.12 39 134 0.0 79 0.0
|V |=500 3 0.17 52 52 0.0 52 0.0
|E|=9139 4 0.22 65 65 0.0 65 0.0
c-fat500-5 2 0.31 96 10133 0.1 196 0.0
|V |=500 3 0.44 128 128 0.1 128 0.1
|E|=23191 4 0.56 159 1.5×109 > 1 h 326 0.1
c-fat500-10 2 0.62 189 1.1×109 > 1 h 560 0.1
|V |=500 3 0.87 252 252 0.1 252 0.1
|E|=46627 4 1.00 500 500 0.1 500 0.1
p-hat300-1 2 1.00 299 299 0.0 299 0.0
|V |=300 3 1.00 300 300 0.1 300 0.0
|E|=10933 4 1.00 300 300 0.0 300 0.0

Table 2: Experimental results for DIMACS clique graphs
with diameter greater than two.

clique implementations. Nearly all of these graphs have di-
ameter 2, so a 2-clique covers the entire graph—we have
ignored these. The only exceptions are the “c-fat” family
(all of which are trivial for a maximum clique solver), and
one of the “p hat” graphs.

With the domination rule, we solve all of these problems
within a tenth of a second. Without, two of the results take
over an hour, and the rest remain trivial. Note that in sev-
eral cases, for some values of k a k-clique covers the entire
graph. Again using Chang et al.’s results, we see that for
the first six graphs in this table the k-clique and k-club num-
bers are the same for each value of k (Chang et al. did not
investigate “c-fat500-10” or “p-hat300-1”).

Partitioning graphs Table 3 presents results from the
smallest 20 partitioning graphs from the 10th DIMACS Im-
plementation Challenge3. Many of these graphs are consid-
erably larger than those typically considered for the max-
imum clique problem, and we might expect our O(|V |2)
memory requirements to cause problems. Nonetheless, with
the domination rule there is only one instance which we
were unable to solve within an hour (and without the domi-
nation rule, there are two).

On the other hand, we sometimes see a significant cost
where the domination rule does not help, and where the
proof of optimality is not immediate: in “3elt” and “4elt”,
our runtimes can nearly double, and for “cs4” and “cti” the

3http://staffweb.cms.gre.ac.uk/˜wc06/partition/

Unmodified With Domination

Instance k D ω̃k Nodes Time Nodes Time

3elt 2 0.00 10 340 0.3 340 0.6
|V |=4720 3 0.01 16 1582 0.4 1582 1.0
|E|=13722 4 0.01 27 911 0.4 911 0.7
4elt 2 0.00 11 486 3.8 486 5.5
|V |=15606 3 0.00 20 717 3.9 717 6.1
|E|=45878 4 0.00 36 345 3.9 345 4.4
add20 2 0.04 124 124 0.1 124 0.2
|V |=2395 3 0.25 671 671 0.2 671 0.2
|E|=7462 4 0.67 1454 1454 0.5 1454 0.5
add32 2 0.00 32 32 0.4 32 0.4
|V |=4960 3 0.01 99 286 0.4 194 0.4
|E|=9462 4 0.03 268 268 0.4 268 0.5
bcsstk29 2 0.01 72 9752 3.7 963 8.7
|V |=13992 3 0.02 132 2.7×107 1576.2 7781 11.4
|E|=302748 4 0.04 210 3.2×107 > 1 h 21689 16.9
bcsstk30 2 0.01 219 224 14.5 219 14.5
|V |=28924 3 0.03 496 509 17.8 496 17.6
|E|=1007284 4 0.05 843 854 23.7 845 23.3
bcsstk31 2 0.00 189 189 20.2 189 20.0
|V |=35588 3 0.01 278 605 21.8 369 22.8
|E|=572914 4 0.02 428 119640 97.9 6588 29.8
bcsstk33 2 0.03 141 141 1.3 141 1.3
|V |=8738 3 0.08 228 26033 6.3 1744 3.8
|E|=291583 4 0.15 435 2.0×106 380.4 52779 17.6
crack 2 0.00 10 2894 1.5 2894 7.8
|V |=10240 3 0.00 17 4996 1.7 4987 10.4
|E|=30380 4 0.01 31 2173 1.7 2173 7.0
cs4 2 0.00 6 5780 8.2 5780 73.4
|V |=22499 3 0.00 12 7812 8.4 7812 78.5
|E|=43858 4 0.00 18 29032 9.5 29032 136.3
cti 2 0.00 7 8918 4.5 8918 58.0
|V |=16840 3 0.00 15 6406 4.8 6406 45.5
|E|=48232 4 0.01 26 62316 7.0 62316 113.6
data 2 0.01 18 638 0.1 617 0.2
|V |=2851 3 0.02 32 4982 0.1 4913 0.2
|E|=15093 4 0.04 52 40095 0.4 36089 0.4
fe-4elt2 2 0.00 13 61 1.7 61 2.1
|V |=11143 3 0.00 20 389 1.8 389 3.0
|E|=32818 4 0.01 32 448 1.8 446 3.0
fe-pwt 2 0.00 16 95 21.8 95 22.6
|V |=36519 3 0.00 29 167 21.0 167 24.4
|E|=144794 4 0.00 52 224 21.1 224 23.9
fe-sphere 2 0.00 7 14173 4.5 14173 53.0
|V |=16386 3 0.00 12 34328 4.9 34328 111.1
|E|=49152 4 0.00 19 73632 6.3 73632 148.7
memplus 2 0.02 574 574 5.8 574 5.7
|V |=17758 3 0.26 8057 8061 49.4 8058 48.2
|E|=54196 4 0.74 8963 8963 95.5 8963 92.4
uk 2 0.00 5 433 0.3 433 0.7
|V |=4824 3 0.00 8 1891 0.4 1891 0.9
|E|=6837 4 0.01 14 2168 0.4 2168 1.0
vibrobox 2 0.02 121 302 2.9 302 3.5
|V |=12328 3 0.08 408 1984 8.9 1984 10.0
|E|=165250 4 0.26 ≥1094 7.9×106 > 1 h 7.4×106 > 1 h
whitaker3 2 0.00 9 1222 1.3 1222 4.8
|V |=9800 3 0.00 15 3724 1.4 3724 7.4
|E|=28989 4 0.01 23 6530 1.5 6530 9.5
wing-nodal 2 0.01 29 648 2.1 648 3.5
|V |=10937 3 0.02 54 13091 4.2 13039 15.2
|E|=75488 4 0.04 114 6.0×107 1981.3 6.0×107 1908.9

Table 3: Results for smaller DIMACS partitioning graphs.

slowdown is sometimes over a factor of ten. Thus laziness
can be costly when the rule is used, but useless.

Five of these graphs were considered for the k-club prob-
lem by Wotzlaw (2014). In every case, the k-clique and k-
club numbers are the same. However, the k-clique number
was again consistently much easier to find.

Clustering graphs Table 4 presents results from the
smallest 20 clustering graphs from the 10th DIMACS Imple-
mentation Challenge4. Again, from a maximum clique per-
spective these would be considered unusually large graphs.
However, only five were unsolvable within an hour (plus a
further two when the domination rule was not used), and
over half of the problems took under two seconds.

Seven of these graphs were considered for the k-club
problem by Wotzlaw (2014). In these cases, the 2-clique and
2-club numbers are the same, except for “football” where
the 2-club number is 16 but the 2-clique number is 17; for
k = 3 and k = 4 there are some differences. There is a large
difference in computational difficulty between the k-clique
and k-club problems: for “polblogs” with k = 3 and k = 4,
Wotzlaw was unable to prove optimality within an hour, but
we required less than two seconds to do so. In both of these
cases the k-clique and k-club numbers are the same.

Parallel Search
Parallel search is an active research area for maximum clique
algorithms (McCreesh and Prosser 2013; Depolli et al. 2013;
McCreesh and Prosser 2015; Segundo, Lopez, and Pardalos
2016). The idea is to work with a shared incumbent, and to
speculatively explore portions of the search tree in parallel
using multiple threads, in the hopes that most of the specu-
lative work will contribute to the optimality proof.

We selected the four graphs which we were unable to
solve (for some values of k), along with two of the challeng-
ing graphs which required substantial amounts of search (at
least half a million nodes) to solve, and repeated the exper-
iments using parallel search with 20 threads and the dom-
ination rule (with the laziness made thread-safe) enabled,
using the resplitting strategy described by McCreesh and
Prosser (2015). The results are shown in Table 5. Paral-
lel search allowed us to close two more instances, and gave
improved bounds on the four remaining instances within 12
hours. However, to get sufficient work balance, we had to
allow for work splitting to depth 10 rather than depth 3.
A close inspection of the search patterns showed that sim-
pler static decomposition approaches (Depolli et al. 2013;
Segundo, Lopez, and Pardalos 2016) would give little to no
speedup on many harder k-clique instances, unless it were
somehow possible to generate O(|V |10) subproblems.

For the easier instances where the sequential runtime is
known, the parallel search did more work—this is to be ex-
pected, since the work distribution approach we used recom-
puted parts of the search space (to allow for more efficient
mutable data structures to be used during search), and spec-
ulative parallelism is unlikely to contribute to the solution
when the sequential search tree is small. However, despite

4http://www.cc.gatech.edu/dimacs10/archive/clustering.shtml

Unmodified With Domination

Instance k D ω̃k Nodes Time Nodes Time

adjnoun 2 0.50 50 50 0.0 50 0.0
|V |=112 3 0.91 83 164 0.0 164 0.0
|E|=425 4 0.99 107 107 0.0 107 0.0
as-22july06 2 0.04 2391 2391 11.7 2391 11.3
|V |=22963 3 0.36 8455 374427 > 1 h 94497 898.2
|E|=48436 4 0.79 14911 14911 252.0 14911 250.4
astro-ph 2 0.01 361 365 5.0 362 5.0
|V |=16706 3 0.10 1553 1567 15.3 1560 12.5
|E|=121251 4 0.35 ≥4040 1.0×106 > 1 h 1.1×106 > 1 h
celegans-meta 2 0.44 238 238 0.0 238 0.0
|V |=453 3 0.89 371 371 0.0 371 0.0
|E|=2025 4 0.98 432 432 0.0 432 0.0
celegansneural 2 0.55 135 135 0.0 135 0.0
|V |=297 3 0.95 245 245 0.0 245 0.0
|E|=2148 4 1.00 295 295 0.0 295 0.0
cond-mat 2 0.00 108 108 4.5 108 4.5
|V |=16726 3 0.01 250 1403 5.1 844 5.6
|E|=47594 4 0.05 720 7.3×106 > 1 h 674453 280.6
cond-mat-2003 2 0.00 203 204 15.7 204 16.0
|V |=31163 3 0.02 ≥629 6.3×106 > 1 h 6.1×106 > 1 h
|E|=120029 4 0.12 ≥2605 1.9×106 > 1 h 1.8×106 > 1 h
cond-mat-2005 2 0.00 279 279 26.8 279 26.4
|V |=40421 3 0.03 ≥1060 2.0×106 > 1 h 1.9×106 > 1 h
|E|=175691 4 0.16 ≥4185 562816 > 1 h 585596 > 1 h
dolphins 2 0.32 14 14 0.0 14 0.0
|V |=62 3 0.59 30 30 0.0 30 0.0
|E|=159 4 0.77 40 40 0.0 40 0.0
email 2 0.09 72 72 0.0 72 0.1
|V |=1133 3 0.45 233 19031 0.3 19031 0.4
|E|=5451 4 0.86 654 6854 0.3 6676 0.4
football 2 0.45 17 147 0.0 145 0.0
|V |=115 3 0.95 69 70 0.0 70 0.0
|E|=613 4 1.00 115 115 0.0 115 0.0
hep-th 2 0.00 51 51 1.0 51 1.0
|V |=8361 3 0.01 125 239 1.2 176 1.3
|E|=15751 4 0.04 347 158164 21.6 23714 4.7
jazz 2 0.69 103 107 0.0 107 0.0
|V |=198 3 0.95 174 174 0.0 174 0.0
|E|=2742 4 0.99 192 192 0.0 192 0.0
karate 2 0.61 18 18 0.0 18 0.0
|V |=34 3 0.86 25 25 0.0 25 0.0
|E|=78 4 0.99 33 33 0.0 33 0.0
lesmis 2 0.43 37 37 0.0 37 0.0
|V |=77 3 0.85 58 58 0.0 58 0.0
|E|=254 4 0.99 75 75 0.0 75 0.0
netscience 2 0.01 35 35 0.0 35 0.0
|V |=1589 3 0.01 54 54 0.0 54 0.0
|E|=2742 4 0.02 85 85 0.0 85 0.0
PGPgiantcompo 2 0.00 206 206 1.7 206 1.7
|V |=10680 3 0.02 423 843 2.6 841 2.7
|E|=24316 4 0.07 1161 1161 5.9 1161 6.0
polblogs 2 0.27 352 352 0.1 352 0.1
|V |=1490 3 0.58 776 2210 1.2 2177 1.2
|E|=16715 4 0.66 1127 1537 2.0 1166 1.9
polbooks 2 0.37 28 28 0.0 28 0.0
|V |=105 3 0.64 54 54 0.0 54 0.0
|E|=441 4 0.86 68 68 0.0 68 0.0
power 2 0.00 20 20 0.4 20 0.4
|V |=4941 3 0.00 30 30 0.4 30 0.4
|E|=6594 4 0.01 61 61 0.4 61 0.4

Table 4: Results for smaller DIMACS clustering graphs.

Sequential Parallel

Instance k D ω̃k Nodes Time Nodes Time

astro-ph 2 0.01 361 362 5.0 17227 4.9
|V |=16706 3 0.10 1553 1560 12.5 32614 9.5
|E|=121251 4 0.35 ≥4125 1.1×106 > 1 h 3.1×108 > 12 h
cond-mat 2 0.00 108 108 4.5 16833 4.5
|V |=16726 3 0.01 250 844 5.6 17933 5.4
|E|=47594 4 0.05 720 674453 280.6 22604 8.7
cond-mat-2003 2 0.00 203 204 16.0 31424 14.8
|V |=31163 3 0.02 634 6.1×106 > 1 h 3.4×108 8131.3
|E|=120029 4 0.12 ≥2606 1.8×106 > 1 h 5.1×108 > 12 h
cond-mat-2005 2 0.00 279 279 26.4 40701 24.2
|V |=40421 3 0.03 1060 1.9×106 > 1 h 1.0×109 69836.7
|E|=175691 4 0.16 ≥4271 585596 > 1 h 1.2×108 > 12 h
vibrobox 2 0.02 121 302 3.5 12699 3.4
|V |=12328 3 0.08 408 1984 10.0 17246 6.5
|E|=165250 4 0.26 ≥1107 7.4×106 > 1 h 1.8×109 > 12 h
wing-nodal 2 0.01 29 648 3.5 11580 2.9
|V |=10937 3 0.02 54 13039 15.2 23709 17.9
|E|=75488 4 0.04 114 6.0×107 1908.9 113619 18.4

Table 5: Experimental results for multi-threaded search on
harder instances, using 20 threads. For each graph, we con-
sider k equal to 2, 3 and 4. In each case we show the density
of Gk, the size of a maximum k-clique, and then for both the
sequential algorithm and the parallel algorithm (with lazy
global domination in both cases), the number of nodes re-
quired, and the runtime in seconds.

the extra work, and despite having to introduce overhead
into early stages of the algorithm to allow for work steal-
ing, and despite having more processing power but not more
memory bandwidth, in no cases were the parallel runtimes
substantially longer than the sequential runtimes (although
in many cases they were not substantially better either). We
also did not parallelise the construction of Gk or the prepro-
cessing stage of the algorithm, which in many cases domi-
nated the runtime.

As well as improving the results on the instances we could
not solve sequentially, parallel search sometimes gave large
improvements for the easier instances. For “wing-nodal”
with k = 4, the parallel run did much less work than the
sequential run: a speedup of over 100 was obtained from
20 cores. A similar effect occurred with “cond-mat” and
k = 4. This is because the work splitting mechanism we
used explicitly diversifies at the top of search first, where
branching heuristics are least likely to be correct, which
leads to an initial incumbent being found faster—this is
in line with recent observations that tailored work stealing
should be favoured over randomised work stealing for com-
binatorial search problems (Chu, Schulte, and Stuckey 2009;
McCreesh and Prosser 2015).

Random Graphs
An Erdős-Rényi random graph G(n, p) has n vertices, and
an edge between each distinct pair of vertices with probabil-
ity p, chosen independently. We now investigate the size of
a maximum k-clique in such graphs, and the complexity of

0

50

100

150

200

0 0.05 0.1 0.15 0.2 0.25 0.3

Si
ze

of
M

ax
im

um
k

-c
liq

ue

Edge Probability

ω

ω̃2

ω̃3

ω̃4

Figure 3: Values of ω̃k for random graphs G(200, p), with
varying edge probabilities. We see that even for very low
edge probabilities, a maximum k-clique quickly covers the
entire graph when k > 1.

100

101

102

103

104

105

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

Se
ar

ch
N

od
es

Edge Probability

k = 1

k = 2

k = 3

k = 4

Figure 4: Search space size for random graphs G(200, p)k,
with varying edge probabilities. We see that 4-clique is eas-
ier than 3-clique in practice, which in turn is easier than 2-
clique. (The complexity peak for maximum clique occurs at
around edge probability 0.9, and requires approximately 15
million search nodes.)

finding it. In each case, we use an average over 100 sam-
ples for every point. We do not use the domination rule for
these experiments: the probability of random graphs having
dominating vertices is very low.

In Figure 3 we illustrate the average value of ω̃k in
G(200, p) for different values of k, and a range of values
of p for the x-axis. We see that even for very low edge
probabilities, a maximum k-clique quickly covers the entire
graph. (This is in contrast to the maximum clique problem,
where a maximum clique does not even cover a quarter of
the graph for edge probabilities below 0.75.) In Figure 4 we
show the average size of the search space (number of nodes,
or recursive calls made) for the same problem. We see that

0

50

100

150

200

0 0.05 0.1 0.15 0.2 0.25 0.3

Si
ze

of
M

ax
im

um
2-

cl
iq

ue

Edge Probability

G(50, x)2

G(100, x)2

G(150, x)2

G(200, x)2

Figure 5: The size of a maximum 2-clique in random graphs
G(n, p) with varying edge probabilities, and different values
of n. For G(50, p), a 2-clique has size average 50 from p =
0.42 onwards.

100

101

102

103

104

105

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

Se
ar

ch
N

od
es

Edge Probability

G(50, x)2

G(100, x)2

G(150, x)2

G(200, x)2

Figure 6: The search space size for the maximum 2-clique
problem in random graphs G(n, p) with varying edge prob-
abilities, and for different values of n. As n increases, the
complexity peak grows and moves slowly to the left.

there is a complexity peak for each k, although the peak is
much smaller for k = 4 than it is for k = 3, which is in turn
much smaller than it is for k = 2. The peak also occurs for
lower edge probabilities as k increases. For contrast, for the
maximum clique problem, the peak occurs at around edge
probability 0.9, and is two orders of magnitude larger.

In Figures 5 and 6 we show the effect of changing n and
fixing k = 2. As n increases from 50 to 200, the complexity
peak becomes much more pronounced, and shifts slightly
towards the left (lower edge probabilities).

Conclusion
We have shown that using a maximum clique algorithm to
solve the maximum k-clique algorithm for a graph G by
considering Gk in place of G is feasible in practice. This

is despite Gk potentially being dense even if G is sparse—
this ruled out the use of maximum clique algorithms which
are designed for sparse graphs (Pattabiraman et al. 2013;
Segundo, Lopez, and Pardalos 2016), and we were work-
ing with graphs with many more vertices than is typical for
dense maximum clique algorithms.

We introduced a new lazy global domination rule. This
was sometimes extremely beneficial, leading to exponential
reductions in the search space—without this rule, we would
have been unable to solve nine of the problem instances we
considered, and many others would have taken much longer.
However, even with laziness there is still sometimes a cost
to pay when this rule does nothing. This rule is thus harmful
(although only by a polynomial factor) for the graphs typi-
cally considered for the maximum clique problem, and we
see the benefit of tailoring algorithms to the problem being
solved. We suggest that a similar rule may also be useful for
the maximum k-club problem.

We were able to use parallelism to close two further in-
stances, although this required a much finer level of task
granularity than usual. We suspect further progress could
be made by tailoring the initial vertex ordering based upon
what we know about the graphs, or by increasing the number
of recursive calls per second by making the colouring stage
cheaper, for example by reusing colour classes (Nikolaev,
Batsyn, and Segundo 2015).

Quite often, we saw k-clique numbers and k-club num-
bers being the same. However, solving the maximum k-
clique problem is much easier, both in terms of the algorithm
and computationally. Thus it is worth checking whether the
simpler model would be sufficient for practical applications
before trying to solve the k-club problem.

In random graphs, we saw that G(n, p)k is easier than
G(n, p′) with some higher probability p′. We also saw that
as k increases, the problem gets easier—this was not typi-
cally the case for some of the real world graphs.

Our results suggest that k is a very coarse grained param-
eter. We saw that often a 2-clique or 3-clique would cover
the entire graph. In these circumstances the increased re-
strictions for k-club are of no benefit. It is not obvious
if somehow allowing a “fractional” value of k could give
more fine-grained control. Thus it may be worth considering
other clique relaxations not based upon distance (although
other models also have problems: a density-based relaxation
known as quasi-clique, for example, can allow vertices with
only a single edge to be added to a “clique” (Abello, Re-
sende, and Sudarsky 2002)).

References
Abello, J.; Resende, M. G.; and Sudarsky, S. 2002. Massive
quasi-clique detection. In Rajsbaum, S., ed., LATIN 2002:
Theoretical Informatics, volume 2286 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg. 598–612.
Balasundaram, B.; Butenko, S.; and Trukhanov, S. 2005.
Novel approaches for analyzing biological networks. Jour-
nal of Combinatorial Optimization 10(1):23–39.
Bomze, I. M.; Budinich, M.; Pardalos, P. M.; and Pelillo, M.

1999. The maximum clique problem. Handbook of Combi-
natorial Optimization (Supplement Volume A) 4:1–74.
Bourjolly, J.-M.; Laporte, G.; and Pesant, G. 2000. Heuris-
tics for finding k-clubs in an undirected graph. Computers
& Operations Research 27(6):559 – 569.
Bourjolly, J.-M.; Laporte, G.; and Pesant, G. 2002. An ex-
act algorithm for the maximum k-club problem in an undi-
rected graph. European Journal of Operational Research
138(1):21 – 28.
Butenko, S., and Wilhelm, W. E. 2006. Clique-detection
models in computational biochemistry and genomics. Euro-
pean Journal of Operational Research 173(1):1–17.
Carvalho, F. D., and Almeida, M. T. 2016. The triangle k-
club problem. Journal of Combinatorial Optimization 1–33.
Chang, M.-S.; Hung, L.-J.; Lin, C.-R.; and Su, P.-C. 2013.
Finding large k-clubs in undirected graphs. Computing
95(9):739–758.
Chu, G.; Schulte, C.; and Stuckey, P. J. 2009. Confidence-
based work stealing in parallel constraint programming. In
Gent, I. P., ed., Principles and Practice of Constraint Pro-
gramming - CP 2009, 15th International Conference, CP
2009, Lisbon, Portugal, September 20-24, 2009, Proceed-
ings, volume 5732 of Lecture Notes in Computer Science,
226–241. Springer.
Depolli, M.; Konc, J.; Rozman, K.; Trobec, R.; and Janezic,
D. 2013. Exact parallel maximum clique algorithm for gen-
eral and protein graphs. Journal of Chemical Information
and Modeling 53(9):2217–2228.
Dhaenens, C.; Jourdan, L.; and Marmion, M., eds. 2015.
Learning and Intelligent Optimization - 9th International
Conference, LION 9, Lille, France, January 12-15, 2015.
Revised Selected Papers, volume 8994 of Lecture Notes in
Computer Science. Springer.
Garey, M. R., and Johnson, D. S. 1990. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Hartung, S.; Komusiewicz, C.; and Nichterlein, A. 2012.
Parameterized algorithmics and computational experiments
for finding 2-clubs. In Thilikos, D., and Woeginger, G.,
eds., Parameterized and Exact Computation, volume 7535
of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg. 231–241.
Li, C.; Jiang, H.; and Xu, R. 2015. Incremental maxsat rea-
soning to reduce branches in a branch-and-bound algorithm
for maxclique. In Dhaenens et al. (2015), 268–274.
Luce, R. 1950. Connectivity and generalized cliques in
sociometric group structure. Psychometrika 15(2):169–190.
Mahdavi Pajouh, F., and Balasundaram, B. 2012. On in-
clusionwise maximal and maximum cardinality k-clubs in
graphs. Discrete Optimization 9(2):84 – 97.
McCreesh, C., and Prosser, P. 2013. Multi-threading a state-
of-the-art maximum clique algorithm. Algorithms 6(4):618–
635.
McCreesh, C., and Prosser, P. 2015. The shape of the search
tree for the maximum clique problem and the implications
for parallel branch and bound. TOPC 2(1):8.

Mokken, R. 1979. Cliques, clubs and clans. Quality and
Quantity 13(2):161–173.
Nikolaev, A.; Batsyn, M.; and Segundo, P. S. 2015. Reusing
the same coloring in the child nodes of the search tree for
the maximum clique problem. In Dhaenens et al. (2015),
275–280.
Pattabiraman, B.; Patwary, M. M. A.; Gebremedhin, A. H.;
Liao, W.; and Choudhary, A. N. 2013. Fast algorithms for
the maximum clique problem on massive sparse graphs. In
Bonato, A.; Mitzenmacher, M.; and Pralat, P., eds., Algo-
rithms and Models for the Web Graph - 10th International
Workshop, WAW 2013, Cambridge, MA, USA, December 14-
15, 2013, Proceedings, volume 8305 of Lecture Notes in
Computer Science, 156–169. Springer.
Picker, M. 2015. Algorithms and experiments for finding ro-
bust 2-clubs. Master’s thesis, Technische Universität Berlin.
Prosser, P. 2012. Exact algorithms for maximum clique: a
computational study. Algorithms 5(4):545–587.
San Segundo, P.; Matia, F.; Rodriguez-Losada, D.; and Her-
nando, M. 2013. An improved bit parallel exact maximum
clique algorithm. Optimization Letters 7(3):467–479.
San Segundo, P.; Rodrı́guez-Losada, D.; and Jiménez, A.
2011. An exact bit-parallel algorithm for the maximum
clique problem. Comput. Oper. Res. 38(2):571–581.
Segundo, P. S.; Lopez, A.; and Batsyn, M. 2014. Ini-
tial sorting of vertices in the maximum clique problem re-
viewed. In Pardalos, P. M.; Resende, M. G. C.; Vogiatzis, C.;
and Walteros, J. L., eds., Learning and Intelligent Optimiza-
tion - 8th International Conference, Lion 8, Gainesville, FL,
USA, February 16-21, 2014. Revised Selected Papers, vol-
ume 8426 of Lecture Notes in Computer Science, 111–120.
Springer.
Segundo, P. S.; Lopez, A.; and Pardalos, P. M. 2016. A
new exact maximum clique algorithm for large and massive
sparse graphs. Computers & OR 66:81–94.
Segundo, P. S.; Nikolaev, A.; and Batsyn, M. 2015. Infra-
chromatic bound for exact maximum clique search. Com-
puters & OR 64:293–303.
Shahinpour, S., and Butenko, S. 2013. Distance-based
clique relaxations in networks: s-clique and s-club. In Gold-
engorin, B. I.; Kalyagin, V. A.; and Pardalos, P. M., eds.,
Models, Algorithms, and Technologies for Network Analy-
sis, volume 59 of Springer Proceedings in Mathematics &
Statistics. Springer New York. 149–174.
Tomita, E., and Kameda, T. 2007. An efficient branch-
and-bound algorithm for finding a maximum clique with
computational experiments. Journal of Global Optimization
37(1):95–111.
Tomita, E.; Sutani, Y.; Higashi, T.; Takahashi, S.; and
Wakatsuki, M. 2010. A simple and faster branch-and-bound
algorithm for finding a maximum clique. In Rahman, M.,
and Fujita, S., eds., WALCOM: Algorithms and Computa-
tion, volume 5942 of Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg. 191–203.
Wotzlaw, A. 2014. On Solving the Maximum k-club Prob-
lem. ArXiv e-prints.

