14,983 research outputs found

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency

    A multi-viewpoint feature-based re-identification system driven by skeleton keypoints

    Get PDF
    Thanks to the increasing popularity of 3D sensors, robotic vision has experienced huge improvements in a wide range of applications and systems in the last years. Besides the many benefits, this migration caused some incompatibilities with those systems that cannot be based on range sensors, like intelligent video surveillance systems, since the two kinds of sensor data lead to different representations of people and objects. This work goes in the direction of bridging the gap, and presents a novel re-identification system that takes advantage of multiple video flows in order to enhance the performance of a skeletal tracking algorithm, which is in turn exploited for driving the re-identification. A new, geometry-based method for joining together the detections provided by the skeletal tracker from multiple video flows is introduced, which is capable of dealing with many people in the scene, coping with the errors introduced in each view by the skeletal tracker. Such method has a high degree of generality, and can be applied to any kind of body pose estimation algorithm. The system was tested on a public dataset for video surveillance applications, demonstrating the improvements achieved by the multi-viewpoint approach in the accuracy of both body pose estimation and re-identification. The proposed approach was also compared with a skeletal tracking system working on 3D data: the comparison assessed the good performance level of the multi-viewpoint approach. This means that the lack of the rich information provided by 3D sensors can be compensated by the availability of more than one viewpoint

    A single-chip FPGA implementation of real-time adaptive background model

    Get PDF
    This paper demonstrates the use of a single-chip FPGA for the extraction of highly accurate background models in real-time. The models are based on 24-bit RGB values and 8-bit grayscale intensity values. Three background models are presented, all using a camcorder, single FPGA chip, four blocks of RAM and a display unit. The architectures have been implemented and tested using a Panasonic NVDS60B digital video camera connected to a Celoxica RC300 Prototyping Platform with a Xilinx Virtex II XC2v6000 FPGA and 4 banks of onboard RAM. The novel FPGA architecture presented has the advantages of minimizing latency and the movement of large datasets, by conducting time critical processes on BlockRAM. The systems operate at clock rates ranging from 57MHz to 65MHz and are capable of performing pre-processing functions like temporal low-pass filtering on standard frame size of 640X480 pixels at up to 210 frames per second
    corecore