538 research outputs found

    Proof Normalisation in a Logic Identifying Isomorphic Propositions

    Get PDF
    We define a fragment of propositional logic where isomorphic propositions, such as ABA\land B and BAB\land A, or A(BC)A\Rightarrow (B\land C) and (AB)(AC)(A\Rightarrow B)\land(A\Rightarrow C) are identified. We define System I, a proof language for this logic, and prove its normalisation and consistency

    Infinitary Combinatory Reduction Systems: Confluence

    Get PDF
    We study confluence in the setting of higher-order infinitary rewriting, in particular for infinitary Combinatory Reduction Systems (iCRSs). We prove that fully-extended, orthogonal iCRSs are confluent modulo identification of hypercollapsing subterms. As a corollary, we obtain that fully-extended, orthogonal iCRSs have the normal form property and the unique normal form property (with respect to reduction). We also show that, unlike the case in first-order infinitary rewriting, almost non-collapsing iCRSs are not necessarily confluent

    Modularity of Convergence and Strong Convergence in Infinitary Rewriting

    Full text link
    Properties of Term Rewriting Systems are called modular iff they are preserved under (and reflected by) disjoint union, i.e. when combining two Term Rewriting Systems with disjoint signatures. Convergence is the property of Infinitary Term Rewriting Systems that all reduction sequences converge to a limit. Strong Convergence requires in addition that redex positions in a reduction sequence move arbitrarily deep. In this paper it is shown that both Convergence and Strong Convergence are modular properties of non-collapsing Infinitary Term Rewriting Systems, provided (for convergence) that the term metrics are granular. This generalises known modularity results beyond metric \infty

    Proof Normalisation in a Logic Identifying Isomorphic Propositions

    Get PDF
    We define a fragment of propositional logic where isomorphic propositions, such as A wedge B and B wedge A, or A ==> (B wedge C) and (A ==> B) wedge (A ==> C) are identified. We define System I, a proof language for this logic, and prove its normalisation and consistency
    corecore