653 research outputs found

    Massively parallel Poisson and QR factorization solvers

    Get PDF
    AbstractThe paper brings a massively parallel Poisson solver for rectangle domain and parallel algorithms for computation of QR factorization of a dense matrix A by means of Householder reflections and Givens rotations. The computer model under consideration is a SIMD mesh-connected toroidal n Ă— n processor array.The Dirichlet problem is replaced by its finite-difference analog on an M Ă— N (M + 1, N are powers of two) grid. The algorithm is composed of parallel fast sine transform and cyclic odd-even reduction blocks and runs in a fully parallel fashion. Its computational complexity is O(M N log Ln2), where L = max(M + 1, N). A parallel proposal of QR factorization by the Householder method zeros all subdiagonal elements in each column and updates all elements of the given submatrix in parallel. For the second method with Givens rotations, the parallel scheme of the Sameh and Kuck was chosen where the disjoint rotations can be computed simultaneously.The algorithms were coded in MPF and MPL parallel programming languages and results of computational experiments on the MasPar MP-1 system are also presented

    Minimizing Communication in Linear Algebra

    Full text link
    In 1981 Hong and Kung proved a lower bound on the amount of communication needed to perform dense, matrix-multiplication using the conventional O(n3)O(n^3) algorithm, where the input matrices were too large to fit in the small, fast memory. In 2004 Irony, Toledo and Tiskin gave a new proof of this result and extended it to the parallel case. In both cases the lower bound may be expressed as Ω\Omega(#arithmetic operations / M\sqrt{M}), where M is the size of the fast memory (or local memory in the parallel case). Here we generalize these results to a much wider variety of algorithms, including LU factorization, Cholesky factorization, LDLTLDL^T factorization, QR factorization, algorithms for eigenvalues and singular values, i.e., essentially all direct methods of linear algebra. The proof works for dense or sparse matrices, and for sequential or parallel algorithms. In addition to lower bounds on the amount of data moved (bandwidth) we get lower bounds on the number of messages required to move it (latency). We illustrate how to extend our lower bound technique to compositions of linear algebra operations (like computing powers of a matrix), to decide whether it is enough to call a sequence of simpler optimal algorithms (like matrix multiplication) to minimize communication, or if we can do better. We give examples of both. We also show how to extend our lower bounds to certain graph theoretic problems. We point out recently designed algorithms for dense LU, Cholesky, QR, eigenvalue and the SVD problems that attain these lower bounds; implementations of LU and QR show large speedups over conventional linear algebra algorithms in standard libraries like LAPACK and ScaLAPACK. Many open problems remain.Comment: 27 pages, 2 table

    Minimizing Communication for Eigenproblems and the Singular Value Decomposition

    Full text link
    Algorithms have two costs: arithmetic and communication. The latter represents the cost of moving data, either between levels of a memory hierarchy, or between processors over a network. Communication often dominates arithmetic and represents a rapidly increasing proportion of the total cost, so we seek algorithms that minimize communication. In \cite{BDHS10} lower bounds were presented on the amount of communication required for essentially all O(n3)O(n^3)-like algorithms for linear algebra, including eigenvalue problems and the SVD. Conventional algorithms, including those currently implemented in (Sca)LAPACK, perform asymptotically more communication than these lower bounds require. In this paper we present parallel and sequential eigenvalue algorithms (for pencils, nonsymmetric matrices, and symmetric matrices) and SVD algorithms that do attain these lower bounds, and analyze their convergence and communication costs.Comment: 43 pages, 11 figure

    QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment

    Get PDF
    Previous studies have reported that common dense linear algebra operations do not achieve speed up by using multiple geographical sites of a computational grid. Because such operations are the building blocks of most scientific applications, conventional supercomputers are still strongly predominant in high-performance computing and the use of grids for speeding up large-scale scientific problems is limited to applications exhibiting parallelism at a higher level. We have identified two performance bottlenecks in the distributed memory algorithms implemented in ScaLAPACK, a state-of-the-art dense linear algebra library. First, because ScaLAPACK assumes a homogeneous communication network, the implementations of ScaLAPACK algorithms lack locality in their communication pattern. Second, the number of messages sent in the ScaLAPACK algorithms is significantly greater than other algorithms that trade flops for communication. In this paper, we present a new approach for computing a QR factorization -- one of the main dense linear algebra kernels -- of tall and skinny matrices in a grid computing environment that overcomes these two bottlenecks. Our contribution is to articulate a recently proposed algorithm (Communication Avoiding QR) with a topology-aware middleware (QCG-OMPI) in order to confine intensive communications (ScaLAPACK calls) within the different geographical sites. An experimental study conducted on the Grid'5000 platform shows that the resulting performance increases linearly with the number of geographical sites on large-scale problems (and is in particular consistently higher than ScaLAPACK's).Comment: Accepted at IPDPS10. (IEEE International Parallel & Distributed Processing Symposium 2010 in Atlanta, GA, USA.

    Tiled QR factorization algorithms

    Get PDF
    This work revisits existing algorithms for the QR factorization of rectangular matrices composed of p-by-q tiles, where p >= q. Within this framework, we study the critical paths and performance of algorithms such as Sameh and Kuck, Modi and Clarke, Greedy, and those found within PLASMA. Although neither Modi and Clarke nor Greedy is optimal, both are shown to be asymptotically optimal for all matrices of size p = q^2 f(q), where f is any function such that \lim_{+\infty} f= 0. This novel and important complexity result applies to all matrices where p and q are proportional, p = \lambda q, with \lambda >= 1, thereby encompassing many important situations in practice (least squares). We provide an extensive set of experiments that show the superiority of the new algorithms for tall matrices
    • …
    corecore