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A b s t r a c t - - T h e  paper brings a massively parallel Poisson solver for rectangle domain and parallel 
algorithms for computation of QR factorization of a dense matrix A by means of Householder re- 
flections and Givens rotations. The computer model under consideration is a SIMD mesh-connected 
toroidal n x n processor array. 

The Dirichlet problem is replaced by its finite-difference analog on an M x N (M + 1, N are powers 
of two) grid. The algorithm is composed of parallel fast sine transform and cyclic odd-even reduction 
blocks and runs in a fully parallel fashion. Its computational complexity is O(MN log L/n2), where 
L = max(M + 1, N). A parallel proposal of QI~ factorization by the Householder method zeros all 
subdiagonal elements in each column and updates all elements of the given submatrix in parallel. For 
the second method with Givens rotations, the parallel scheme of the Sameh and Kuck was chosen 
where the disjoint rotations can be computed simultaneously. 

The algorithms were coded in MPF and MPL parallel programming languages and results of 
computational experiments on the MasPar MP-1 system are also presented. 

K e y w o r d s - - P a r a l l e l  linear algebra, Fast sine transform, Odd-even reduction, QR decomposition, 
Massively SIMD-type computer arrays. 

1. I N T R O D U C T I O N  

Accord ing  to  observa t ions  wi th  runn ing  basic  l inear  a lgebra  a lgor i thms  on mass ive ly  para l le l  

S I M D  a r rays  [1,2], on ly  an  a p p r o p r i a t e  t a i lo r ing  of the  a lgo r i t hm to  t he  mach ine  t o p o l o g y  and  

a careful  cod ing  in a machine-c lose  p r o g r a m m i n g  language  can lead  to  accep tab le  pe r fo rmance  

resul ts .  Otherwise ,  mos t l y  d r a m a t i c  losses in efficiency m a y  be a consequence.  T h e  p a p e r  presents  

mass ive ly  para l l e l  a lgor i thms  for two f requent ly  t r e a t e d  p rob lems  of para l le l  l inear  a lgebra .  

T h e  first  p rob l em concerns  solving the  d iscre t ized  Poisson equa t ion  wi th  Dir ichle t  b o u n d a r y  

condi t ions .  Para l le l  d i rec t  as well as i t e ra t ive  me thods  have been a l r eady  examined  for solving 

th i s  mode l  p rob l em on var ious  archi tec tures .  A m o n g  the  d i rec t  me thods ,  e.g., para l le l  schemes  for 
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the matrix decomposition, marching and cyclic semi-iterative methods, the method of conjugate 
gradients and the block Stiefel's method have been designed for a linearly connected MIMD 
processor array. Serious attention has been paid to implementation of multigrid methods for 
this boundary value problem on both SIMD and MIMD computer types. Rather comprehensive 
information about the parallel approaches for solving the finite-difference approximations to this 
problem gives the monograph [3]. Despite that there has been a lot of work done in development 
of algorithms for solving this problem, our motivation was to solve it by considering the massively 
parallel concept. 

The QR factorization is one of the most important matrix decompositions in numerical linear 
algebra. It is used when solving least squares problems, SVD decomposition, etc. It factorizes a 
general matrix into an orthogonal matrix and an upper-triangular matrix. There are two standard 
ways to compute QR decomposition, the Givens and Householder methods. Both methods work 
by applying a sequence of orthogonal transformations, either elementary rotations in the Givens 
method or elementary reflections in the Householder method. 

One of the most commonly spread parallel machines with massive parallelism is the MP-1 
of the MasPar company [4]. Its massively parallel SIMD array has been used for design and 
implementation of our algorithms. The paper is organized in five sections. Section 2 brings 
description of the algorithmical and implementation background. The parallel implementation 
is described in Section 3. The computational results are presented in Section 4. The concluding 
Section 5 summarizes the results and presents some outlooks. 

2. T H E O R E T I C A L  A N D  T E C H N I C A L  P R E L I M I N A R I E S  

2.1. Poisson Equat ion  

The model problem under discussion concerns the Poisson equation 

Au(x, y) = f (x ,  y) (1) 

on a rectangular region R = (0, a) x (0, b) with known values u(x, y) = g(x, y) on the boundary 
of R. 

The discretization of the above equation according to the familiar five-point stencil on an 
M x N grid leads to the block-tridiagonal linear algebraic system 

= ( 2 )  

of the size M N  x M N ,  where not more than five nonzero entries are placed in a row or column 
of G. (Throughout the paper, we assume that the parameters M and N are of the form M = 2 q-1 
and N = 2 p (for some positive integers p, q >_ 2). Further, L will denote max(M + 1, N) and 
logL will be used for log2L. ) The complexity for serial solution of the above linear system 
ranges from O(M2N) through O(MNlogL)  to asymptotically optimal value O(MN).  The 
former estimation is relevant for elimination-based methods, the value O ( M N  log L) is valid for 
Fourier-based approaches, and the latter one corresponds to the multigrid approach. 

For our solver, the Fourier-based method has been chosen which relates to the orthogonal 
decomposition of the matrix G [2]. 

The computation of the solution vector fi follows in four phases: 

(P0) creation of the right-hand side vector ~ of the size MN; 
(P1) transformation of V by a block matrix whose blocks correspond to one-dimensional sine 

transform of the length M each; 
(P2) solution of M positively definite tridiagonal Toeplitz systems with right-hand sides of the 

length N which result from the phase (P1); 
(P3) final sine transformations of M vectors which are composed from the solutions of (P2). 
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The phase (P1) computes the vectors 

~j = S0j, j = 1 , 2 , . . . , g  (3) 

M~+I" ( fi_L~_'~ jth where the M × M matrix S is defined by Sij = sm \M+a) and 0j is the M-block of 

the vector 9 from (2). These computations follow via the discrete sine transform which is defined 
for general M-vectors Z, ~ (we remind M = 2q - 1) by 

Yi = Z x j s i n  \ M  + 1 ] '  i = 1 , 2 , . . . , M .  (4) 
j= l  

We will adapt  the efficient approach from [2] consisting of a precalculation, F F T  evaluation and 
a post-cMculation stage. 

The work in phase (P2) consists of solving the systems 

T ~ i  =Yi, i =  1 , 2 , . . . , M  (5) 

where T~, = (_p2, Ai, _p2) are tridiagonai Toeplitz matrices of the order N,  

A i = 2  1 +  - 2 c o s  (6) 

with p = (b/(M + 1) ) / (a / (N + 1)) and the N-vector Yi contains the i th  components of the 
transformed vectors from the phase (P1). These systems are solved by a proper adaptation of 
the cyclic odd-even method for this case, where not just one but M systems from (5) can be 
solved concurrently. 

2.2. Q R  F a c t o r i z a t i o n  

QR factorization decomposes a general matrix A of size M x N into an orthogonal matrix Q 
of the size M x M and an upper-triangular matrix R of the size M x N by 

QT A = R. (7) 

Both Householder and Givens methods work by applying a sequence of orthogonal transforma- 
tions to A, zeroing out elements in an order given by a rule 

= (8 )  A(k) 

In Householder's method, one whole subdiagonal column of elements at the same time is 
annihilated. This is done with Householder reflection P which is an orthogonal transformation 
P = I - 20~ T. For a given vector Z, it is possible to choose ~ such that  P~  is parallel to ~I (the 
first unit vector). Let 51 be the first column of A and define 

Vl = H.10.1, ~1T = ( a l l  --  s l , a 2 1 , . . .  , a N t ) ,  

where (9) 

Sl  = - ' [ ' - ( ~ l T ~ , l ) l / 2  , ].tl = (2821--2a1181)  - 1 / 2 .  

In the Givens method, one element at a time is set to zero by plane Givens rotation. A 
plane rotation matrix Pij is equal to the identity matrix except for Pig = Pjj = co = cos O, 
Pij = - - P j i  = 8ij = sin @ and ci2j + si 2 = 1. 

Each transformation affects only rows i and j ,  and O is chosen so that  the rotation annihilates 
one subdiagonal element of A [5]. 
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2.3. M a s P a r  F e a t u r e s  

MasPar MP-1 is a massively parallel SIMD computer system with a very large number of 
simple processors (at least 1024) all executing the same program at once. Its Data Parallel Unit 
(DPU) contains a two-dimensional matrix of Processor Elements (PE) that  does all the parallel 
processing and is controlled by Array Control Unit (ACU). Each PE in PE-array has its own 
memory and high performance registers. It receives an instruction from ACU and then executes 
it, but on different data. There are two possibilities of communications between PEs: on a 
straight line or by means of the global router. The former are called X-net communications and 
enable one to send (or receive) the data element any distance in one of the basic eight directions. 
They  are significantly faster than global router communications, but the latter are more general 
and have no built-in direction of the communications. This data parallel programming model 
simplifies the programming of local memory parallel architectures by associating a processor with 
every data  element in a computation (at least conceptually). 

MasPar Fortran language is an implementation of Fortran 90 for the MP-1, that  provides 
data  parallel control through its array extensions and intrinsic functions [6]. The MPL (MasPar 
Parallel Language) is an adaptation of C-language for this computer [7]. 

3.  T H E  P A R A L L E L  I M P L E M E N T A T I O N  

3.1.  P o i s s o n  S o l v e r  

For the execution of phases (P0)-(P3),  an n x n (n being a power of two, n _< M + 1, N) array 
MP-1 of MasPar will be considered. The assignment of grid points to processors will be in the 
virtual manner, i.e., one physical processor takes a responsibility for p = M N / n  2 grid points. 

The phase (P0) can be computed entirely in parallel by applying finite-difference approxima- 
tions to the grid points close to the boundary with a point-wise contribution of function f to 
each dement  of ~. 

The phases (P1) and (P3) are executable either via the classical matrix by matrix multiplication 
or by the s ine  variant of the parallel FFT  algorithm. Matrix multiplication methods already 
exist for MP-1 and a report is given in [1]. There exist two approaches for how to compute the 
s ine  transform via F F T  on a parallel processor array. The computation follows concurrently 
on columns, the number of which is equal to the horizontal dimension of the array. The first 
way is represented by a fill-in of the input vectors (length M + 1) with M + 1 zeroes to create 
enlarged vectors (length 2(M + 1)). Thus, an odd function is obtained with added elements equal 
to 0. These enlarged vectors are then transformed by means of FFT.  Another algorithmical 
opportunity [2] offers a fact, that  all input data are real. In this case, a suitable choice and 
reordering of the input and output  data enable to apply the complex F F T  of the length M + I  = 2q. 
For the calculation of one-dimensional FFT,  a modification of the algorithm from [8] has been 
used. The parallel implementation strategy of this phase follows straightforwardly from the 
description given in the previous section. 

To realize the phase (P2), a solver for concurrent computation of solutions of M tridiagonal 
Toeplitz systems has been designed. The solver reflects the algorithmic pattern of the cyclic 
odd-even reduction [3], and we have achieved a well-balanced parallel execution of the reduction 
and expansion algorithm's levels. Both phases proceed in parallel for all rows of the input matrix 
which is stored by blocks, the size of which equals to that  of the processor array. In every step, 
the blocks are shifted to the right and to the left across the array in the horizontal direction by 
means of the X-net sendings. Since the distance of interacting data is always a power of two value, 
this local communication mechanism was applied profitably. A disadvantage of the reduction and 
expansion phases is a not optimal work balancing because the active set of processors increases 
(decreases) by a factor of 2 in every step of the expansion (reduction). 
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Complexity of the algorithm depends linearly on the value p = M N / n  2 which characterizes 
the mapping of the grid onto the processor array. The cyclic odd-even reduction block, as 
well as the F F T  modification for the sine transform, need O(logL) parallel operational steps. 
The computation of both methods can be scaled perfectly into p portions, each of them being 
performed on the n × n array. Thus, the algorithm's complexity is O(p log L). If instead of F F T  
the matr ix multiplication routines would be applied, the complexity for the phases (P1) and (P3) 
would increase to O(pM). 

3.2. Q R  A l g o r i t h m  

A parallel proposal of QR factorization by Householder method zeros all subdiagonal elements 
in each column and updates all elements of the given submatrix in parallel. This method starts 
from the left, working with the whole matrix A, and continues to the right, working on smaller 
and smaller submatrices. When the data elements of the matrix A are stored into the PE array, 
then the following algorithm modifies A to upper-triangular matrix (and simultaneously the 
orthogonal matrix Q is generated which is the unit matrix initially): 

(1) for given column compute the Householder vector ~, respectively, fi by means of formu- 

las (9); 
(2) ~ is copied by the spread function along the first dimension (from the bot tom to the top 

or vice versa) to all processors where the submatrix is updated, and so the matrix V is 
generated; 

(3) A • V dot-products are performed in a single step (it is a dot-multiplication) and then 
accumulated and saved in a row vector ~T.  

(4) ~7- is copied by the spread function and dot-multiplied with the matrix V and then added 
to the matrix A; 

(5) vector ~ is copied (by the spread function) along the second dimension (from the left to 
the right or vice versa) and dot-multiplied with 2 • V; 

(6) after adding "one" to diagonal processor elements, the matrix P is generated; 
(7) the matrices Q and P are multiplied (MATMUL function) and the result is stored in the 

matrix Q. 

This is repeated for all columns of A, and then the matrix A is transformed into the matrix R. 
The arithmetical complexity of this algorithm is O(N ÷ N log N). 

Givens transformation is a plane rotation that  combines two rows of A in order to annihilate 
one element. In order to parallelize this reduction, the basic idea is to annihilate more than one 
element at the time. In this process, various rows are combined in such a way that  previously 
introduced zeros are not destroyed. In the case of Givens method, there was implemented an 
algorithm which utilizes parallel ordering proposed by Sameh and Kuck. According to this 
ordering, the independent rotations are computed in parallel so that  as many processors are 
activated as allowed for preserving all zero elements. A modification of elements of competent 
rows is performed also in parallel. The algorithm computes the values c, s for all independent 
rotations in prescribed order and stores them into vectors ~ and $. Vectors are shifted one position 
down and matrices C1 and $1 are created by means of the spread function that  copies vectors 
and $ along the first dimension. 

This algorithm takes 2 N - 3  steps for a square matrix and an M ÷ N - 2  steps for M × N matrix, 
each step being the time necessary to achieve a set of the independent Givens rotations [9]. 

4. N U M E R I C A L  E X P E R I M E N T S  

The algorithms were implemented on two-dimensional processor array MP-1 of MasPar of the 
size 32 × 32 [4]. The computations for the Poisson equation were performed in the MPF as well 
as MPL parallel programming languages (for both single and double precision arithmetics). On 
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the unit square domain, the discretization in both directions were chosen for N -- 32, 64, 128, 
256 (MPF codes) and for N = 32, 64, 128, 256, 512 (MPL codes). 

The algorithm is coded in MPF in four variants. The first one, F-POISMAT-F, contains 
both main program blocks, i.e., the transformation and the tridiagonai solver, programmed in 
MPF. The transformations are computed by a classical matrix multiplication procedure written 
in MPF language. The computer library contains a MATMUL routine for multiplication of real 
matrices. This was implemented on the place of forward and backward transformations in the 
code F-POISMAT-L. It is to note that F-POISMAT-L is not a pure Fortran code because the 
MATMUL is just callable from MPF, but it is not programmed in it. It is assumed that it is 
developed in a low-level machine-close language. A third Fortran-based Poisson solver version is 
F-POISSING-F. The first and third computational phases are calculated by our MPF subroutine 
based on the fast sine transform algorithm given in [2]. The fourth code F-POISSING-L is 
generated by inserting the sine transform routine coded in MPL into the F-POISMAT-L instead 
of the MATMUL in the transformation phases (P1) and (P3) of the algorithm. 

The timings (in msec) for these four versions are given for the single and the double precision 
arithmetics in Table 1 and Table 2, respectively. It is straightforward to observe that the slowest 
version is F-POISMAT-F. As seen from the Table 1, a faster performance has been achieved 
for the F-POISMAT-L against the F-POISSING-F code. The complexity for the FFT used in 
F-POISSING-F is asymptotically lower than that one for the MATMUL used in F-POISMAT-L. 
This is due to the fact that the code F-POISMAT-L contains transformation parts written in 
a lower level language than MPF in which the F-POISSING-F routine is written entirely. The 
complexity preference in favor of the FFT becomes apparent when comparing the F-POISMAT-L 
with F-POISSING-L, where in both codes the transformations are performed by means of routines 
written in MPL. The MPL-based codes of our algorithm are presented in three versions. In L- 
POISMAT-L, the transformation blocks are replaced by the MATMUL routine from the computer 
library (as it was the case in F-POISMAT-L) and the tridiagonai block was coded in MPL. 
(Thus, the difference between F-POISMAT-L and L-POISMAT-L lies in different programming 
realizations of the second computational phase of the algorithm.) 

Table 1. MPF code t i m i n g s ~ i n g l e  precision. 

N F-POISMAT-F F-POISSING-F F-POISMAT-L F-POISSING-L 

32 218 179 121 70 

64 2003 407 261 165 

128 15011 1277 833 508 

256 133578 4902 3598 1890 

Table 2. MPF code t imings--double  precision. 

N F-POISMAT-F F-POISSING-F F-POISMAT-L F-POISSING-L 

32 343 236 128 108 

64 3082 576 320 273 

128 23239 1905 1253 829 

256 183813 7376 5872 2983 

The fast sine transform algorithm from [2] programmed in MPL has been used in the code 
L-POISSING-L for both the transformation phases of the Poisson solver. When these transforms 
are computed by doubling the transform length with inserting additional zeroes into transformed 
vectors, the code L-POISSIND-L has been developed entirely in MPL. As it was the situation with 
MPF, the timings for these MPL-based codes are presented (in msec) for the single precision in 
Table 3 and for the double precision in Table 4. Since the time for the generation of the right-hand 
side vector of the system and for the tridiagonal solver block are the same in all three MPL codes, 
the difference among them results from different execution of both the transformation phases. 
Because of the higher complexity order for the matrix multiplication routine, the algorithm 
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L-POISMAT-L delivers worse results than the two remaining approaches which are based on the 
FFT method. From these two codes, L-POISSING-L is faster than L-POISSIND-L which needs 
to compute the transformed vectors of the double lengths. The parallel variants of Householder 
and  Givens  m e t h o d s  for the  Q R  decompos i t ion ,  as descr ibed  in t he  previous  sect ion,  were coded  

in M P F .  The  resul ts  (in msec) for different  m a t r i x  sizes are  given in Table  5. 

Table 3. MPL code timings---single )recision. 

N L-POISMAT-L L-POISSIND-L L-POISSING-L 

32 101 70 43 
64 198 130 94 

128 590 359 258 
256 2649 1238 902 

512 14406 3838 3371 

Table 4. MPL code timings---double precision. 

N L-POISMAT-L L-POISSIND-L L-POISSING-L 

32 112 106 50 

64 263 213 109 

128 921 734 332 
256 4235 2279 1226 

Table 5. MPF code timings--single precision. 

N = 32 N ---- 64 N = 128 N -= 256 N ---- 350 
Householder algorithm 414 2200 13468 89035 217308 

Givens algorithm 219 751 3492 20144 47579 

5. C O N C L U S I O N S  A N D  O U T L O O K S  

I t  follows from compar i sons  of seven developed para l le l  codes for solving the  d iscre t ized  Poisson 

p r o b l e m  t h a t  the  M P L  codes are  faster  t h a n  those  wr i t t en  in M P F ,  the  codes  which use the  F F T  

va r i an t s  are  genera l ly  fas ter  t h a n  those  which are based on the  m a t r i x  mul t ip l i ca t ion ,  and  it was 

obse rved  t h a t  the  fas tes t  code is M P L - b a s e d  L - P O I S S I N G - L  wi th  para l le l  sine t r ans fo rm and  

cyclic odd-even  r educ t ion  blocks.  For  Q R  methods ,  the  expe r imen t s  show t h a t  Q R - d e c o m p o s i t i o n  

wi th  Givens  ro t a t i ons  is 4.5 t imes  faster  t h a n  t h a t  one wi th  Householder  t r ans fo rma t ions .  T h e  

ou t looks  for a fu ture  work  on the  Poisson p rob lem could be in an i m p l e m e n t a t i o n  of  the  C a n n o n ' s  

and  W i n o g r a d ' s  a lgor i thms  in place  of the  l ib ra ry  rou t ine  M A T M U L  ( M P L - b a s e d  codes) .  Fu r the r ,  

an  ana lys i s  of  o the r  Toepl i tz  solvers for solving the  phase  (P2) (a set of  t r i d i agona l  sys tems)  f rom 

the  po in t  of  view of  h igh ly  concurren t  execut ion for SIMD two-d imens iona l  a r r ays  wi th  to ro ida l  

t o p o l o g y  will be  per formed.  For  Q R  factor iza t ion,  i t  is in tended  to  wr i te  the  a lgo r i thms  in t he  

M P L  code  and  as follows from the  compar i son  of M P F  and M P L  per formance ,  i t  is expec ted  

t h a t  these  t imes  will be subs t an t i a l l y  smal ler  t h a n  those  given in the  Table  5. 
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