
Computers Math. Applic. Vol. 31, No. 4/5, pp. 19-26, 1996
P e r g a m o n Copyright~)1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0898-1221/96 $15.00 + 0.00

0898-122 ! (95)00212-X

Massively Parallel Poisson and
QR Factorization Solvers

M. LUCK£
Inst i tute for Control Theory and Robotics, Slovak Academy of Sciences

DdbravskA cesta 9, 842 37 Bratislava, Slovak Republik
utrrluck@savba, sk

M . V A J T E R S I C
Inst i tute of Informatics, Slovak Academy of Sciences

DdbravskA cesta 9, 840 00 Bratislava, P.O. Box 56, Slovak Republic
kaifmava©savba, sk

E. VIKTORINOVA
Institute for Control Theory and Robotics, Slovak Academy of Sciences

DdbravskA cesta 9, 842 37 Bratislava, Slovak Republik
utrrevka@savba, sk

A b s t r a c t - - T h e paper brings a massively parallel Poisson solver for rectangle domain and parallel
algorithms for computation of QR factorization of a dense matrix A by means of Householder re-
flections and Givens rotations. The computer model under consideration is a SIMD mesh-connected
toroidal n x n processor array.

The Dirichlet problem is replaced by its finite-difference analog on an M x N (M + 1, N are powers
of two) grid. The algorithm is composed of parallel fast sine transform and cyclic odd-even reduction
blocks and runs in a fully parallel fashion. Its computational complexity is O(MN log L/n2), where
L = max(M + 1, N). A parallel proposal of QI~ factorization by the Householder method zeros all
subdiagonal elements in each column and updates all elements of the given submatrix in parallel. For
the second method with Givens rotations, the parallel scheme of the Sameh and Kuck was chosen
where the disjoint rotations can be computed simultaneously.

The algorithms were coded in MPF and MPL parallel programming languages and results of
computational experiments on the MasPar MP-1 system are also presented.

K e y w o r d s - - P a r a l l e l linear algebra, Fast sine transform, Odd-even reduction, QR decomposition,
Massively SIMD-type computer arrays.

1. I N T R O D U C T I O N

Accord ing to observa t ions wi th runn ing basic l inear a lgebra a lgor i thms on mass ive ly para l le l

S I M D a r rays [1,2], on ly an a p p r o p r i a t e t a i lo r ing of the a lgo r i t hm to t he mach ine t o p o l o g y and

a careful cod ing in a machine-c lose p r o g r a m m i n g language can lead to accep tab le pe r fo rmance

resul ts . Otherwise , mos t l y d r a m a t i c losses in efficiency m a y be a consequence. T h e p a p e r presents

mass ive ly para l l e l a lgor i thms for two f requent ly t r e a t e d p rob lems of para l le l l inear a lgebra .

T h e first p rob l em concerns solving the d iscre t ized Poisson equa t ion wi th Dir ichle t b o u n d a r y

condi t ions . Para l le l d i rec t as well as i t e ra t ive me thods have been a l r eady examined for solving

th i s mode l p rob l em on var ious archi tec tures . A m o n g the d i rec t me thods , e.g., para l le l schemes for

This work has been done during a stay of the authors at the Institute for Software Technology and Parallel
Systems, University of Vienna (H. P. Zima, director). The opportunity of using the MasPar MP-1 computer for
the experiments is highly acknowledged.

Typeset by ~4jV4S-TEX

19

20 M. LUCK~. et al.

the matrix decomposition, marching and cyclic semi-iterative methods, the method of conjugate
gradients and the block Stiefel's method have been designed for a linearly connected MIMD
processor array. Serious attention has been paid to implementation of multigrid methods for
this boundary value problem on both SIMD and MIMD computer types. Rather comprehensive
information about the parallel approaches for solving the finite-difference approximations to this
problem gives the monograph [3]. Despite that there has been a lot of work done in development
of algorithms for solving this problem, our motivation was to solve it by considering the massively
parallel concept.

The QR factorization is one of the most important matrix decompositions in numerical linear
algebra. It is used when solving least squares problems, SVD decomposition, etc. It factorizes a
general matrix into an orthogonal matrix and an upper-triangular matrix. There are two standard
ways to compute QR decomposition, the Givens and Householder methods. Both methods work
by applying a sequence of orthogonal transformations, either elementary rotations in the Givens
method or elementary reflections in the Householder method.

One of the most commonly spread parallel machines with massive parallelism is the MP-1
of the MasPar company [4]. Its massively parallel SIMD array has been used for design and
implementation of our algorithms. The paper is organized in five sections. Section 2 brings
description of the algorithmical and implementation background. The parallel implementation
is described in Section 3. The computational results are presented in Section 4. The concluding
Section 5 summarizes the results and presents some outlooks.

2. T H E O R E T I C A L A N D T E C H N I C A L P R E L I M I N A R I E S

2.1. Poisson Equat ion

The model problem under discussion concerns the Poisson equation

Au(x, y) = f (x , y) (1)

on a rectangular region R = (0, a) x (0, b) with known values u(x, y) = g(x, y) on the boundary
of R.

The discretization of the above equation according to the familiar five-point stencil on an
M x N grid leads to the block-tridiagonal linear algebraic system

= (2)

of the size M N x M N , where not more than five nonzero entries are placed in a row or column
of G. (Throughout the paper, we assume that the parameters M and N are of the form M = 2 q-1
and N = 2 p (for some positive integers p, q >_ 2). Further, L will denote max(M + 1, N) and
logL will be used for log2L.) The complexity for serial solution of the above linear system
ranges from O(M2N) through O(MNlogL) to asymptotically optimal value O(MN). The
former estimation is relevant for elimination-based methods, the value O (M N log L) is valid for
Fourier-based approaches, and the latter one corresponds to the multigrid approach.

For our solver, the Fourier-based method has been chosen which relates to the orthogonal
decomposition of the matrix G [2].

The computation of the solution vector fi follows in four phases:

(P0) creation of the right-hand side vector ~ of the size MN;
(P1) transformation of V by a block matrix whose blocks correspond to one-dimensional sine

transform of the length M each;
(P2) solution of M positively definite tridiagonal Toeplitz systems with right-hand sides of the

length N which result from the phase (P1);
(P3) final sine transformations of M vectors which are composed from the solutions of (P2).

QR Factorization Solvers 21

The phase (P1) computes the vectors

~j = S0j, j = 1 , 2 , . . . , g (3)

M~+I" (fi_L~_'~ jth where the M × M matrix S is defined by Sij = sm \M+a) and 0j is the M-block of

the vector 9 from (2). These computations follow via the discrete sine transform which is defined
for general M-vectors Z, ~ (we remind M = 2q - 1) by

Yi = Z x j s i n \ M + 1] ' i = 1 , 2 , . . . , M . (4)
j= l

We will adapt the efficient approach from [2] consisting of a precalculation, F F T evaluation and
a post-cMculation stage.

The work in phase (P2) consists of solving the systems

T ~ i =Yi, i = 1 , 2 , . . . , M (5)

where T~, = (_p2, Ai, _p2) are tridiagonai Toeplitz matrices of the order N,

A i = 2 1 + - 2 c o s (6)

with p = (b/(M + 1)) / (a / (N + 1)) and the N-vector Yi contains the i th components of the
transformed vectors from the phase (P1). These systems are solved by a proper adaptation of
the cyclic odd-even method for this case, where not just one but M systems from (5) can be
solved concurrently.

2.2. Q R F a c t o r i z a t i o n

QR factorization decomposes a general matrix A of size M x N into an orthogonal matrix Q
of the size M x M and an upper-triangular matrix R of the size M x N by

QT A = R. (7)

Both Householder and Givens methods work by applying a sequence of orthogonal transforma-
tions to A, zeroing out elements in an order given by a rule

= (8) A(k)

In Householder's method, one whole subdiagonal column of elements at the same time is
annihilated. This is done with Householder reflection P which is an orthogonal transformation
P = I - 20~ T. For a given vector Z, it is possible to choose ~ such that P~ is parallel to ~I (the
first unit vector). Let 51 be the first column of A and define

Vl = H.10.1, ~1T = (a l l -- s l , a 2 1 , . . . , a N t) ,

where (9)

Sl = - ' [' - (~ l T ~ , l) l / 2 ,].tl = (2821--2a1181) - 1 / 2 .

In the Givens method, one element at a time is set to zero by plane Givens rotation. A
plane rotation matrix Pij is equal to the identity matrix except for Pig = Pjj = co = cos O,
Pij = - - P j i = 8ij = sin @ and ci2j + si 2 = 1.

Each transformation affects only rows i and j , and O is chosen so that the rotation annihilates
one subdiagonal element of A [5].

22 M. LUGKA et al.

2.3. M a s P a r F e a t u r e s

MasPar MP-1 is a massively parallel SIMD computer system with a very large number of
simple processors (at least 1024) all executing the same program at once. Its Data Parallel Unit
(DPU) contains a two-dimensional matrix of Processor Elements (PE) that does all the parallel
processing and is controlled by Array Control Unit (ACU). Each PE in PE-array has its own
memory and high performance registers. It receives an instruction from ACU and then executes
it, but on different data. There are two possibilities of communications between PEs: on a
straight line or by means of the global router. The former are called X-net communications and
enable one to send (or receive) the data element any distance in one of the basic eight directions.
They are significantly faster than global router communications, but the latter are more general
and have no built-in direction of the communications. This data parallel programming model
simplifies the programming of local memory parallel architectures by associating a processor with
every data element in a computation (at least conceptually).

MasPar Fortran language is an implementation of Fortran 90 for the MP-1, that provides
data parallel control through its array extensions and intrinsic functions [6]. The MPL (MasPar
Parallel Language) is an adaptation of C-language for this computer [7].

3. T H E P A R A L L E L I M P L E M E N T A T I O N

3.1. P o i s s o n S o l v e r

For the execution of phases (P0)-(P3), an n x n (n being a power of two, n _< M + 1, N) array
MP-1 of MasPar will be considered. The assignment of grid points to processors will be in the
virtual manner, i.e., one physical processor takes a responsibility for p = M N / n 2 grid points.

The phase (P0) can be computed entirely in parallel by applying finite-difference approxima-
tions to the grid points close to the boundary with a point-wise contribution of function f to
each dement of ~.

The phases (P1) and (P3) are executable either via the classical matrix by matrix multiplication
or by the s ine variant of the parallel FFT algorithm. Matrix multiplication methods already
exist for MP-1 and a report is given in [1]. There exist two approaches for how to compute the
s ine transform via F F T on a parallel processor array. The computation follows concurrently
on columns, the number of which is equal to the horizontal dimension of the array. The first
way is represented by a fill-in of the input vectors (length M + 1) with M + 1 zeroes to create
enlarged vectors (length 2(M + 1)). Thus, an odd function is obtained with added elements equal
to 0. These enlarged vectors are then transformed by means of FFT. Another algorithmical
opportunity [2] offers a fact, that all input data are real. In this case, a suitable choice and
reordering of the input and output data enable to apply the complex F F T of the length M + I = 2q.
For the calculation of one-dimensional FFT, a modification of the algorithm from [8] has been
used. The parallel implementation strategy of this phase follows straightforwardly from the
description given in the previous section.

To realize the phase (P2), a solver for concurrent computation of solutions of M tridiagonal
Toeplitz systems has been designed. The solver reflects the algorithmic pattern of the cyclic
odd-even reduction [3], and we have achieved a well-balanced parallel execution of the reduction
and expansion algorithm's levels. Both phases proceed in parallel for all rows of the input matrix
which is stored by blocks, the size of which equals to that of the processor array. In every step,
the blocks are shifted to the right and to the left across the array in the horizontal direction by
means of the X-net sendings. Since the distance of interacting data is always a power of two value,
this local communication mechanism was applied profitably. A disadvantage of the reduction and
expansion phases is a not optimal work balancing because the active set of processors increases
(decreases) by a factor of 2 in every step of the expansion (reduction).

QR Factorization Solvers 23

Complexity of the algorithm depends linearly on the value p = M N / n 2 which characterizes
the mapping of the grid onto the processor array. The cyclic odd-even reduction block, as
well as the F F T modification for the sine transform, need O(logL) parallel operational steps.
The computation of both methods can be scaled perfectly into p portions, each of them being
performed on the n × n array. Thus, the algorithm's complexity is O(p log L). If instead of F F T
the matr ix multiplication routines would be applied, the complexity for the phases (P1) and (P3)
would increase to O(pM).

3.2. Q R A l g o r i t h m

A parallel proposal of QR factorization by Householder method zeros all subdiagonal elements
in each column and updates all elements of the given submatrix in parallel. This method starts
from the left, working with the whole matrix A, and continues to the right, working on smaller
and smaller submatrices. When the data elements of the matrix A are stored into the PE array,
then the following algorithm modifies A to upper-triangular matrix (and simultaneously the
orthogonal matrix Q is generated which is the unit matrix initially):

(1) for given column compute the Householder vector ~, respectively, fi by means of formu-

las (9);
(2) ~ is copied by the spread function along the first dimension (from the bot tom to the top

or vice versa) to all processors where the submatrix is updated, and so the matrix V is
generated;

(3) A • V dot-products are performed in a single step (it is a dot-multiplication) and then
accumulated and saved in a row vector ~T.

(4) ~7- is copied by the spread function and dot-multiplied with the matrix V and then added
to the matrix A;

(5) vector ~ is copied (by the spread function) along the second dimension (from the left to
the right or vice versa) and dot-multiplied with 2 • V;

(6) after adding "one" to diagonal processor elements, the matrix P is generated;
(7) the matrices Q and P are multiplied (MATMUL function) and the result is stored in the

matrix Q.

This is repeated for all columns of A, and then the matrix A is transformed into the matrix R.
The arithmetical complexity of this algorithm is O(N ÷ N log N).

Givens transformation is a plane rotation that combines two rows of A in order to annihilate
one element. In order to parallelize this reduction, the basic idea is to annihilate more than one
element at the time. In this process, various rows are combined in such a way that previously
introduced zeros are not destroyed. In the case of Givens method, there was implemented an
algorithm which utilizes parallel ordering proposed by Sameh and Kuck. According to this
ordering, the independent rotations are computed in parallel so that as many processors are
activated as allowed for preserving all zero elements. A modification of elements of competent
rows is performed also in parallel. The algorithm computes the values c, s for all independent
rotations in prescribed order and stores them into vectors ~ and $. Vectors are shifted one position
down and matrices C1 and $1 are created by means of the spread function that copies vectors
and $ along the first dimension.

This algorithm takes 2 N - 3 steps for a square matrix and an M ÷ N - 2 steps for M × N matrix,
each step being the time necessary to achieve a set of the independent Givens rotations [9].

4. N U M E R I C A L E X P E R I M E N T S

The algorithms were implemented on two-dimensional processor array MP-1 of MasPar of the
size 32 × 32 [4]. The computations for the Poisson equation were performed in the MPF as well
as MPL parallel programming languages (for both single and double precision arithmetics). On

24 M. LUCK~ et al.

the unit square domain, the discretization in both directions were chosen for N -- 32, 64, 128,
256 (MPF codes) and for N = 32, 64, 128, 256, 512 (MPL codes).

The algorithm is coded in MPF in four variants. The first one, F-POISMAT-F, contains
both main program blocks, i.e., the transformation and the tridiagonai solver, programmed in
MPF. The transformations are computed by a classical matrix multiplication procedure written
in MPF language. The computer library contains a MATMUL routine for multiplication of real
matrices. This was implemented on the place of forward and backward transformations in the
code F-POISMAT-L. It is to note that F-POISMAT-L is not a pure Fortran code because the
MATMUL is just callable from MPF, but it is not programmed in it. It is assumed that it is
developed in a low-level machine-close language. A third Fortran-based Poisson solver version is
F-POISSING-F. The first and third computational phases are calculated by our MPF subroutine
based on the fast sine transform algorithm given in [2]. The fourth code F-POISSING-L is
generated by inserting the sine transform routine coded in MPL into the F-POISMAT-L instead
of the MATMUL in the transformation phases (P1) and (P3) of the algorithm.

The timings (in msec) for these four versions are given for the single and the double precision
arithmetics in Table 1 and Table 2, respectively. It is straightforward to observe that the slowest
version is F-POISMAT-F. As seen from the Table 1, a faster performance has been achieved
for the F-POISMAT-L against the F-POISSING-F code. The complexity for the FFT used in
F-POISSING-F is asymptotically lower than that one for the MATMUL used in F-POISMAT-L.
This is due to the fact that the code F-POISMAT-L contains transformation parts written in
a lower level language than MPF in which the F-POISSING-F routine is written entirely. The
complexity preference in favor of the FFT becomes apparent when comparing the F-POISMAT-L
with F-POISSING-L, where in both codes the transformations are performed by means of routines
written in MPL. The MPL-based codes of our algorithm are presented in three versions. In L-
POISMAT-L, the transformation blocks are replaced by the MATMUL routine from the computer
library (as it was the case in F-POISMAT-L) and the tridiagonai block was coded in MPL.
(Thus, the difference between F-POISMAT-L and L-POISMAT-L lies in different programming
realizations of the second computational phase of the algorithm.)

Table 1. MPF code t i m i n g s ~ i n g l e precision.

N F-POISMAT-F F-POISSING-F F-POISMAT-L F-POISSING-L

32 218 179 121 70

64 2003 407 261 165

128 15011 1277 833 508

256 133578 4902 3598 1890

Table 2. MPF code t imings--double precision.

N F-POISMAT-F F-POISSING-F F-POISMAT-L F-POISSING-L

32 343 236 128 108

64 3082 576 320 273

128 23239 1905 1253 829

256 183813 7376 5872 2983

The fast sine transform algorithm from [2] programmed in MPL has been used in the code
L-POISSING-L for both the transformation phases of the Poisson solver. When these transforms
are computed by doubling the transform length with inserting additional zeroes into transformed
vectors, the code L-POISSIND-L has been developed entirely in MPL. As it was the situation with
MPF, the timings for these MPL-based codes are presented (in msec) for the single precision in
Table 3 and for the double precision in Table 4. Since the time for the generation of the right-hand
side vector of the system and for the tridiagonal solver block are the same in all three MPL codes,
the difference among them results from different execution of both the transformation phases.
Because of the higher complexity order for the matrix multiplication routine, the algorithm

QR Factorization Solvers 25

L-POISMAT-L delivers worse results than the two remaining approaches which are based on the
FFT method. From these two codes, L-POISSING-L is faster than L-POISSIND-L which needs
to compute the transformed vectors of the double lengths. The parallel variants of Householder
and Givens m e t h o d s for the Q R decompos i t ion , as descr ibed in t he previous sect ion, were coded

in M P F . The resul ts (in msec) for different m a t r i x sizes are given in Table 5.

Table 3. MPL code timings---single)recision.

N L-POISMAT-L L-POISSIND-L L-POISSING-L

32 101 70 43
64 198 130 94

128 590 359 258
256 2649 1238 902

512 14406 3838 3371

Table 4. MPL code timings---double precision.

N L-POISMAT-L L-POISSIND-L L-POISSING-L

32 112 106 50

64 263 213 109

128 921 734 332
256 4235 2279 1226

Table 5. MPF code timings--single precision.

N = 32 N ---- 64 N = 128 N -= 256 N ---- 350
Householder algorithm 414 2200 13468 89035 217308

Givens algorithm 219 751 3492 20144 47579

5. C O N C L U S I O N S A N D O U T L O O K S

I t follows from compar i sons of seven developed para l le l codes for solving the d iscre t ized Poisson

p r o b l e m t h a t the M P L codes are faster t h a n those wr i t t en in M P F , the codes which use the F F T

va r i an t s are genera l ly fas ter t h a n those which are based on the m a t r i x mul t ip l i ca t ion , and it was

obse rved t h a t the fas tes t code is M P L - b a s e d L - P O I S S I N G - L wi th para l le l sine t r ans fo rm and

cyclic odd-even r educ t ion blocks. For Q R methods , the expe r imen t s show t h a t Q R - d e c o m p o s i t i o n

wi th Givens ro t a t i ons is 4.5 t imes faster t h a n t h a t one wi th Householder t r ans fo rma t ions . T h e

ou t looks for a fu ture work on the Poisson p rob lem could be in an i m p l e m e n t a t i o n of the C a n n o n ' s

and W i n o g r a d ' s a lgor i thms in place of the l ib ra ry rou t ine M A T M U L (M P L - b a s e d codes) . Fu r the r ,

an ana lys i s of o the r Toepl i tz solvers for solving the phase (P2) (a set of t r i d i agona l sys tems) f rom

the po in t of view of h igh ly concurren t execut ion for SIMD two-d imens iona l a r r ays wi th to ro ida l

t o p o l o g y will be per formed. For Q R factor iza t ion, i t is in tended to wr i te the a lgo r i thms in t he

M P L code and as follows from the compar i son of M P F and M P L per formance , i t is expec ted

t h a t these t imes will be subs t an t i a l l y smal ler t h a n those given in the Table 5.

R E F E R E N C E S

1. P. Bjcrstad, F. Manne, T. Sorevik and M. Vajter~ic, Efficient matrix multiplication on SIMD computers,
SIAM J. Matrix Anal. Appl. 13, 386-401 (1992).

2. G. Golub and J.M. Ortega, Scientific Computing: An Introduction with Parallel Computing, Academic
Press; Harcourt Brace Jovanovich, Publishers, San Diego, (1993).

3. M. Vajter~ic, Algorithms for Elliptic Problems: Efficient Sequential and Parallel Solvers, Kluwer Academic
Publishers, Dordrecht, (1993).

4. T. Blank, The MasPar MP-1 architecture, Proc. Compcon Spring 90, 20-24 (1990).
5. G. Svensson, Some Linear Algebra on The CM-P, Department of Mathematics, Linkoping University, Linkop-

ing, Sweden, (1992).
6. MasPar Fortran Programming Manuals, Software Version 2.0, Revision A6, MasPar Computer Corporation,

Sunnyvale, CA, (1992).

26 M. LUCK~ et al.

7. MasPar Programming Language Manuals, Software Version 3.0, Revision A2, MasPar Computer Corpora-
tion, Sunnyvale, CA, (1992).

8. M. Luckg~, An effective algorithm for computation of two-dimensional Fourier transform for N x M matrices,
In Proe. Parallel Computation, Lecture Notes in Computer Science 734, pp. 64-71, Springer-Verlag, (1993).

9. M. Cosnard and Y. Robert, Complexity of parallel QR factorization, Journal of the Association for Com-
puting Machinery 33 (4), 712-723 (1986).

