5 research outputs found

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic

    Reliability-based design and topology optimization of aerospace components and structures

    Get PDF
    Programa de doutoramento en Enxe帽ar铆a Civil. 5011V01[Abstract] This work presents a research on Reliability Analysis (RA) and Reliability-Based Design Optimization (RBDO) with the target of solving practical aerospace structures problems. Two types of problems are considered, each one solved with a different approach. The first one applies Reliability-Based Topology Optimization (RBTO) to industry-like aerospace structures, while the second performs RBDO on aerospace components that require meticulous and computationally expensive simulations in order to predict accurately their behaviour. The RBDO method used in both approaches is the Sequential Optimization and Reliability Assessment (SORA) due to its uncoupled nature, which allows to separate the Deterministic Optimization (DO) and RA phases being easily combinable with external software. On the other hand, the RA method selected is the Hybrid Mean Value (HMV) given its robustness. Both algorithms have been implemented in MATLAB codes working in a High Performance Computing (HPC) environment. In the first approach they are combined with an external optimization software (Altar Optistruct) able to perform Deterministic Topology Optimization (DTO) problems. In the second approach the MATLAB codes are combined with external Finite Element (FE) analysis software (Abaqus), and the RA phase benefits from a Polynomial Chaos Expansion (PCE) based metamodel in order to save computating time. Several application examples have been carried out, including a wing, a rear fuselage and a pylon in the first approach and a stiffened composite panel in the second approach.[Resumen] Este trabajo presenta una investigaci贸n en an谩lisis de fiabilidad (RA) y dise帽o 贸ptimo en entornos de incertidumbre (RBDO) con el objetivo de resolver problemas pr谩cticos de estructuras aeroespaciales. Se han considerado dos tipos de problema, cada uno siendo resuelto con un enfoque diferente. En el primero se aplica optimizaci贸n topol贸gica en entornos de incertidumbre (RBTO) a estructuras aeroespaciales similares a las que se pueden encontrar en un contexto industrial, mientras que el segundo aplica RBDO a componentes aeroespaciales que requieren simulaciones minuciosas y costosas computacionalmente para predecir correctamente su comportamiento. El m茅todo de RBDO usado en ambos enfoques es el de optimizaci贸n y evaluaci贸n de fiabilidad secuencial (SORA) debido a su naturaleza desacoplada, que permite separar las fases de optimizaci贸n determinista (DO) y RA siendo f谩cilmente combinable con software externos. Por otro lado, el m茅todo de RA seleccionado es el valor medio h铆brido (HMV) debido a su robustez. Ambos algoritmos se han implementado en c贸digos de MATLAB que trabajan en ambientes de computaci贸n de alto rendimiento (HPC). En el primer enfoque se combinan con un software de optimizaci贸n externo (Altair Optistruct) capaz de resolver problemas de optimizaci贸n topol贸gica determinista (DTO). En el segundo enfoque los c贸digos de MATLAB se combinan con un software de an谩lisis de elementos finitos (FE) externo (Abaqus), y la fase de RA se beneficia de un metamodelo basado en la expansi贸n polin贸mica del caos (PCE) para ahorrar coste computacional. En este marco de referencia, se han resuelto varios ejemplos, que incluyen un ala, la parte trasera de un fuselaje y un pilono para el primer enfoque y un panel rigidizado de material compuesto en el segundo enfoque.[Resumo] Este traballo presenta unha investigaci贸n en an谩lise de fiabilidade (RA) e dese帽o 贸ptimo en contornas de incerteza (RBDO) co obxectivo de resolver problemas pr谩cticos de estruturas aeroespaciais. Consider谩ronse dous tipos de problema, cada un sendo resolto cun enfoque diferente. No primeiro apl铆case optimizaci贸n topol贸xica en contornas de incerteza (RBTO) a estruturas aeroespaciais similares 谩s que se poden atopar nun contexto industrial, mentres que o segundo aplica RBDO a compo帽entes aeroespaciais que requiren simulaci贸ns minuciosas e custosas computacionalmente para predicir correctamente o seu comportamento. O m茅todo de RBDO usado en ambos os enfoques 茅 o de optimizaci贸n e avaliaci贸n de fiabilidade secuencial (SORA) debido 谩 s煤a natureza desacoplada, que permite separar as fases de optimizaci贸n determinista (DO) e RA sendo facilmente combinable con software externos. Doutra banda, o m茅todo de RA seleccionado 茅 o valor medio h铆brido (HMV) debido 谩 s煤a robustez. Ambos os algoritmos implement谩ronse en c贸digos de MATLAB que traballan en ambientes de computaci贸n de alto rendemento (HPC). No primeiro enfoque comb铆nanse cun software de optimizaci贸n externo (Altair Optistruct) capaz de resolver problemas de optimizaci贸n topol贸xica determinista (DTO). No segundo enfoque os c贸digos de MATLAB comb铆nanse cun software de an谩lise de elementos finitos (FE) externo (Abaqus), e a fase de RA benef铆ciase dun metamodelo baseado na expansi贸n polin贸mica do caos (PCE) para aforrar custo computacional. Neste marco de referencia, resolv茅ronse varios exemplos, que incl煤en un 谩, a parte traseira dunha fuselaxe e un pilono para o primeiro enfoque e un panel rixidizado de material composto no segundo enfoque
    corecore