2,020 research outputs found

    Parallel Chip Firing Game associated with n-cube orientations

    Full text link
    We study the cycles generated by the chip firing game associated with n-cube orientations. We show the existence of the cycles generated by parallel evolutions of even lengths from 2 to 2n2^n on HnH_n (n >= 1), and of odd lengths different from 3 and ranging from 1 to 2n−1−12^{n-1}-1 on HnH_n (n >= 4)

    The Lattice structure of Chip Firing Games and Related Models

    Full text link
    In this paper, we study a famous discrete dynamical system, the Chip Firing Game, used as a model in physics, economics and computer science. We use order theory and show that the set of reachable states (i.e. the configuration space) of such a system started in any configuration is a lattice, which implies strong structural properties. The lattice structure of the configuration space of a dynamical system is of great interest since it implies convergence (and more) if the configuration space is finite. If it is infinite, this property implies another kind of convergence: all the configurations reachable from two given configurations are reachable from their infimum. In other words, there is a unique first configuration which is reachable from two given configurations. Moreover, the Chip Firing Game is a very general model, and we show how known models can be encoded as Chip Firing Games, and how some results about them can be deduced from this paper. Finally, we define a new model, which is a generalization of the Chip Firing Game, and about which many interesting questions arise.Comment: See http://www.liafa.jussieu.fr/~latap

    Computing graph gonality is hard

    Get PDF
    There are several notions of gonality for graphs. The divisorial gonality dgon(G) of a graph G is the smallest degree of a divisor of positive rank in the sense of Baker-Norine. The stable gonality sgon(G) of a graph G is the minimum degree of a finite harmonic morphism from a refinement of G to a tree, as defined by Cornelissen, Kato and Kool. We show that computing dgon(G) and sgon(G) are NP-hard by a reduction from the maximum independent set problem and the vertex cover problem, respectively. Both constructions show that computing gonality is moreover APX-hard.Comment: The previous version only dealt with hardness of the divisorial gonality. The current version also shows hardness of stable gonality and discusses the relation between the two graph parameter

    The approach to criticality in sandpiles

    Get PDF
    A popular theory of self-organized criticality relates the critical behavior of driven dissipative systems to that of systems with conservation. In particular, this theory predicts that the stationary density of the abelian sandpile model should be equal to the threshold density of the corresponding fixed-energy sandpile. This "density conjecture" has been proved for the underlying graph Z. We show (by simulation or by proof) that the density conjecture is false when the underlying graph is any of Z^2, the complete graph K_n, the Cayley tree, the ladder graph, the bracelet graph, or the flower graph. Driven dissipative sandpiles continue to evolve even after a constant fraction of the sand has been lost at the sink. These results cast doubt on the validity of using fixed-energy sandpiles to explore the critical behavior of the abelian sandpile model at stationarity.Comment: 30 pages, 8 figures, long version of arXiv:0912.320
    • …
    corecore