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a b s t r a c t

There are several notions of gonality for graphs. The divisorial gonality dgon(G) of a
graph G is the smallest degree of a divisor of positive rank in the sense of Baker–Norine.
The stable gonality sgon(G) of a graph G is the minimum degree of a finite harmonic
morphism from a refinement of G to a tree, as defined by Cornelissen, Kato and Kool.
We show that computing dgon(G) and sgon(G) are NP-hard by a reduction from the
maximum independent set problem and the vertex cover problem, respectively. Both
constructions show that computing gonality is moreover APX-hard.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In algebraic geometry, one attaches to an algebraic curve an invariant called gonality. This invariant measures ‘how
ar’ a given algebraic curve X is from the projective line P1; gonality is the minimal degree of a non-constant rational map
→ P1. Alternatively, gonality can be defined as the minimal degree of a divisor of rank one. The gonality of an algebraic

urve has various applications. For example, gonality can be used to encode an algebraic curve using small function field
xtensions [26], and it can be used in coding theory to improve minimal distance bounds [24]. Gonality is also used in
uniform boundedness result in number theory: for a set of equations with integer coefficients that define a smooth
lgebraic curve X , there are only finitely many solutions to this set in the union of all number fields of degree at most

gon(X)−1
2 [18].
As we will now explain, both definitions of gonality can be transferred from algebraic curves to graphs, where, maybe

omewhat surprisingly, the corresponding notions are no longer equivalent.

ivisorial gonality. The first notion of gonality of graphs was introduced by Baker and Norine [6], who developed a
heory of divisors on finite graphs in which they uncovered many parallels between finite graphs and algebraic curves.
n particular, they stated and proved a graph theoretical analogue of the classical Riemann–Roch theorem. See [5,17,21]
or background on the interplay between divisors on graphs, curves and tropical curves.

As observed in [6], there is also a close connection between divisor theory and the chip-firing game of Björner, Lovász
nd Shor [10]. A divisor can be thought of as a distribution of chips over the vertices of a graph, where every vertex is
ssigned an integer number of chips. One divisor is transformed into another by firing sets of vertices: when a set U is

fired, a chip is moved along each edge from U to V \U . Björner, Lovász and Shor considered the game where vertices are
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assigned non-negative numbers of chips and studied whether there is an infinite sequence of singleton sets that can be
fired without any vertex getting a negative number of chips. See [23] for the connections to the Abelian sandpile model
from statistical physics and Biggs’ dollar game [9]. The divisorial gonality dgon(G) of a connected graph G is an important
parameter associated to G in the context of divisor theory.

It is defined as the smallest degree of a positive rank divisor. In terms of the chip-firing game, the degree is the number
of chips in the game. Positive rank means the following: for every vertex v the divisor can be transformed into a divisor
which assigns at least one chip to v and a non-negative number to all other vertices. From [6, Corollary 5.4] it follows
that the divisorial gonality of a connected graph G (with at least 3 vertices) is related to the finiteness of a game in the
sense of [10]. Specifically, dgon(G) = 2|E| − |V | − t(G), where t(G) is the maximum number of chips that can be placed
on the graph G = (V , E) such that adding a chip at an arbitrary vertex still results in a finite game.

Stable gonality. The second definition of gonality of algebraic curves was translated to graphs by Cornelissen, Kato and
Kool [17] and is called stable gonality. Recall that gonality is defined using morphisms to P1, which is the unique algebraic
urve with genus zero. The genus of an algebraic curve relates to the first Betti number (also known as circuit rank) of
graph. As the graphs with first Betti number zero are exactly the trees, stable gonality is defined using morphisms to

rees. The morphisms considered are finite harmonic morphisms. Intuitively, these are morphisms that divide the edges
f the graph equally over the edges of the tree. This notion is called stable because we are allowed to refine the graph first:
refinement of a graph is obtained by adding degree one vertices and subdividing edges. The stable gonality sgon(G) of a
onnected graph G is the minimum degree of such a finite harmonic morphism from a refinement of G to a tree. See [3,14]
or similar notions of gonality on tropical curves and graphs.

The gonality of an algebraic curve defined over a number field is bounded from below by the stable gonality of the
ntersection dual graph of its reduction modulo any prime ideal of the number field. This makes stable gonality of graphs
elevant for number theoretic problems (e.g. [17]). More generally, this lower bound holds for any algebraic curve defined
ver a field with valuation.

omputational complexity. The exact complexity of computing the gonality of an algebraic curve is not known. As far as
e know, no efficient algorithm exists to compute the gonality of an arbitrary algebraic curve. In [26], a good algorithm

s given to compute the gonality of algebraic curves of small genus, but for arbitrary curves of genus larger than 7 the
omputations become too involved for the algorithm to terminate in reasonable time. In this paper we determine the
omplexity of computing the gonality of graphs. We show that both notions of gonality of graphs are NP-hard to compute.

heorem 1.1 (Theorem 3.4). The Divisorial Gonality problem is NP-hard.

heorem 1.2 (Theorem 4.3). The Stable Gonality problem is NP-hard.

So we cannot expect efficient algorithms to compute them either (unless P = NP). An easier problem is to decide
hether a given curve or graph is hyperelliptic, i.e. has gonality 2: there is an algorithm in Magma for this problem on
urves [12], but a rigorous analysis of its complexity has not been carried out. However, a full classification of hyperelliptic
etric graphs is given in [15], and there are algorithms that decide this for both notions of graph gonality in quasilinear

ime [11]. Progress on graphs with divisorial gonality 3 has also been made [1].
The computational complexity of the notions of gonality for graphs is also interesting from an algorithmic point of

iew, where one can ask whether these new graph parameters can be used for fixed parameter tractable algorithms. It is
nown that treewidth is a lower bound for both notions of graph gonality [13], which raises the question whether or not
P-hard problems exist that are not tractable on graphs of bounded treewidth, but are tractable on graphs of bounded
onality.
It is known that computing the divisorial gonality of a graph is in the complexity class XP: for every divisor with k

hips, we can check whether it has positive rank in polynomial time [8]. There exists an algorithm to compute the stable
onality of a graph in O((1.33n)nmmpoly(n,m)) time, where n is the number of vertices and m the number of edges of the
raph [19].

ounds on gonality. An upper bound for stable gonality has been established in terms of the first Betti number b1 =

|E| − |V | + 1: for any connected graph G one has

sgon(G) ≤
b1 + 3

2
,

matching the classical Brill–Noether bound [17]. Although this is a graph theoretic statement, no combinatorial proof is
known for this upper bound. For divisorial gonality the same upper bound is conjectured, see [5]. This is better than the
trivial upper bound dgon(G) ≤ |V |.

Bounds between the different invariants (including the hybrid invariant ‘stable gonality’, sdgon(G), defined in Defi-
nition 2.4) are represented in Fig. 1. In Section 5 we elaborate on this and prove that stable gonality is unbounded in
divisorial gonality.

Theorem 1.3 (Theorem 5.6). For every k ≥ 1 there is a graph with divisorial gonality 3 and stable gonality at least k + 2.
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Fig. 1. An overview of the relations between different graph invariants. When no arrow is drawn from one parameter to another, the one is
unbounded in terms of the other.

It was shown in [20] that divisoral gonality is also unbounded in stable gonality. We briefly explain the construction
in Section 5.1. Note that it follows from these results that stable and divisorial gonality are also unbounded in stable
divisorial gonality and treewidth.

In [4], a lower bound dgon(G) ≥
|V |λ1
24∆ is given in terms of the smallest nonzero eigenvalue λ1 of the Laplacian Q (G)

and the maximum degree ∆ of G. For stable gonality we have sgon(G) ≥
|V |λ1

λ1+4(∆+1) , see [17, Theorem 5.10].

2. Definitions and notation

2.1. Graphs and divisors

Throughout the paper we consider only connected graphs G = (V , E). We allow graphs to have parallel edges and
loops. We write u − v-path for a path from u to v. By path we always mean simple path.

For A, B ⊆ V , we denote by E(A, B) the set of edges with an end in A and an end in B and by E[A] := E(A, A) the set
of edges with both ends in A. For vertices u, v ∈ V , we use the abbreviation E(u, v) := E({u}, {v}) for the set of edges
etween u and v and we write E(u) := E({u}, V \ {u}) for all edges incident to u. By deg(u) we denote the degree of a
ertex u, where loops are counted twice. The Laplacian of G is the matrix Q (G) ∈ ZV×V defined by

Q (G)uv :=

{
deg(u) − 2|E(u, u)| if u = v,

−|E(u, v)| otherwise.
(1)

A vector D ∈ ZV is called a divisor on G and deg(D) :=
∑

v∈V D(v) is its degree. A divisor D is effective if D ≥ 0, i.e.
(v) ≥ 0 for all v ∈ V . Two divisors D and D′ are equivalent, written D ∼ D′, if there is an integer vector x ∈ ZV such
hat D − D′

= Q (G)x. This is indeed an equivalence relation and equivalent divisors have equal degrees as the entries in
very column of Q (G) sum to zero. We remark that since G is connected, the null space of Q (G) is spanned by the all-one
ector 1. So the solution x in D − D′

= Q (G)x is unique up to scalar multiples of 1.
Let D be a divisor. If D is equivalent to an effective divisor, then we define

rank(D) := max{k | D − E is equivalent to an effective divisor
for every effective E of degree ≤ k}.

f D is not equivalent to an effective divisor, we set rank(D) := −1. Observe that equivalent divisors have the same rank.
nswering a question of H.W. Lenstra, it was shown in [22] that computing the rank of a divisor is NP-hard.
Finally, we define the divisorial gonality of G to be

dgon(G) := min{deg(D) | rank(D) ≥ 1}. (2)

Observe that in the definition of divisorial gonality, we can restrict ourselves to effective divisors D. Hence dgon(G)
is the minimum degree of an effective divisor D such that for every vertex v there is an effective divisor D′

∼ D with
D′(v) ≥ 1. Also note that dgon(G) ≤ |V | since taking D(v) = 1 for all v ∈ V gives a divisor of positive rank.

To facilitate reasoning about equivalence of effective divisors, we denote by 1U the incidence vector of a subset U of
V . When D and D′ are effective divisors and D′

= D−Q (G)1U , we say that D′ is obtained from D by firing the set U . If we
think of D(v) as the number of chips on a vertex v, then firing U corresponds to moving one chip along each edge of the
cut E(U, V \ U) in the direction from U to V \ U . In particular, we must have that D(v) ≥ |E({v}, V \ U)| for every v ∈ U
s D′

≥ 0. Hence, we cannot fire any set U for which the cut E(U, V \ U) has more than deg(D) edges.
The following lemma from [13] shows that for equivalent effective divisors D and D′, we can obtain D′ from D by

successively firing sets.

Lemma 2.1. Let D and D′ be equivalent effective divisors satisfying D ̸= D′. Then there is a chain of sets ∅ ⊊ U1 ⊆ U2 ⊆

· · · ⊆ U ⊊ V such that D := D − Q (G)
∑t 1 is effective for every t = 1, . . . , k and such that D = D′.
k t i=1 Ui k



D. Gijswijt, H. Smit and M. van der Wegen / Discrete Applied Mathematics 287 (2020) 134–149 137

D

Fig. 2. Refinements.

A divisor D is called v-reduced if D(u) ≥ 0 for all u ∈ V \ {v} and for every set U ⊆ V \ {v} there is a vertex u ∈ V \ {v}
such that D′(u) < 0, where D′

= D − Q (G)1U . That is, D is v-reduced if D is effective outside v and no subset of V \ {v}
can be fired.

Lemma 2.2 ([6, Proposition 3.1]). Let D be a divisor and v ∈ V a vertex. There is a unique v-reduced divisor equivalent to D.
Given D and a vertex v, the v-reduced divisor equivalent to D can be found in polynomial time using Dhar’s burning

algorithm (see [8]).
Notice that a divisor D has rank at least 1 if and only if, for every vertex v, the v-reduced divisor Dv equivalent to D

has Dv(v) ≥ 1. The ‘only if’ part follows since moving from any effective D′
∼ D to Dv can only increase the number of

chips on v by Lemma 2.1.
We end this section with the notion of refinements and stable divisorial gonality.

Definition 2.3. Let G be a graph. A refinement of G is a graph G′ obtained from G by subdividing edges and adding degree
one vertices (leaves), see Fig. 2.

Definition 2.4. Let G be a graph. The stable divisorial gonality of G is defined as

sdgon(G) = min{dgon(G′) | G′ a refinement of G}.

Remark 2.5. Since adding leaves to a graph does not change its divisorial gonality, we do not have to consider all
refinements, but only those obtained from subdivisions of edges, i.e.

sdgon(G) = min{dgon(G′) | G′ a subdivision of G}.

2.2. Morphisms and stable gonality

The stable gonality of a graph is defined using finite harmonic morphisms. A finite harmonic morphism is a graph
homomorphism with some extra properties. Recall that a graph homomorphism is a map φ:G → H that maps vertices
of G to vertices of H and preserves edges, i.e., a homomorphism is a map φ: V (G) ∪ E(G) → V (H) ∪ E(H) such that

• φ(V (G)) ⊆ V (H);
• φ(E(u, v)) ⊆ E(φ(u)φ(v)) for all pairs of vertices u, v ∈ V (G).

Definition 2.6. Let G and H be loopless graphs. A finite morphism is a graph homomorphism φ:G → H , together with a
map r: E(G) → Z>0 that assigns an index r(e) to every edge e ∈ E(G).

Intuitively, a finite morphism is harmonic if it divides the edges of G equally over the edges of H . We make this precise
in the following definitions.

Definition 2.7. Let G = (V , E) and H = (W , F ) be loopless graphs and φ:G → H a finite morphism. Let v ∈ V be a vertex
of G and let f ∈ F be an edge of H that is incident to φ(v). The index of v in the direction of f , denoted by mφ,f (v), is

mφ,f (v) =

∑
e∈E(v),φ(e)=f

r(e).

Definition 2.8. Let G and H be loopless graphs and φ:G → H a finite morphism. Then φ is harmonic if for every vertex
v of G we have mφ,f (v) = mφ,f ′ (v) for all edges f and f ′ of H incident to φ(v). We abbreviate mφ(v) := mφ,f (v) for any f .

efinition 2.9. Let G = (V , E) be a loopless graph and let H = (W , F ) be a connected loopless graph. Let φ:G → H be a
finite harmonic morphism and let f ∈ F be an edge of H . The degree deg(φ) is

deg(φ) =

∑
e∈E,φ(e)=f

rφ(e).

This is independent of the choice of f [7, Lemma 2.4]. This is also equal to

deg(φ) =

∑
v∈V ,φ(v)=w

mφ(v),
for any vertex w ∈ W of H .
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Fig. 3. A finite harmonic morphism from a cycle to a path. Every vertex is mapped to the vertex on its right side and every edge is assigned index 1.

We now turn to the definition of stable gonality. Recall the notion of a refinement from Definition 2.3.

efinition 2.10. The stable gonality sgon(G) of a graph G is

sgon(G) = min{deg(φ) | φ:G′
→ T a finite harmonic morphism,

where T is a tree and G′ is a refinement of G}.

Notice that finite morphisms are not defined for graphs that contain loops, but since we obtain a loopless graph by
subdividing all edges, stable gonality is defined for graphs with loops.

Remark 2.11. The stable gonality of a disconnected graph equals the sum of the stable gonality of all components. In the
remainder of this paper, we only consider connected graphs.

Example 2.12. Let G be a tree. Set r(e) = 1 for every edge e and consider the identity map φ:G → G. This is a finite
armonic morphism of degree 1. Thus the stable gonality of a tree equals 1. In fact, trees are the only graphs with stable
onality 1. Indeed, a finite harmonic morphism of degree 1 is injective and we cannot map a graph that contains a cycle
njectively to a tree.

xample 2.13. Let G be a cycle with 2n vertices. In the previous example we have seen that sgon(G) ≥ 2. We give a
morphism of degree 2 to show that sgon(G) = 2. Let T be a path on n + 1 vertices. Assign index 1 to all edges of G and
consider the map in Fig. 3. This is a finite harmonic morphism of degree 2, hence the stable gonality of an even cycle is
2. If G is an odd cycle, we obtain an even cycle by subdividing one of its edges. We use the same morphism of degree 2
to show that sgon(G) = 2.

3. Divisorial gonality is hard

3.1. NP-hardness

We define the Divisorial Gonality problem as follows:

Divisorial Gonality
Input: Graph G = (V , E), integer k ≤ |V |.
Question: Is dgon(G) ≤ k?

We prove that this problem is NP-hard by a reduction from the Independent Set problem. Given an instance (G, k) of
the Independent Set problem, we construct a graph Ĝ. We give a precise relation between the divisorial gonality of Ĝ and
the maximum size of an independent set of G. The constructed graph Ĝ contains many parallel edges, and in the proof we
use the fact that we either need many chips to move along these edges, or we will never move chips along these edges.

Let G = (V , E) be a graph and define M := 3|V | + 2|E| + 2. We construct the graph Ĝ in the following way. Start with
a single vertex T . For every v ∈ V add three vertices: v, v′, Tv . For every edge e ∈ E(u, v), add two vertices eu and ev . The
edges of Ĝ are as follows: For every e ∈ E(u, v), add an edge between eu and ev , add M parallel edges between u and eu
and M parallel edges between ev and v. For every v ∈ V , add three parallel edges between v′ and Tv , M parallel edges
between v and v′ and M parallel edges between Tv and T . See Fig. 4 for an example.

For an effective divisor D on G, we define the following equivalence relation ∼D on V :

u ∼D v ⇐⇒ xu = xv for every x ∈ ZV for which D − Q (G)x ≥ 0. (3)

Note that if D and D′ are equivalent effective divisors, then ∼D=∼D′ . We need the following observation.

Lemma 3.1. Let D ≥ 0 be a divisor on G and let u, v ∈ V . Then u ̸∼D v if and only if for some effective divisor D′
∼ D we

can fire a subset U with u ∈ U, v ̸∈ U. In particular, u ∼ v if every u–v cut has more than deg(D) edges.
D
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Fig. 4. On the left a graph G, on the right the corresponding graph Ĝ, where the M-fold parallel edges are drawn as bold edges. Here
M = 12 + 10 + 2 = 24.

Proof. This follows directly from Lemma 2.1. □

An edge e for which the ends are equivalent is called D-blocking.

Lemma 3.2. Let D ≥ 0 be a divisor on G = (V , E). Let F be the set of D-blocking edges and let U be a component of the
ubgraph (V , E \ F ). Then for every effective divisor D′

∼ D we have
∑

u∈U D′(u) =
∑

u∈U D(u).

roof. This holds as no chips can move along a D-blocking edge. □

emma 3.3. Let G = (V , E) be a graph and let Ĝ be the graph as constructed above. Let α(G) be the maximum size of an
ndependent set in G. Then the following holds:

dgon(̂G) = 4|V | + |E| + 1 − α(G).

roof. We first show that dgon(̂G) ≥ 4|V | + |E| + 1 − α(G). Let D ≥ 0 be a divisor on Ĝ with rank(D) ≥ 1 and
eg(D) = dgon(̂G). Consider the equivalence relation ∼D on V (̂G). Clearly, deg(D) ≤ |V (̂G)| = 3|V | + 2|E| + 1 < M .
ence, by Lemma 3.1, the M-fold edges are D-blocking. It follows that for every v ∈ V

T ∼D Tv and v ∼D ev for every edge e incident to v in G.

et H be the subgraph obtained from Ĝ by deleting all D-blocking edges. Then {T } is the vertex set of a component of H ,
s is {v} for every v ∈ V . So by Lemma 3.2, the number of chips on {T } and on {v} (for each v ∈ V ) is constant over all
ffective divisors D′

∼ D. Hence, from the fact that rank(D) ≥ 1 it follows that D(T ) ≥ 1 and D(v) ≥ 1 for every v ∈ V .
For {v′, Tv}, we distinguish two cases. If v′

∼D Tv , then {v′
} and {Tv} are each the vertex set of a component of H ,

nd must therefore have at least one chip by Lemma 3.2. Otherwise, {v′, Tv} is the vertex set of a component of H . By
emma 3.1, there is an equivalent effective divisor for which we can fire subset containing v′ but not Tv . This divisor must
herefore have at least 3 chips on v′. Hence, by applying Lemma 3.2 to the component {v′, Tv} we have D(v′)+D(Tv) ≥ 3.
ote that v′

∼D Tv if and only if v ∼D T since T ∼D Tv and v ∼D v
′.

A similar argument goes for {eu, ev}. If eu ∼D ev , then each of {eu} and {ev} is the vertex set of a component of H , so
ach must contain at least one chip. If eu ̸∼ ev , the set {eu, ev} is the vertex set of a component of H and must contain at
east one chip. Note that eu ∼D ev if and only if u ∼D v since u ∼D eu and v ∼D ev .

Summarising, for all vertices u, v ∈ V and all edges e ∈ E(u, v) we have:

D(T ) ≥ 1;
D(v) ≥ 1;

D(v′) + D(Tv) ≥

{
2 if v ∼D T ,
3 otherwise;

D(eu) + D(ev) ≥

{
2 if u ∼D v,
1 otherwise.

Let U0 = {v ∈ V | v ∼D T } be the set of nodes in V that are equivalent to T . By the above, we see that

deg(D) ≥ 1 + |V | + (3|V | − |U0|) + (|E| + |E[U0]|)
= 4|V | + |E| + 1 + |E[U0]| − |U0|.
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Since

α(G) ≥ α(G[U0]) ≥ |U0| − |E[U0]|, (4)

we find that dgon(̂G) = deg(D) ≥ 4|V | + |E| + 1 − α(G).
Now we show that equality can be attained. For this, let S ⊆ V be an independent set in G of size α(G). Let v1, . . . , vk

be a numbering of the vertices in V \ S and set U0 = S ∪ {T }. We orient the edges of G as follows: For 1 ≤ i < j ≤ k we
orient the edges in E(vi, vj) from vi to vj, and for v0 ∈ U0 and 1 ≤ j ≤ k we orient the edges in E(v0, vj) from v0 to vj. We
now define the effective divisor D on Ĝ as follows:

D(v) = 1 for every v ∈ V ∪ {T },

D(v′) = D(Tv) = 1 for every v ∈ S,
D(Tv) = 3 for every v ∈ V \ S,
D(v′) = 0 for every v ∈ V \ S,
D(eu) = 1 for every edge e with tail u,
D(ev) = 0 for every edge e with head v.

It is easy to check that deg(D) = 4|V | + |E| + 1 − α(G). Define Vi := {vi, . . . , vk} for every i = 1, . . . , k and let

Wi := Vi ∪ {v′
| v ∈ Vi} ∪ {eu | u ∈ Vi is end point of an edge e}.

Observe that the cut in Ĝ induced by the set Wi consists of the edges euev for every u ∈ V \ Vi, v ∈ Vi, e ∈ E(u, v)
and the triple edges from Tu to u′ for every u ∈ V \ Vi. Hence, we can fire the complement of Wi. That is, for every i,
D′

:= D+Q (̂G)1Wi is effective. Furthermore, D′(v′

i ) ≥ 1 and D′(evi ) ≥ 1 for every edge e with head vi. It follows that D has
positive rank. □

Theorem 3.4. The Divisorial Gonality problem is NP-hard.

Proof. Lemma 3.3 provides a polynomial-time reduction from the Independent Set problem to the Divisorial Gonality
problem. The result now follows directly from the NP-hardness of the Independent Set problem. □

We define the Stable Divisorial Gonality problem similarly:

Stable Divisorial Gonality

Input: Graph G = (V , E), integer k ≤ |V |.

Question: Is sdgon(G) ≤ k?

We slightly change the arguments above so that we can apply them to the Stable Divisorial Gonality problem.

Theorem 3.5. The Stable Divisorial Gonality problem is NP-hard.

Before giving the proof, we need a generalisation of Lemma 3.2. Given an effective divisor D, define a D-blocking path
as a path where every internal vertex has degree 2 and whose ends are equivalent under ∼D. Note that if D′

∼ D then the
D-blocking paths are the same as the D′-blocking paths. We call a D-blocking path clean if its internal vertices together
contain at most 1 chip in D. Observe that there is always an effective D′

∼ D in which all D-blocking paths are clean.
Indeed, if P is a D-blocking path that is not clean, we can take two chips on its internal vertices and move them in opposite
directions along the path until at least one of them reaches an end of the path. Repeating this results in a divisor D′

∼ D
in which all D-blocking paths are clean.

Lemma 3.6. Let D ≥ 0 be a divisor on G = (V , E). Suppose that all D-blocking paths are clean. Let U be a component of the
subgraph obtained from G by deleting the edges and internal vertices of all D-blocking paths. Then for every effective divisor
D′

∼ D we have
∑

u∈U D′(u) ≤
∑

u∈U D(u).

Proof. Let U1 ⊆ · · · ⊆ Uk be the chain of subsets obtained from applying Lemma 2.1 to D and D′. Suppose for contradiction
that

∑
u∈U D′(u) >

∑
u∈U D(u). Then, there is an edge uv with u ∈ U and v ∈ V \ U such that v ∈ Ui and u ∈ V \ Ui for

some i. This edge is the first edge of an M-blocking path P starting in u and ending in a vertex w (possibly w = v).
Let j ≤ i be the smallest index such that Uj contains a vertex of P and consider the divisor Dj−1 = U −Q (G)(1U1 +· · ·+

1Uj−1 ) obtained after firing the previous sets in the chain. Since Uj ⊆ Ui, we have u ̸∈ Uj and hence w ̸∈ Uj as u ∼D w. It
follows that at least two edges of P are in the cut E(Uj, V \ Uj). Since we can fire the set Uj, we must therefore have at
least 2 chips on internal vertices of P . However, in Dj−1 the path P has at most 1 chip on its internal vertices since P was
clean and did not gain any chips in previous firings by the minimality of j, a contradiction. □
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Proof of Theorem 3.5. We will prove the stronger statement that for any graph G we have sdgon(̂G) = dgon(̂G). For this,
it suffices to show that dgon(̂G′) ≥ dgon(̂G) for any subdivision Ĝ′ of Ĝ.

Let Ĝ′ be a subdivision of Ĝ. Let D ≥ 0 be a positive rank divisor on Ĝ′ and suppose that deg(D) < M . Lemma 3.1
guarantees that M parallel edges in Ĝ are subdivided into D-blocking paths in Ĝ′. We may assume that all D-blocking
paths in Ĝ′ are clean. Just as in the proof of Lemma 3.3, but now using Lemma 3.6 instead of Lemma 3.2, we find that for
every u, v ∈ V (G) and every edge e ∈ E(u, v) we have

D(T ) ≥ 1;
D(v) ≥ 1;

D(v′) + D(Tv) ≥ 2 if v ∼D T ;
D([v′

]) ≥ 3 if v ̸∼D T ;
D(eu) + D(ev) ≥ 2 if u ∼D v;

D([eu]) ≥ 1 if u ̸∼D v,

where [v′
] and [eu] denote the component of v′ and eu, respectively, in the subgraph obtained by deleting the edges and

internal vertices of all D-blocking paths. Following the proof of Lemma 3.3, we set U0 = {v ∈ V | v ∼D T }, and obtain

deg(D) ≥ 1 + |V | + (3|V | − |U0|) + (|E| + |E[U0]|)
= 4|V | + |E| + 1 + |E[U0]| − |U0|.

From α(G) ≥ α(G[U0]) ≥ |U0| − |E[U0]| we conclude that deg(D) ≥ 4|V | + |E| + 1− α(G). By Lemma 3.3, this implies that
deg(D) ≥ dgon(̂G), concluding the proof. □

3.2. APX-hardness

We consider the optimisation variant of the Divisorial Gonality problem, where we ask for the divisor with minimum
degree among all divisors with rank at least 1. We will prove that this optimisation problem is APX-hard. For this, we
use the reduction above, restricted to subcubic graphs, since Independent Set is APX-hard for subcubic graphs [2]. For
APX-hardness we also need to be able to construct good independent sets from good divisors in polynomial time. It follows
that there is a PTAS reduction of ‘maximum independent set on cubic graphs’ to ‘finding a minimum degree divisor of
positive rank’. Since the former problem is APX-hard, also the second problem is APX-hard. It remains open whether or
not finding a positive rank divisor of minimum degree is in APX.

Given a divisor D ≥ 0 and a vertex v ∈ V (G), denote by Dv the unique v-reduced divisor equivalent to D (see
Lemma 2.2).

Lemma 3.7. Let D ≥ 0 be a divisor on G and let u, v ∈ V (G) be distinct vertices. Then u ∼D v if and only if Du = Dv .

Proof. For the forward implication, assume that u ∼D v and consider the divisor Du. Since Du is u-reduced, we cannot
fire any nonempty subset of V \ {u}. Since u ∼D v, this implies that we cannot fire any nonempty subset of V \ {v}. Hence,
Du is v-reduced. By the uniqueness part in Lemma 2.2, this implies that Du = Dv .

For the converse implication, suppose that Du = Dv . Suppose that D′
= D − Q (G)x is effective for some x ∈ ZV (G).

Applying Lemma 2.1 to the divisors Du and D, we obtain a chain U1 ⊆ · · · ⊆ Uk such that D = Du − Q (G)y with
y =

∑k
i=1 1Ui . Since Du = Dv is both u-reduced and v-reduced, we have u, v ∈ U1 and hence yu = yv = k. In the

same way, we find a z ∈ ZV (G) such that D′
= Du −Q (G)z and zu = zv . It follows that D′

= D−Q (G)(−y+ z), and therefore
that x = −y + z + c1 for some integer c . We conclude that xu = xv . □

Corollary 3.8. Given an effective divisor D on the graph G, and any two vertices u, v ∈ V (G), we can determine whether
u ∼D v in polynomial time.

Proof. We can compute Du and Dv in polynomial time. This completes the proof. □

Lemma 3.9. Let G = (V , E) be a subcubic graph and let Ĝ be as constructed above. Let D ≥ 0 be a divisor on Ĝ of positive
rank and degree deg(D) ≤ (1 + ϵ) dgon(̂G). Then we can find in polynomial time an independent set S in G of size at least
(1 − 22ϵ)α(G).

Proof. We may assume that deg(D) ≤ |V (̂G)| (otherwise replace D by the divisor with one chip on every vertex).
As in the proof of Lemma 3.3, we define U0 to be the vertices in V that are equivalent to T . Notice that by Corollary 3.8,

we can find U0 in polynomial time. We have
deg(D) ≥ 4|V | + |E| + 1 + |E[U0]| − |U0|.
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Fig. 5. The graph Ĝ when we start with a triangle G.

We construct an independent set S in G of size at least |U0| − |E[U0]| by starting with the set U0 and then deleting an
ndpoint for every edge in E[U0]. The constructed independent set has size

|S| ≥ |U0| − |E[U0]|

≥ 4|V | + |E| + 1 − deg(D)
≥ 4|V | + |E| + 1 − (1 + ϵ) dgon(̂G)
= 4|V | + |E| + 1 − (1 + ϵ)(4|V | + |E| + 1 − α(G))
= α(G) − ϵ(4|V | + |E| + 1 − α(G)).

ince G is subcubic, we have |V | ≤ 4α(G) and |E| ≤
3
2 |V | ≤ 6α(G). Hence, we obtain

|S| ≥ α − ϵ(16α + 6α + 1 − α) ≥ α(1 − 22ϵ). □

heorem 3.10. The Divisorial Gonality problem is APX-hard.

roof. In [2] it was shown that the Independent Set problem is APX-hard, even on subcubic graphs. From this and from
emma 3.9 the result follows. □

We consider the optimisation version of the Stable Divisorial Gonality problem as well. Again, we use the same proof
o show that this is APX-hard.

heorem 3.11. The Stable Divisorial Gonality problem is APX-hard.

roof. By the proof of Theorem 3.5, it follows that sdgon(̂G) = dgon(̂G). It follows that Lemma 3.9 holds for stable
divisorial gonality as well, and analogous to Theorem 3.10 we see that Stable Divisorial Gonality is APX-hard. □

4. Stable gonality is hard

4.1. NP-hardness

We define the Stable Gonality problem as follows:

Stable Gonality

Input: Graph G = (V , E), integer k ≤ |V |.

Question: Is sgon(G) ≤ k?

In this section we prove that the Stable Gonality problem is NP-hard. Let G be a simple graph and write n for its
number of vertices. We construct a multigraph Ĝ from G in two steps:

1. Add a vertex c to the vertex set of G, and connect this vertex with exactly one vertex of G (chosen arbitrarily). Then,
add n − 1 more vertices to the vertex set, and connect these vertices with c (and no other vertices). We will call
this process ‘‘adding a star of size n with centre c ’’.

2. Add a vertex t to the vertex set, and for every other vertex u (including the vertices added in the previous step)
draw n parallel edges between t and u.

This construction is illustrated in Fig. 5. We will relate the stable gonality of Ĝ to the minimum size of a vertex cover in
G in Lemma 4.2. For this we need the following simple lemma.
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Lemma 4.1. Let H be a graph. Then

min
S⊆V (H)

(
|S| + |{uv ∈ E(H) | u, v /∈ S}|

)
= τ (H),

where τ (H) denotes the size of a minimal vertex cover of H.

Proof. If we let S be any minimal vertex cover, then |S| = τ (H) and |{uv ∈ E(H) | u, v /∈ S}| = 0, hence the left
hand side is at most the right hand side. To argue the other inequality, assume |S| = τ (H) − a for some a > 0
and |{uv ∈ E(H) | u, v /∈ S}| < a. For every edge in {uv ∈ E(H) | u, v /∈ S} choose one of the endpoints and add it
o S, obtaining a new set S ′. By construction {uv ∈ E(H) | u, v /∈ S ′

} = ∅ and thus S ′ is a vertex cover. However
S ′

| = |S| + |{uv ∈ E(H) | u, v /∈ S}| < τ (H), contradicting the minimality of τ (H). Thus the desired equality holds. □

We can now state the main lemma for proving hardness of the stable gonality problem.

emma 4.2. Let G be a simple graph and Ĝ the graph constructed above. Denote by n the number of vertices of G and by
(G) the minimal size of a vertex cover of G. Then sgon(̂G) ≤ n + k + 1 if and only if τ (G) ≤ k.

roof. Suppose that G has a vertex cover of size at most k, let S be such a vertex cover. We will construct a finite harmonic
orphism from Ĝ to a tree. Define T as a star with 2n − |S| vertices, write t ′ for the centre and v′

1, . . . , v
′

2n−|S|−1 for the
ther vertices. Now number the vertices in V (̂G)\(S ∪ {t, c}) from v1 to v2n−|S|−1. Define φ: V (̂G) → T :

φ(v) =

{
t ′ if v = t , v = c or v ∈ S,
v′

i if v = vi.

ee Fig. 6a for an illustration. We refine Ĝ and extend φ to this refinement in order to make φ a finite harmonic morphism.

1. For all edges e = uv ∈ E (̂G) with φ(u) = φ(v) = t ′, subdivide uv with a vertex w and add a leaf l to t ′. Define
φ(w) = l. If u = t , set rφ(uw) = n. Write T ′ for the extended tree T after this step. See Fig. 6b.

2. For all vertices v ∈ S ∪ {c, t} and for all leaves l ∈ V (T ′), if v has no neighbour that is mapped to l, add a leaf vl to
v and set φ(vl) = l. If v = t , set rφ(vvl) = n. Write Ĝ′ for the refinement of Ĝ after this step. See Fig. 6c.

3. For all edges e ∈ E (̂G′), if we did not mention rφ(e) explicitly before, we set rφ(e) = 1.

We prove that φ: Ĝ′
→ T ′ is a finite harmonic morphism. It is clear that φ is a finite morphism. For harmonicity, we check

all vertices v ∈ V (̂G′):

• Suppose that v = t . Let e ∈ E(T ′).

– Suppose that e = t ′v′

i , then mφ,e(v) = n, since the edges tu with φ(u) = v′

i are precisely the n edges tvi all with
index 1.

– Assume e = t ′l for some leaf l that is added in step 1. Then there is exactly one edge tu mapped to e, where u
is a vertex that is added in either step 1 or 2. This edge has index n, so mφ,e(v) = n.

We conclude that φ is harmonic at t and mφ(t) = n.
• Suppose that v ∈ S ∪ {c}. Let e ∈ E(T ′).

– Assume there is a neighbour u of v with u a vertex of Ĝ or a vertex that is added in step 1, such that φ(uv) = e.
By the construction of φ this is the only edge incident to v that is mapped to e, and this edge has index 1.

– Suppose that there is no neighbour u of v with u a vertex of Ĝ or a vertex that is added in step 1, such that
φ(uv) = e. Then we added a leaf to v in step 2 and assigned index 1 to this new edge.

So φ is harmonic at v and mφ(v) = 1.
• If v is any other vertex, then φ(v) is a leaf, thus φ is harmonic at v.

Now we compute the degree of φ. For this we look at t ′. The vertices that are mapped to t ′ are t , c and all vertices in S.
It follows that deg(φ) = mφ(t) + mφ(c) +

∑
v∈S mφ(v) = n + 1 + |S| ≤ n + 1 + k. So sgon(̂G) ≤ n + k + 1.

Now suppose that Ĝ has stable gonality at most n + k + 1, i.e. there exist a refinement Ĝ′ of Ĝ, a tree T and a map
φ: Ĝ′

→ T with degree d ≤ n + k + 1.
Consider the graph T\φ(t); as T is a tree, T\φ(t) is a forest. Define C as a component of T\φ(t) for which the size of

φ−1(C) ∩ Ĝ is maximal, and let γ =
⏐⏐φ−1(C) ∩ Ĝ

⏐⏐.
Denoting by eC the unique edge between φ(t) and C , the degree of φ is at least the number of edges of Ĝ′ that are

mapped to eC . Because t is connected to each vertex in Ĝ with exactly n edges, t and φ−1(C) ∩ Ĝ are connected by γ n
edges (in Ĝ). Each such edge is subdivided into a path in Ĝ′, which must then be mapped to a path from φ(t) to C . This
path has to include the edge eC , and therefore the degree of φ is at least γ n.

We distinguish three cases for the value of γ :
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Fig. 6. The map φ: Ĝ → T and the step-by-step extension to a morphism where we take {u, v} as the vertex cover of the original triangle.

1. γ = 0. Then all vertices v of Ĝ are mapped to φ(t) under φ, and therefore the degree of φ is bounded from below
by the number of vertices in Ĝ, which is equal to 2n + 1.

2. γ ≥ 2. As mentioned before, a lower bound for the degree of φ is given by γ n ≥ 2n.
3. γ = 1. We look more closely at the size of the preimage of eC . For each of the n edges between t and φ−1(C)∩ Ĝ an

edge in the subdivision of this edge maps to eC . Let A ⊆ φ−1(φ(t))\{t} be the set of vertices that are not part of the
subdivisions of the edges between t and φ−1(C) ∩ Ĝ. For every vertex in A there is an edge attached to this vertex
that maps to eC , as the index of this vertex in the direction of eC is at least one. It follows that deg(φ) ≥ n + |A|.
We prove a lower bound on the size of A:

• A contains all vertices v ∈ Ĝ\t such that φ(v) = φ(t).
• For every edge uv of Ĝ\t such that φ(u) ̸= φ(t) ̸= φ(v), the unique path from φ(u) to φ(v) goes through φ(t)

as γ = 1. Hence uv has to be subdivided, and one of the vertices in the subdivision is contained in A.

This shows that the degree of φ is bounded below by

n + |{v ∈ V (̂G\t) | φ(v) = φ(t)}| + |{uv ∈ E (̂G\t) | φ(u) ̸= φ(t) ̸= φ(v)}|.

By applying Lemma 4.1 with H = Ĝ\t and S = {v ∈ V (̂G\t) | φ(v) = φ(t)}, the degree of φ is bounded below by

n + τ (̂G\t) = n + τ (G) + 1.

Certainly τ (G) ≤ n − 1, hence n + τ (G) + 1 ≤ 2n. Because the three cases are exhaustive, we have

sgon(̂G) ≥ min{2n + 1, 2n, n + τ (G) + 1} = n + τ (G) + 1.

As we assumed that sgon(̂G) ≤ n + k + 1, we find n + τ (G) + 1 ≤ n + k + 1, and thus τ (G) ≤ k. □
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Theorem 4.3. The Stable Gonality problem is NP-hard.

Proof. In Lemma 4.2 we proved an reduction from the Vertex Cover problem to the Stable Gonality problem. This
reductions can be done in polynomial time. Since the Vertex Cover problem is NP-hard, it follows that the Stable
Gonality problem is NP-hard as well. □

4.2. APX-hardness

The Vertex Cover problem is hard for subcubic graphs [2]. So we will use the NP-hardness reduction above to show
APX-hardness of the Stable Gonality problem. Notice that we consider the optimisation variant of the Stable Gonality
problem here, i.e., we ask for a finite harmonic morphism from a refinement to a tree with minimum degree.

Lemma 4.4. Let G = (V , E) be a subcubic graph with |V | ≥ 8 and let Ĝ be as constructed above. Let Ĝ′ be a refinement of Ĝ,
T a tree and φ a finite harmonic morphism of degree at most (1 + ϵ) sgon(̂G). Then we can find, in polynomial time, a vertex
cover S of G of size at most (1 + 32ϵ)τ (G).

Proof. Define γ = max{
⏐⏐φ−1(C) ∩ Ĝ

⏐⏐ | C component of T\{φ(t)}} as in the proof of Lemma 4.2. We distinguish cases for
the value of γ .

1. γ = 1. Construct a vertex cover of G as follows: Define S = {v ∈ V | φ(v) = φ(t)}. For every edge in E[V\S], add
one of its endpoints. Write S ′ for this set.
Notice that S ′ is a vertex cover with size at most |S| + |E[V\S]|. From the proof of Lemma 4.2, it follows that

|S ′
| ≤ |S| + |E[V \ S]|
≤ deg(φ) − n − 1

≤ (1 + ϵ) sgon(̂G) − n − 1
= (1 + ϵ)(n + τ (G) + 1) − n − 1
≤ ϵn + (1 + ϵ)τ (G) + ϵ.

Since G is subcubic, it holds that τ (G) ≥
1
3n, hence

|S ′
| ≤ ϵ3τ (G) + (1 + ϵ)τ (G) + ϵ

≤ (1 + 5ϵ)τ (G).

2. γ = 0 or γ ≥ 2. In the proof of Lemma 4.2, we have seen that deg(φ) ≥ 2n. Thus

2n ≤ (1 + ϵ) sgon(̂G)
≤ (1 + ϵ)(n + τ (G) + 1).

We derive that

ϵ ≥
n − τ (G) − 1
n + τ (G) + 1

≥
n − τ (G) − 1

2n
.

Since G is subcubic, it holds that τ (G) ≤
3
4n. Because of this and because we assumed that n ≥ 8, it follows that

ϵ ≥

1
4n − 1
2n

≥

1
8n
2n

=
1
16

n

The set V is clearly a vertex cover and has size |V | ≤ (1 + 32ϵ)τ (G), since τ (G) ≥
1
3n for subcubic graphs.

In both cases we found a vertex cover of G of size at most (1+32ϵ)τ (G). Notice that these vertex covers can be computed
in polynomial time. □

Theorem 4.5. The Stable Gonality problem is APX-hard.

Proof. In [2] it was shown that the Vertex Cover problem is APX-hard, even on subcubic graphs. It follows that the
Vertex Cover problem is APX-hard on subcubic graphs with at least 8 vertices as well. From this and from Lemma 4.4
the result follows. □
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Fig. 7. Graphs Gk consisting of 2k−3 cycles of length 2k, depicted for k = 3 and k = 4. These graphs have divisorial gonality k and stable gonality 2.

. Divisorial and stable gonality are unbounded in one another

In the introduction we briefly mentioned some inequalities regarding different graph invariants; a summary of all
elations can be found in Fig. 1. In particular, it is known that treewidth is a lower bound for all notions of gonality [13],
nd by definition stable divisorial gonality is a lower bound for divisorial gonality. It is mentioned in [17] that it is a lower
ound for the stable gonality as well. The idea is as follows: let φ:G′

→ T be a finite harmonic morphism of degree k from
refinement G′ to a tree T . It is possible to refine G′ to a graph G′′ such that the pre-image divisor, that assigns mφ(v)

chips to every vertex in φ−1(t) for some vertex t of T , has rank at least 1. Furthermore, through methods of algebraic
geometry the upper bound b1+3

2 has been established for stable gonality, where b1(G) is the first Betti number and equals
E(G)| − |V (G)| + 1 [17]. It has been conjectured that this also holds for divisorial gonality [5].

On the other hand, b1 cannot be bounded above by a function of any notion of gonality alone; consider the banana
raph consisting of 2 vertices withm parallel edges between them. This graph has divisorial and stable gonality 2 (obtained
y subdividing every edge once), whilst the value of b1 = m − 1 can be arbitrarily high.
The notions of gonality cannot be bounded in terms of treewidth either. In [20], it is shown that fan-graphs (a path

ith a universal vertex) have arbitrarily high divisorial gonality, but treewidth 2. This argument works for stable divisorial
onality as well.
This section is devoted to showing that stable gonality and divisorial gonality are unbounded in terms of one another.
e construct two families of graphs, in one of which the stable gonality is bounded but the divisorial gonality unbounded,

nd vice versa in the other. These results function as a justification for the different approaches taken in proving the NP-
ardness of stable gonality and divisorial gonality: knowledge of one of the two invariants provides little knowledge of
he other.

Note that it follows that both stable gonality and divisorial gonality are unbounded in the treewidth and stable
ivisorial gonality, and that b1 is unbounded in the divisorial gonality.

.1. Divisorial gonality is unbounded in stable gonality

For a positive integer k, a chain of k cycles is a graph obtained by taking k + 1 vertices v1, . . . , vk+1 and connecting
vi and vi+1 by two paths of length pi and qi for every i = 1, . . . , k. So the resulting graph consists of k linked cycles of
engths p1 + q1, . . . , pk + qk.

A chain of k cycles has stable gonality 2. Indeed, we can subdivide edges to obtain a chain of k cycles in which for every
i = 1, . . . , k the vertices vi and vi+1 are connected by two paths of length M , for some large enough M . The obtained
graph can be mapped to a path of kM + 1 vertices, yielding a finite harmonic morphism of degree 2.

It was shown in [16] that for ‘generic’ lengths pi and qi, a chain of k cycles has divisorial gonality at least ⌊
k+3
2 ⌋, meeting

he Brill–Noether bound. An exact description of the divisorial gonality of chains of cycles for arbitrary lengths was given
n [25]. In both papers, the setting is that of ‘metric graphs’. However, their lower bounds also hold in our setting since the
ivisorial gonality of a graph is at least the divisorial gonality of the corresponding metric graph with unit edge lengths
see [5]). It follows that the divisorial gonality is not bounded by any function of the stable gonality.

An alternative proof for the lower bound on divisorial gonality of chains of cycles (for graphs, not metric graphs) was
iven in Corollary 17 of the arXiv-version of [20]. There, for k ≥ 3, the graph Gk is a chain of 2k − 3 cycles with paths
f lengths k − 1 and k + 1 connecting vi and vi+1 for every i = 1, . . . , 2k − 3. See Fig. 7 for an illustration of G3 and G4.
here it is shown that dgon(Gk) = k.

.2. Stable gonality is unbounded in divisorial gonality

Ye Luo [3, Example 5.13] gave an example of a graph with divisorial gonality 3 and stable gonality 4, see Fig. 8,
howing that graphs exist where the stable gonality is strictly larger than the divisorial gonality. We extend this result
y constructing a family of graphs all of which have divisorial gonality at most 3, but the stable gonality is unbounded.
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Fig. 8. A graph with stable gonality 4 and divisorial gonality 3.

Fig. 9. Examples of graphs G1,G2 , and G3 .

Construction 5.1. Let G0 be the triangle graph. For k ≥ 2, we construct Gk as follows. Take a triangle graph and three
copies of Gk−1. For every copy of Gk−1, pick a vertex in this copy. Identify each of those vertices with one of the vertices
of the triangle graph. We call this triangle graph the central triangle C in Gk.

Remark 5.2. Notice that the graphs Gk constructed above are not unique. See Fig. 9 for an example. In the rest of this
section, we fix some sequence Gk that can be constructed in this way.

We will prove that the divisorial gonality of Gk is 3 for all k ≥ 1, and that the stable gonality of Gk is at least k + 2.
For this, we first show some lemmas. The first lemma states that, given a finite harmonic morphism φ:G′

→ T , a path
in T can be lifted to a path in G′. This is due to harmonicity of the morphism φ, and this will be the only consequence of
harmonicity that we use in this section.

Lemma 5.3. Let G be a graph and φ:G′
→ T a finite harmonic morphism from a refinement of G to a tree T . Let P be a

t1 − t2-path in T . Let v ∈ V (G) be a vertex such that φ(v) = t1. Then there exist a vertex u ∈ V (G′) and a v − u-path Q such
that φ(Q ) is a path and equals P.

Proof. We show this by induction on the length of the path φ(v) − t . If this length equals zero, we are done. Suppose
that for every vertex with distance k to φ(v), we can lift this path, i.e. there is a v − u-path Q that is mapped to P . Let t
e a vertex with distance k + 1 to φ(v). Let t ′ be the neighbour of t that is closer to φ(v). By the induction hypothesis,
here is a path v, u1, . . . , uk such that φ(v), φ(u1), . . . , φ(uk) equals the unique path from φ(v) to t ′. Since φ is harmonic
t uk, there is a neighbour uk+1 of uk, such that φ(uk+1) = t . □

Let φ:G′

k → T be a finite harmonic morphism from a refinement of Gk to a tree T . Let C be the central triangle in
k. Call the vertices of this central triangle ai for i ∈ {1, 2, 3}. Write C ′ for the subgraph of G′

k that consists of C and all
efinements added to the edges of C , see Fig. 10. Note that the vertices added to the vertices ai are not part of C ′.

emma 5.4. Consider the restriction of φ to C ′. There is at least one vertex ai such that there is another vertex in C ′ that is
apped to φ(ai).
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Fig. 10. Left: A refinement of the graph G1 . Right: The refinement C ′ of the central triangle.

Proof. Assume that a1, a2 and a3 are all mapped to unique vertices by φ restricted to C ′. Denote them by a′

1, a
′

2 and a′

3
respectively. Consider the a′

i − a′

j-paths in T . Without loss of generality, the distance d(a′

2, a
′

3) is maximal. Notice that this
distance is at least 2, so there is an internal vertex b′ on the a′

2 − a′

3-path. Now consider the b′
− a′

1-path P . Notice that P
does not contain both a′

2 and a′

3, because the distance d(a′

2, a
′

3) is maximal.
Let b be a vertex in the subdivision of the edge a2a3 of G that is mapped to b′. By Lemma 5.3, there is a b − u-path Q

in G′

k that is mapped to P . Notice that Q does not contain a2 and a3, because a′

2 and a′

3 are not contained in P . It follows
that Q lies in C ′. Since every path from b to a1 does contain a2 or a3, it follows that u ̸= a1. Hence, there is another vertex
in C ′ that is mapped to a′

1. □

Lemma 5.5. The stable gonality of Gk is at least k + 2 for every k ≥ 0.

Proof. We prove this by induction. It is known that G0 has stable gonality 2, so the statement holds for k = 0.
Suppose that sgon(Gk−1) ≥ k + 1. Consider Gk. Let φ:G′

k → T be a finite harmonic morphism from a refinement of Gk
to a tree T . By Lemma 5.4, we know that there is a vertex ai, such that there is another vertex w in C ′ that is mapped to
φ(ai).

Consider the copy of Gk−1 in Gk that shares vertex ai, call this copy H . Write H ′ for the refinement of H in G′

k. Notice
that φ|H ′ :H ′

→ φ(H ′) is a finite morphism, and is harmonic for all vertices except ai. We will refine H ′ to extend the
restriction of φ to H ′ to a finite harmonic morphism ψ . Consider the tree T ′

= φ(H ′). Let e ∈ Eφ(ai) be the edge such that
mφ,e(ai) is maximal. For every edge e′

= φ(ai)u with mφ,e′ (ai) < mφ,e(ai), we do the following. Let T ′

φ(ai)
(u) be the subtree

f T ′ that consists of φ(ai) together with the component that contains u after removing φ(ai) from T ′. We add a copy of
′

φ(ai)
(u) to ai, and assign index mφ,e(ai) − mφ,e′ (ai) to these new edges. Set ψ as the identity map for those new vertices.

or all vertices v of H ′, set ψ(v) = φ(v). This map ψ is a finite harmonic morphism. By the induction hypothesis it follows
hat deg(ψ) ≥ k + 1.

We compute the degree of φ by counting the pre-images of φ(ai):

deg(φ) =

∑
v∈G′

k,φ(v)=φ(ai)

mφ(v)

≥ rφ(w) +

∑
v∈H ′,φ(v)=φ(ai)

mφ(v)

≥ 1 +

∑
v∈H ′,ψ(v)=ψ(ai)

mψ (v)

≥ 1 + deg(ψ)
≥ k + 2.

e conclude that sgon(Gk) ≥ k + 2. □
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Theorem 5.6. For every k ≥ 1 there is a graph with divisorial gonality 3 and stable gonality at least k + 2.

Proof. Notice that G1 has divisorial gonality 3. Moreover, the divisor with 3 chips on a1 has rank at least 1 and for every
vertex v, this divisor is equivalent to the divisor with 3 chips on v. It follows that the divisor on Gk with 3 chips on a
ertex v has degree 3 and rank at least 1. We conclude that for every k the graph Gk has divisorial gonality at most 3.
By Lemma 5.5, we see that the graph Gk has stable gonality at least k + 2. □

Remark 5.7. This construction can be carried out in a more general way than what has been done in this section. Instead
f using a triangle graph for the construction, one can use any graph G0 with the following two properties:

• for some positive integer d ≥ 3, the divisor with d chips on any vertex is equivalent to the divisor with d chips on
any other vertex;

• G0 contains a cycle of length at least 3.

For example, G0 can be any cycle Cn or complete graph Kn. In both cases a valid choice for d is n. Moreover, combinations
of different graphs that share a possible value for d can be used. The constructed graphs Gk have divisorial gonality at
most d and stable gonality at least k + 2.

6. Conclusion

In this paper we have seen several notions of gonality for graphs. We have proven that all are NP-hard to compute. This
leaves open some questions regarding the exact complexity of the notions of graph gonality. For example, it is known that
the Divisorial Gonality problem is in XP, but it remains open whether it is in FPT or W[1]-hard. For the Stable Gonality
problem it is even unknown whether it is in XP. It is unknown whether any of the notions of gonality for graphs can
be used as parameter for FPT-algorithms: it is interesting to see NP-hard problems that are not tractable on graphs of
bounded treewidth, but are tractable on graphs of bounded gonality.

Moreover, we have seen that all notions of graph gonality are APX-hard. As mentioned before, it is unknown whether
any of these are in APX.
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