research

The Lattice structure of Chip Firing Games and Related Models

Abstract

In this paper, we study a famous discrete dynamical system, the Chip Firing Game, used as a model in physics, economics and computer science. We use order theory and show that the set of reachable states (i.e. the configuration space) of such a system started in any configuration is a lattice, which implies strong structural properties. The lattice structure of the configuration space of a dynamical system is of great interest since it implies convergence (and more) if the configuration space is finite. If it is infinite, this property implies another kind of convergence: all the configurations reachable from two given configurations are reachable from their infimum. In other words, there is a unique first configuration which is reachable from two given configurations. Moreover, the Chip Firing Game is a very general model, and we show how known models can be encoded as Chip Firing Games, and how some results about them can be deduced from this paper. Finally, we define a new model, which is a generalization of the Chip Firing Game, and about which many interesting questions arise.Comment: See http://www.liafa.jussieu.fr/~latap

    Similar works

    Full text

    thumbnail-image

    Available Versions