401 research outputs found

    Nonsingular systems of generalized Sylvester equations: An algorithmic approach

    Get PDF
    We consider the uniqueness of solution (i.e., nonsingularity) of systems of r generalized Sylvester and ⋆-Sylvester equations with n×n coefficients. After several reductions, we show that it is sufficient to analyze periodic systems having, at most, one generalized ⋆-Sylvester equation. We provide characterizations for the nonsingularity in terms of spectral properties of either matrix pencils or formal matrix products, both constructed from the coefficients of the system. The proposed approach uses the periodic Schur decomposition and leads to a backward stable O(n3r) algorithm for computing the (unique) solution

    Some numerical challenges in control theory

    Get PDF
    We discuss a number of novel issues in the interdisciplinary area of numerical linear algebra and control theory. Although we do not claim to be exhaustive we give a number of problems which we believe will play an important role in the near future. These are: sparse matrices, structured matrices, novel matrix decompositions and numerical shortcuts. Each of those is presented in relation to a particular (class of) control problems. These are respectively: large scale control systems, polynomial system models, control of periodic systems, and normalized coprime factorizations in robust control

    The automatic solution of partial differential equations using a global spectral method

    Full text link
    A spectral method for solving linear partial differential equations (PDEs) with variable coefficients and general boundary conditions defined on rectangular domains is described, based on separable representations of partial differential operators and the one-dimensional ultraspherical spectral method. If a partial differential operator is of splitting rank 22, such as the operator associated with Poisson or Helmholtz, the corresponding PDE is solved via a generalized Sylvester matrix equation, and a bivariate polynomial approximation of the solution of degree (nx,ny)(n_x,n_y) is computed in O((nxny)3/2)\mathcal{O}((n_x n_y)^{3/2}) operations. Partial differential operators of splitting rank 3\geq 3 are solved via a linear system involving a block-banded matrix in O(min(nx3ny,nxny3))\mathcal{O}(\min(n_x^{3} n_y,n_x n_y^{3})) operations. Numerical examples demonstrate the applicability of our 2D spectral method to a broad class of PDEs, which includes elliptic and dispersive time-evolution equations. The resulting PDE solver is written in MATLAB and is publicly available as part of CHEBFUN. It can resolve solutions requiring over a million degrees of freedom in under 6060 seconds. An experimental implementation in the Julia language can currently perform the same solve in 1010 seconds.Comment: 22 page

    Reordering the eigenvalues of a periodic matrix pair with applications in control

    Get PDF
    Reordering the eigenvalues of a periodic matrix pair is a computational task that arises from various applications related to discrete-time periodic descriptor systems, such as pole placement or linear-quadratic optimal control. However, it is also implicitly present in recently developed robust control methods for linear time-invariant systems. In this contribution, a direct algorithm for performing this task based on the solution of a periodic generalized Sylvester equation is proposed. The new approach is numerically backward stable and it is demonstrated that the resulting deflating subspaces can be much more accurate than those computed by collapsing methods

    Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    Full text link
    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O(p2d)\mathcal{O}(p^{2d}) storage and O(p3d)\mathcal{O}(p^{3d}) computational work, where pp is the degree of basis polynomials used, and dd is the spatial dimension. Our SVD-based tensor-product preconditioner requires O(pd+1)\mathcal{O}(p^{d+1}) storage, O(pd+1)\mathcal{O}(p^{d+1}) work in two spatial dimensions, and O(pd+2)\mathcal{O}(p^{d+2}) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in pp per degree of freedom in 2D, and reduce the computational complexity from O(p9)\mathcal{O}(p^9) to O(p5)\mathcal{O}(p^5) in 3D. Numerical results are shown in 2D and 3D for the advection and Euler equations, using polynomials of degree up to p=15p=15. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees pp.Comment: 40 pages, 15 figure

    Author index for volumes 101–200

    Get PDF
    corecore